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Reáltanoda u. 13-15, Budapest, Hungary, H-1053

Abstract

An asserted program is presented whose correctness is provable by the Floyd-Hoare-Naur
method in each finite field separately, which, however, admits no universal derivation, i.e.
one which would work on all but finitely many finite fields of a given characteristic. Also,
it is proved in general that if “executing a program twice with the same input, the outputs
agree” is a provable property, then the output of the program is first order definable from
the input.
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1 Introduction

In the last 30 years extended research was devoted to clarify the exact power of different program
verification methods. It has turned out that quite a number of the famous methods have nice
model theoretic characterizations [4, 6, 8]. The characterizations, as a byproduct, give simple
and universal methods for proving the unprovability of a partial correctness assertion by this or
that method. The greatest effort, however, was put on the most profound method, the so called
Naur-Floyd-Hoare method of intermediate assertions. The results are mainly negative, showing
the strong incompleteness nature of Floyd’s method.

In this paper by a program we mean a block diagram, regular, or while program of a given
signature — whichever is closer to the reader’s heart. However, recursive program schemes or
programs with recursive procedures are excluded since they are untractable by our methods [5].
The assertions are simple first order formulas of the same signature, and the partial correctness
assertion {ϕin}p{ϕout} states that whenever the input variables of the program p satisfy the
input assertion ϕin and the program halts, then the output variables of p will satisfy the output
condition ϕout. We say that {ϕin}p{ϕout} admits a Floyd-Hoare derivation in a structure (or
model) A if it admits such a derivation (in sense of, e.g. [3]) in which all the oracle axioms used
are elements of Th(A), the set of sentences true in A.

One of the rare completeness-type theorems about the Floyd-Hoare derivability is the follow-
ing.

∗A preliminary version of this paper appeared in the Proceedings of the Symposium on Logic in Computer
Science, Cambridge, Mass. 1986, pp. 4–10
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Theorem 1.1 If an asserted program admits a Floyd-Hoare derivation in each model of a given
theory T , then there exists a single “universal” derivation which works in all the models.

While this theorem is an immediate consequence of the above-mentioned characterizations,
for the convenience of the reader we shall give a simple and direct proof.

From both theoretical and practical points of view finite structures play an important role.
Modeling computation in a finite structure is much less controversial than doing the same in infi-
nite models. Moreover, on finite structures, partially correct and Floyd-Hoare provable asserted
programs coincide. Thus in light of Theorem 1.1 the following question arises. Suppose that,
instead of all models of T , we require derivability on its finite models only. Does it follow then
that we have a universal derivation which works on all, or at least on infinitely many, of the finite
models?

Using J. Ax’s deep and nice result about the decidability of the theory of finite fields [1, 2], we
prove that the answer is no if T is the theory of finite fields. More precisely, let p be the program
with input variable x and output variable y which computes the parity of the multiplicative order
of its input. That is, y = 0 if the smallest natural number n ≥ 1 satisfying xn = 1 is even, y = 1
if this n is odd, and the program diverges if for no n ≥ 1 we have xn = 1. Executing the program
twice with the same input, our natural expectation is that the outputs are the same. If p′ is the
same program as p except that every variable is “primed,” then this can be expressed by saying
that the asserted program

{x = x′} p; p′ {y = y′}(1)

is partially correct, and consequently, Floyd-Hoare provable in each finite field.

Theorem 1.2 Let q ≥ 2 be a prime number. There is no Floyd-Hoare derivation of the asserted
program (1) which works on all but finitely many finite fields of characteristics q.

The multiplicative group of a finite field is cyclic, therefore in fields with 2n elements every
nonzero element is of odd order. In these fields p always halts with y = 1, therefore we have

Corollary 1.3 The asserted program {x 6= 0} p {y = 1}, while totally correct, admits no univer-
sal Floyd-Hoare derivation on finite fields of characteristics 2.

The existence of such a program follows immediately from the fact that the set of asserted
programs partially correct in every field is not recursive, while, by Ax’s result, the set of those
admitting universal Floyd-Hoare derivation in finite fields is recursive. What makes these theorem
interesting is the simple structure of both the program and the assertions. If we require universal
derivation not for all but for infinitely many finite fields only, the set of derivable asserted
programs is no more recursive. However, we conjecture that the claim of Corollary 1.3 remains
valid in this stronger sense, too, but we were unable to settle it.

Conjecture 1.4 The asserted program {x 6= 0} p {y = 1} does not admit Floyd-Hoare derivation
which would work on infinitely many finite fields of characteristic 2.

