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Private information

Definition

The private info of a ∈ N is what a knows but nobody else does,
that is, the difference between H(N) and H(N−a).

Claim

For an almost entropic point g, one can freely add and take away
private info, and it still remains almost entropic.

Proof.

g + λra adds λ ≥ 0 amount of private info to a ∈ N.

Let t = g(N)− g(N−a). Then g↓a = g↓at takes away all
private info from a.

Reminder:

g↓at (J) = min{g(aJ)− t, g(J)} for all J ⊆ N.
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Private information

Definition

The private info of a ∈ N is what a knows but nobody else does,
that is, the difference between H(N) and H(N−a).

Claim

For an almost entropic point g, one can freely add and take away
private info, and it still remains almost entropic.

Proof.

g + λra adds λ ≥ 0 amount of private info to a ∈ N.

Let t = g(N)− g(N−a). Then g↓a = g↓at takes away all
private info from a.

Corollary (Reduction)

When investigating the entropy region, we may assume that no
variable has private info.
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Visualizing the entropy region of 3 random variables

For a view of the entropy region determined by N = 3 random
variables choose another coordinate system determined by

x1 = (a, b|c), x2 = (b, c |a), x3 = (c , a|b),
x4 = (a, b)− (a, b|c) = (b, c)− (b, c |a) = (a, c)− (a, c|b).
x5 = (a|bc), x6 = (b|ac), x7 = (c |ab),

The last three coordinates are the private info, and can be
discarded.

The rest determines a convex pointed cone in R4, which can be
visualized by using (x1, x2, x3, x4) as barycentric coordinates: set
weights (x1, x2, x3, x4) at vertices of a regular tetrahedron. ⇒
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Image of the 3-variable entropy region

Set weights (x1, x2, x3, x4) at vertices of a regular tetrahedron.

x1

x2

x3

x4

x4 = I(a, b, c) can be negative (pink bottom part).
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Shorthands for entropy expressions

We denote the four random variables by a, b, c , d . Letters H and
I denoting entropy and mutual information are omitted:

(a, b) = I(a, b) ⇐ mutual info

(a, b | c) = I(a, b | c) ⇐ conditional mutual info

(a | bcd) = H(a | bcd) ⇐ private info

[abcd ] = −I(a, b) + I(a, b | c) + I(a, b | d) + I(c , d) ⇐
Ingleton expression

The Ingleton expression is symmetric in ab and cd :

[abcd ] = [
y
bacd ] = [ab

y
dc ] = [

y
ba

y
dc ].

There are six non-equivalent Ingleton expressions:

[abcd ] [acbd ] [adbc ] [bcad ] [bdac ] [cdab ].
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Why Ingleton is so important

Definition

H ⊂ Γ̄∗
4 where all six Ingleton expressions are ≥ 0;

Hab, Hac , . . . where the corresponding Ingleton is ≤ 0,
that Ingleton is violated.

Theorem (Matus – Studeny, 1995)

Γ̄∗
4 = H ∪Hab ∪Hac ∪Had ∪Hbc ∪Hbd ∪Hcd .

Any two of the abopve parts have disjoint interior; common
points are on the boundary of the core H .

H is a full dimensional closed polyhedral cone.

Vertices and internal points of H are linearly representable.

Hab, . . . , Hcd are isomorphic; isomorphisms are provided by
permutations of a, b, c , d.
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If . . .

If we know Hab ,

then

we know everything∗

∗at least about Γ∗
4 .
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The case of five variables

Research problem

Give a similar decomposition of the 31-dimensional polymatroid
cone Γ∗

5 of five variables.

Γ∗
5 has a 120-fold symmetry;

the enclosing Shannon polytope has 117978 vertices [1];

the vertices fall into 1319 equivalence classes[1] (into 15
classes in case of four variables);

the linearly representable core of Γ∗
5 is known precisely[2].

[1] M. Studeny, R. R. Bouckaert, T. Kocka: Extreme
supermodular set functions over five variables

[2] R. Dougherty, C. Freiling, K. Zeger: Linear rank inequalities on
five or more variables
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Bounding facets of Hab

Hab is contained in the simplex determined by these facets:

1. [abcd ], ⇐ the Ingleton facet

2, 3. (a, b|c), (a, b|d), ⇐ Shannon facets

4, 5. (c , d |a), (c , d |b), ⇓

6–9. (a, c |b), (a, d |b), (b, c |a), (b, d |a),

10. (c , d),

11. (a, b|cd),

12–15. (a|bcd), (b|acd), (c |abd), (d |abc).

Hab is on the ≤ 0 side of the Ingleton facet, and on the ≥ 0 side
of the other 14 Shannon-facets.