Finally, we investigate when programs like (1) admit universal Floyd-Hoare derivation. It
turns out that in that case a first order formula, with the input variables as parameters, deter-
mines uniquely the output of p. The converse, as Corollary 1.3 shows, is not necessarily true. In
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general, we may require at least n matches among the outputs of k executions (k ≥ n). If this
is a provable property of the program p, then by the same method the existence of a first order
formula ϕ(x, y) can be shown so that for each x at most k + 1− n different y satisfy it, and the
output of p is always among these y’s (k = n = 2 above).

2 Prerequisites

2.1 Programs

Let t be any similarity type or signature. F (t) denotes the set of first order formulas of type t.
For a fixed theory T ⊆ F (t), by a program (in T ) we mean a first order formula ϕ(x, y) ∈ F (t)
with n+ n free variables so that

T |= ∀x ∃!y ϕ(x, y).

For simplicity, we let x, y, etc. denote tuples of variables. Thus we identify programs with
definable functions; these functions describe a state transition (i.e. the result of executing a
single computational step) rather than the input-output relation. We left it to the reader to
verify that this notion of program covers that of block diagram, regular, and while programs.
The only reason why we use this definition is that it simplifies significantly the formalism and
makes the proofs more transparent.

We shall use the letter p to denote programs, and write x p y for “y is the successor state of
x,” which is therefore a first order formula of type t with free variables x and y. Moreover we
stipulate that the halting states of p are just the fixed points of the transition function, i.e. x is
a halting state iff x px. Naturally, these are not essential restriction since given any reasonable
halting condition, it is a matter of routine to change the successor state function to one which
obeys our rules.

Motivations, as well as a description how to translate, say while programs, into our kind of
programs, can be found in [4]. It is also proved that the asserted program {ϕin} p {ϕout} with
ϕin(x), ϕout(x) ∈ F (t) admits a Floyd-Hoare derivation with oracle axioms from the theory
T ⊂ F (t), written as T ` {ϕin} p {ϕout}, iff there exists a formula Φ(x) ∈ F (t) so that

T ` ϕin(x)→ Φ(x)

T ` Φ(x) ∧ x p y → Φ(y)

T ` Φ(x) ∧ x px→ ϕout(x).

Thus {ϕin} p {ϕout} is Floyd-Hoare derivable in the model A of T iff the oracle axioms are the
sentences true in A, i.e. iff Th(A) ` {ϕin} p {ϕout}.

While we shall use these notions for reasoning about programs, we do not use them in exam-
ples. For that purpose we choose the more readable while program form.

2.2 Finite fields

Let q be a natural number which is a power of some prime. It is well known that there is exactly
one (up to isomorphism) finite field with q elements, we shall denote it by Fq. It is also a (finite)

3



structure of type t = 〈0, 1,+,−, ·〉. Let Tp ⊂ F (t) consist of all formulas valid in cofinitely
many finite fields; this theory is obviously consistent. Models of Tp are the so-called pseudofinite
fields. In particular, every nonprincipal ultraproduct of finite fields is pseudofinite, moreover
every pseudofinite field is infinite.

The cardinality of a set A will be denoted by |A|, ω denotes the set of nonnegative natural
numbers, and ZZ the set of integers.

The following facts about pseudofinite fields are from [1].

Theorem 2.1 The theory of pseudofinite fields is recursively enumerable.

Theorem 2.2 Let F1 and F2 be saturated pseudofinite fields, both extensions of the field E
which is algebraically closed both in F1 and F2. If |F1| = |F2| > |E| then there is an isomorphism
between F1 and F2 which leaves E fixed elementwise.

Such an isomorphism will be called E-isomorphism.

For a set E, let E[x1, . . . , xn] denote the set of polynomials with variables x1, . . ., xn and
coefficients from E. In particular, ZZ[x] is the set of all polynomials with the single variable x
and integral coefficients. The following lemma is from [2], but it can also be verified directly.

Lemma 2.3 Let F1 and F2 be extensions of E, moreover let Ei ⊆ Fi be the relatively algebraic
closure of E in Fi (i = 1, 2). If

{f ∈ E[x] : f(x) = 0 has a root in F1 } =

{f ∈ E[x] : f(x) = 0 has a root in F2 }

then there is an E-isomorphism between E1 and E2.

Next we state the corollary we need later.

Corollary 2.4 Let F be uncountable saturated pseudofinite field, α ∈ F , E ⊆ F be the subfield
generated by α. Let moreover β1, β2 ∈ F be two elements with the following property:

{f ∈ ZZ[x, y, z] : f(x, α, β1) = 0 has a solution in F } =

{f ∈ ZZ[x, y, z] : f(x, α, β2) = 0 has a solution in F }.