⇒ The base of the simplex is in H .
⇒ The base is entropic, the top is not.
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Using “natural” coordinates

Definition

Use the facet equations as the coordinates of the entropy vector.

Example: entropies

of the ringing bells distribution:

a b c d Prob

0 0 0 0 1/4

1 0 0 1 1/4

1 0 1 0 1/4

1 1 1 1 1/4
Original entropy vector:

a b c d ab ac ad bc bd cd abc abd acd bcd abcd
.811 .811 1 1 1.5 1.5 1.5 1.5 1.5 2 2 2 2 2 2

The same in natural coordinates:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-0.12 0 0 .19 .19 .19 .19 .19 .19 0 0 0 0 0 0
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Transformations which preserve entropic points

1. [a, b, c , d ],

= −α/4

2, 3. (a, b|c), (a, b|d),

= β

4, 5. (c , d |a), (c , d |b),

= γ/2

6–9. (a, c|b), (a, d |b), (b, c |a), (b, d |a),

= δ

10. (c , d),

11. (a, b|cd),

12–15. (a|bcd), (b|acd), (c |abd), (d |abc)

1 The private info can be discarded (replace them by zero).

2 Using g↑ct , values from 10 can be moved to 2 (or 3).

3 Using g↓at , values from 11 can be moved to 4 (or 5).

4 As α + β + γ + δ = H(abcd), use them as barycentric
coordinates to visualize the central symmetrical part of Hab.
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Transformations which preserve entropic points
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1 The private info can be discarded (replace them by zero).
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coordinates to visualize the central symmetrical part of Hab.
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Transformations which preserve entropic points

1. [a, b, c , d ],

= −α/4

2, 3. (a, b|c) + t, (a, b|d),

= β

4, 5. (c , d |a), (c , d |b),

= γ/2

6–9. (a, c|b), (a, d |b), (b, c |a), (b, d |a),

= δ

10. (c , d)− t,

11. (a, b|cd),

12–15. 0, 0, 0, 0

1 The private info can be discarded (replace them by zero).

2 Using g↑ct , values from 10 can be moved to 2 (or 3).

3 Using g↓at , values from 11 can be moved to 4 (or 5).

4 As α + β + γ + δ = H(abcd), use them as barycentric
coordinates to visualize the central symmetrical part of Hab.
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4 As α + β + γ + δ = H(abcd), use them as barycentric
coordinates to visualize the central symmetrical part of Hab.
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Transformations which preserve entropic points

1. [a, b, c , d ], = −α/4

2, 3. (a, b|c)∗, (a, b|d), = β

4, 5. (c , d |a)∗, (c , d |b), = γ/2

6–9. (a, c|b), (a, d |b), (b, c |a), (b, d |a), = δ

10. 0,

11. 0,

12–15. 0, 0, 0, 0

1 The private info can be discarded (replace them by zero).

2 Using g↑ct , values from 10 can be moved to 2 (or 3).
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4 As α + β + γ + δ = H(abcd), use them as barycentric
coordinates to visualize the central symmetrical part of Hab.
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Upper and lower bounds

Upper bound from

known inequalities

Best Ingleton score

(so far)

Lower bound from
computer search

https://www.youtube.com/watch?v=sam97F7oDnE

https://www.youtube.com/watch?v=sam97F7oDnE
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An entropy inequality

This is a Shannon inequality checked by xitip∗:

[abcd ] + (z , b | c) + (z , c | b) + (b, c | z) ≥ −3(z , ad |bc).

As z and ad are independent in the black part, the Maximum
Entropy Method (MAXE) says that in this case (z , ad | bc) = 0
can be assumed:

[abcd ] + (z , b | c) + (z , c | b) + (b, c | z) ≥ 0

is a five-variable entropy inequality.

Setting z = a we get the Zhang-Yeung inequality.

∗ http://xitip.epfl.ch, or https://github.com/lcsirmaz/minitip
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An entropy inequality

Theorem (Matus)

For each k ≥ 0 this is a 5-variable entropy inequality:

k [abcd ] +
k(k − 1)

2

(
(a, b | c) + (a, c | b)

)
+

+ k
(
(z , b | c) + (z , c | b)

)
+ (b, c | z) ≥ 0

For k = 0 this is Shannon; for k = 1 it is the previous inequality.

Proof.

By induction on k. By MAXE, (z , ad | bc) = 0. Use the induction
hypothesis for the variables az , bz , cz , d , az to get

k [az , bz , cz , d ] +
k(k − 1)

2

(
(az , bz | cz) + (az , cz | zb)

)
+

+ k
(
(az , bz | cz) + (az , cz | bz)

)
+ (bz , cz | az) ≥ 0

⇒
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Proof.