Then there is an E-automorphism π of F which maps β1 to β2.

Proof. Let E1, E2 be the subfields generated by α and β1, α and β2, respectively. Then by
the assumption on polynomials, the natural mapping which extends π(β1) = β2, π(α) = α is an
E-isomorphism between E1 and E2; moreover for every f ∈ E1[x],

f(x) = 0 has a solution in F

if and only if
π(f)(x) = 0 has a solution in F .

Thus if E∗i denotes the relatively algebraic closure of Ei in F , then, by Lemma 2.3, π extends
to an isomorphism between E∗1 and E∗2 . Now E∗1 (and so E∗2 too) is countable, therefore by
Theorem 2.2 any isomorphism between E∗1 and E∗2 extends to an automorphism of F . Especially
this is true for π as was claimed.
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3 Proofs

In this section we prove the theorems announced in the Introduction. First let t be a similarity
type, T ⊂ F (t) be a theory and p be a program in T . The asserted program {ϕin} p {ϕout} admits
a (universal) Floyd-Hoare derivation which works in all models of T just in case all the oracle
axioms used are consequences of T , i.e. if T ` {ϕin} p {ϕout}. Theorem 1.1 can be reworded as
follows.

Theorem 3.1 Suppose that for each model A of T we have Th(A) ` {ϕin} p {ϕout}. Then
T ` {ϕin} p {ϕout}.

Proof. For a formula Φ(x) ∈ F (t) let us define the closure of Φ as

cl(Φ) = ∀x(ϕin(x)→ Φ(x)) ∧ ∀x∀y(Φ(x) ∧ x p y → Φ(y)) ∧ ∀x(Φ(x) ∧ x px→ ϕout(x)).

This is a closed formula (i.e. has no free variables), and the hypothesis of the theorem says that
in each model of T at least one element of the set Σ = {cl(Φ) : Φ(x) ∈ F (t)} is true. By the
compactness theorem for the first order logic then there is a finite subset {cl(Φ1), . . ., cl(Φn)} of
Σ so that for each model A of T , A |= cl(Φi) for some i ≤ n. Now we claim that the formula

Ψ(x) = (cl(Φ1) ∧ Φ1(x)) ∨ . . . ∨ (cl(Φn) ∧ Φn(x))

witnesses the derivation T ` {ϕin} p {ϕout}. To this end we have to show that the formulas

ϕin(x)→ Ψ(x)(2)

Ψ(x) ∧ x p y → Ψ(y)(3)

Ψ(x) ∧ x px→ ϕout(x)(4)

are consequences of T , or, which is the same, are valid in every model A of T . Thus let A be
such a model, then A |= cl(Φi) for some i ≤ n. Clearly, cl(Φi)∧ϕin(a) ` Φi(a) for all a ∈ A. This
proves (2) since if A |= ϕin(a) for some a ∈ A then A |= cl(Φi) ∧Φi(a), i.e. at least one disjunct
of Ψ(a) is true. Next suppose A |= Ψ(a). Then for some j ≤ n we have A |= cl(Φj)∧Φj(a), and

cl(Φj) ∧ Φj(a) ` a p b→ Φj(b),

this gives (3); finally
cl(Φj) ∧ Φj(a) ` a p a→ ϕout(a)

shows that (4) is also true in A. The theorem is proved.

Not going into the special case of finite fields yet, we investigate when it is a provable property
of a program that executing twice the results coincide. Let therefore T ⊂ F (t) be a fixed theory,
p be a program in T , and p′ be a “primed” version of p. Suppose p and p′ act on the disjoint
set of variables x and x′ respectively; our assumption says that the partial correctness assertion
{x = x′} p; p′ {x = x′} is Floyd-Hoare derivable with oracle axioms from T . We say that the
output of p is definable in T from its input if there exists a formula ϕ(x, y) ∈ F (t) with 2n
variables so that

T ` ϕ(x, y) ∧ ϕ(x, y′)→ y = y′
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i.e. for each x at most one y satisfies ϕ(x, y), and whenever p starts with input value x and
halts with output value y, they satisfy ϕ(x, y). In other words, in arbitrary model of T , the
input/output relation of the straight-line program

start with input x

?

is there a y with ϕ(x, y)

?
yes

loop
�
 �	-no

let this unique y be the output and halt

extends the input/output relation of p.

Theorem 3.2 If we can prove (in T ) that executing p twice the results coincide, then the output
of p is definable.