By induction on k. By MAXE, (z , ad | bc) = 0. Use the induction
hypothesis for the variables az , bz , cz , d , az to get
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2

(
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An entropy inequality – proof

⇒
k [az , bz , cz , d ] +

k(k − 1)

2

(
(az , bz | cz) + (az , cz | zb)

)
+

+ k
(
(az , bz | cz) + (az , cz | bz)

)
+ (bz , cz | az) ≥ 0.

These are Shannon inequalities, and by MAXE, (z , ad | bc) = 0:

[abcd ] + (b, c | z) +

+ (z , b | c) + (z , c | b) ≥ (bz , cz | az)− 3(z , ad | bc),

[abcd ] + (z , b | c) + (z , c | b) ≥ [az , bz , cz , d ]− 3(z , ad | bc),

(a, b | c) ≥ (az , bz | cz)− (z , ad | bc),

(a, c | b) ≥ (az , cz | bz)− (z , ad | bc).

Sum them up; the LHS is the claim for k + 1, the RHS is ≥ 0 by
induction.
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An entropy inequality – proof

⇒
k [az , bz , cz , d ] +

k(k − 1)

2

(
(az , bz | cz) + (az , cz | zb)

)
+

+ k
(
(az , bz | cz) + (az , cz | bz)

)
+ (bz , cz | az) ≥ 0.

These are Shannon inequalities, and by MAXE, (z , ad | bc) = 0:

⇒ 1 ∗

⇒ k ∗

⇒ k(k + 1)/2 ∗

[abcd ] + (b, c | z) +

+ (z , b | c) + (z , c | b) ≥ (bz , cz | az)− 3(z , ad | bc),

[abcd ] + (z , b | c) + (z , c | b) ≥ [az , bz , cz , d ]− 3(z , ad | bc),

(a, b | c) ≥ (az , bz | cz)− (z , ad | bc),

(a, c | b) ≥ (az , cz | bz)− (z , ad | bc).

Sum them up; the LHS is the claim for k + 1, the RHS is ≥ 0 by
induction.
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A useful non-linear entropy inequality

Corollary

If [abcd ] ≤ 0, then(
2(b, c | a)− 3[abcd ]

)(
(a, b | c) + (a, c | b)

)
≥ [abcd ]2.

Proof.

I = [abcd ], B = (b, c | a), C = (a, b | c) + (a, c | b). Setting z = a
in Matus’ theorem we have

2kI + 2B + k(k + 1) C ≥ 0.

By assumption, I ≤ 0; choose k ≥ 0 with −1− I/C < k ≤ −I/C:

⇒ C ∗ 2(−1− I/C)I + 2B + (−I/C)(−I/C + 1)C ≥ 0,

2(−C − I)I + 2BC + I(I − C) ≥ 0,

−3IC + 2BC − I2 ≥ 0.
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A 2-dimensional view of Γ̄∗4

1 Start from this consequence of Matus’ inequality:(
2(b, c | a)− 3[abcd ]

)(
(a, b | c) + (a, c | b)

)
≥ [abcd ]2

2 Take the cross-section of Γ̄∗
4 with the hyperplane

2(b, c | a)− 3[abcd ] = 2.

Alternate view: norm the entropies according to this equation.

3 Consider the 2-dimensional plane spanned by the vectors

x = −[abcd ] and y = (a, b | c) + (a, c | b).

4 Project the cross-section to this plane. Matus’ inequality
restricts where the projection can go: it must satisfy

2y ≥ x2, i.e., y ≥ x2/2.
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Picture

(a, b | c) + (a, c | b)

−[abcd ]
x

y

0.01

0.005

0 0.05 0.1

forbidden
by

Matúš

have example
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Where the examples are coming from?

Take the ringing bells distribution with s = 2 + 2ε and
ε→ 0:

a b c d Prob

0 0 0 0 ε/s

1 0 0 1 1/s

1 0 1 0 ε/s

1 1 1 1 1/s

−[abcd ] = ε/2 + O(ε3),

(a, b | c) = 0,

(b, c | a) = 1 + O(ε log ε),

(a, c | b) =
1

2 ln 2
ε2 + O(ε3).

With these distributions x ≈ −[abcd ] = ε/2 + O(ε3),
y ≈ (a, b | c) + (a, c | b) = ε2/(2 ln 2) + O(ε3), which means

y =
2

ln 2
x2 + O(x4) ≈ 2.8854 x2.
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Improving the constant

Fine tuning the probabilities in the bells distribution,
the constant 2.8854 in

y =
2

ln 2
x2 + O(x3) ≈ 2.8854 x2

can be lowered to around 1.688.

x

y

0.005

0 0.05 0.1

forbidden
by

Matúš

this example
best probs
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Improving the constant

Fine tuning the probabilities in the bells distribution,
the constant 2.8854 in

y =
2

ln 2
x2 + O(x3) ≈ 2.8854 x2

can be lowered to around 1.688.

Research Problem

Find a sequence of distributions which improve this constant.
You need to look beyond the ringing bells distribution.
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Outline of the attack

Mimic the idea of the proof that Γ̄∗
4 is not polyhedral:

1 Find a good cross-section of Γ̄∗
4 .

2 Project the cross-section to a well-chosen two-dimensional
plane.

3 Find an entropy inequality which excludes the pointset X of
the plane.

4 Find distributions in the cross-section whose projection to the
plane give D.

5 Prove that X and D cannot be separated by a semi-algebraic
curve.
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Outline of the attack

For each point there are good candidates, but more work is needed.
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Outline of the attack

For each point there are good candidates, but more work is needed.
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#3: A useful entropy inequality

The following book inequality was discovered by Dougherty et al.

(2k − 1) [abcd ] + (a, b | c) + k2k−1
(
(a, c | b) + (b, c | a)

)
+ (k2k−1 − 2k + 1)

(
(a, d | b) + (b, d | a)

)
≥ 0.

Using I = −[abcd ], B = (a, b | c), C = (a, c | b) + · · ·+ (b, d | a),

−(2k − 1) I + B + k2k−1C ≥ 0.

Take the cross-section defined by I + B = 1; then 1 + k2k−1C ≥
2kI. Assuming I is positive, choose 2 ≤ 2kI. Then

1 +

k ≥
log2(2/I)

2k−1 ≥
(1/I) C ≥ 1 + k2k−1C ≥ 2kI ≥ 2,

This gives the forbidden region for 〈I/(I + B), C/(I + B)〉:

X =

{
〈x , y〉 : y ≥ x

1− log2 x
> −0.5

x

log2 x

}
.

⇒
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#4 and #5: sample distributions

⇒
X =

{
〈x , y〉 : y ≥ x

1− log2 x
> −0.5

x

log2 x

}
.

Looking at the ringing bells
distribution,

B = (a, b | c) = 0,

whatever probabilities are chosen.

No corresponding entropy inequality is
known. (But probably exists.)



L. Csirmaz: Geometry of the entropy region - III 30 / 33

#4 and #5: sample distributions

⇒
X =

{
〈x , y〉 : y ≥ x

1− log2 x
> −0.5

x

log2 x

}
.

Looking at the ringing bells
distribution,

B = (a, b | c) = 0,

whatever probabilities are chosen.

No corresponding entropy inequality is
known. (But probably exists.)



L. Csirmaz: Geometry of the entropy region - III 30 / 33

#4 and #5: sample distributions

⇒
X =

{
〈x , y〉 : y ≥ x

1− log2 x
> −0.5

x

log2 x

}
.

Using I = −[abcd ], B = (b, c | a), C =
(a, b | c) + (a, c | b) + (a, b | d) + (a, d | b)
and the cross-section I + B = 1,
we can do better . . . (see next page)

No corresponding entropy inequality is
known. (But probably exists.)
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#4 and #5: sample distributions

⇒
X =

{
〈x , y〉 : y ≥ x

1− log2 x
> −0.5

x

log2 x

}
.

Using I = −[abcd ], B = (b, c | a), C =
(a, b | c) + (a, c | b) + (a, b | d) + (a, d | b)
and the cross-section I + B = 1,
we can do better . . . (see next page)

No corresponding entropy inequality is
known. (But probably exists.)
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Tweaking the bells distribution

X ⇒
X =

{
〈x , y〉 : y ≥ x

1− log2 x
> −0.5

x

log2 x

}
.

Using the probabilities below with s = (1 + ε)2,

a b c d Prob

0 0 0 0 ε2/s

1 0 0 1 ε/s

1 0 1 0 ε/s

1 1 1 1 1/s

I = −(1 + o(1)) ε2 log2 ε,

(a, b | c) = (a, b | d) = 0,

B = −(1 + o(1)) ε log2 ε,

C = (2 + o(1)) ε2,

which gives the example dataset for I/(I + B) and C/(I + B):

D ⇒
D =

{
〈x , y〉 : y = −(2 + o(x))

x

log2 x

}
.

Observe: X and D are inseparable by algebraic curves.
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Conclusion

To prove that Γ̄∗
4 is not semi-algebraic,

Research problem #3

Prove this variant of the book inequality à la Matúš:

(2k − 1) [abcd ] + (b, c | a) + k2k−1
(
(a, b | c) + (a, c | b)

)
+ (k2k−1 − 2k + 1)

(
(a, b | d) + (a, d | b)

)
≥ 0.

Or,

Research problem #4

Show that the quoted book inequality is essentially sharp by
giving examples where

y ≤ const
x

log2(1/x)

for small values of x .
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Thank you for your attention
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