Proof. Suppose T ` {x = x′} p; p′ {x = x′}, i.e. the following formulas are consequences of T
for some Φ(x, x′) ∈ F (t):

Φ(x, x)(5)

x p y ∧ Φ(x, x′)→ Φ(y, x′)(6)

x px ∧ x′ p y′ ∧ Φ(x, x′)→ Φ(x, y′)(7)

x px ∧ x′ p x′ ∧ Φ(x, x′)→ x = x′.(8)

Let ψ(x, y) = y p y∧Φ(y, x), and ϕ(x, y) = ψ(x, y)∧∀y′(ψ(x, y′)→ y′ = y). Obviously, for each x
at most one y can satisfy ϕ(x, y). We claim that this ϕ defines the output of p. To check this, let
A be a model of T , a ∈ An be the input and b ∈ An be the output of a run of p; we have to show
A |= ϕ(a, b). Since b is a halting state, we have A |= b p b, moreover by (5), A |= Φ(a, a), and
then by (6), A |= Φ(ai, a) for each state ai ∈ An occurring during the execution; in particular
A |= Φ(b, a). This proves A |= ψ(a, b), the first half what we wanted.

For the other half assume A |= ψ(a, b′), i.e. A |= b′ p b′ ∧ Φ(b′, a). Then by (7) A |= Φ(b′, ai)
for each state ai, from where A |= Φ(b′, b). Now applying (8) we get b′ = b as was required.

In fact, the proof gives a bit more than stated. There is a useful generalization of the notion
of program run, the so-called relational run [4, 7, 8]. Since we shall need this notion later, we
give a sketchy definition. As above, we identify states with n-tuples of the ground set of the
structure A.

3.3 Definition The set of states R ⊂ An with the distinguished state a ∈ R constitutes a
relational run for the program p if

(i) R is closed under p, i.e. b ∈ R and b p c implies c ∈ R;
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(ii) R is inductive, i.e. for each formula Φ(x) ∈ F (t), if A |= Φ(a) and for each b, c ∈ R,
A |= b p c ∧ Φ(b)→ Φ(c) then Φ is true for all elements of R.

The distinguished state a ∈ R is the initial state, and b ∈ R is a halting state if b p b. A
relational run may have more than one halting states, nevertheless partial correctness can also
be defined in the obvious way. The significance of this notion is expressed by the following
theorem of [4, 7]. Later we shall use the easy part only.

Theorem 3.4 The asserted program {ϕin} p {ϕout} is Floyd-Hoare derivable from T if and only
if in models of T every relational run of p is partially correct.

The proof of Theorem 3.2 gives that under the same assumptions even relational runs have a
unique, definable halting state.

Theorem 3.4 offers a universal method to establish unprovability of asserted programs: one
has to find an incorrect relational run. This is exactly what we shall do in proving Theorem 1.2.
So from now on let t denote the signature 〈0, 1,+,−, ·〉 of fields. The program below computes
the parity of the multiplicative order of its input x twice and puts the results into y and y′,
respectively.

y := 1; y′ := 1; z :=x, z′ :=x;

while z 6= 1 do z :=x · z; y := 1− y od;

while z′ 6= 1 do z′ :=x · z′; y′ := 1− y′ od.

The states can be identified with the 5-tuples consisting of the contents of the variables x, y,
z, y′, and z′. Disregarding the initializations in the first line, in this case the state transition
function is

p(x, y, z, y′, z′) =

 (x, 1− y, x · z, y′, z′) if z 6= 1,
(x, y, z, 1− y′, x · z′) if z = 1 and z′ 6= 1,
(x, y, z, y′, z′) otherwise.

This function is evidently formula-definable, and the halting states are just its fixed points. Thus
p is a program as defined in Section 2.1. With this transcription we have avoided a lot of technical
trouble arising otherwise. Now we prove Theorem 1.2 in the following form.

Theorem 3.5 Let q ≥ 2 be a prime number. The there is no Floyd-Hoare derivation of the
asserted program

{y = 1 ∧ y′ = 1 ∧ x = z ∧ x = z′} p {y = y′}(9)

which would work in all but finitely many finite fields of characteristic q.

Proof. All fields in this proof are of characteristic q. Suppose the claim of the theorem false,
i.e that (9) admits a universal derivation. The in every ultraproduct of those finite fields the same
proof works, and by Theorem 3.4 only partially correct relational runs can exist in the ultra-
product. So we prove the theorem by exhibiting an incorrect relational run in an appropriately
chosen ultraproduct.

Without loss of generality we may assume that the continuum hypothesis holds. Indeed, if
this were not the case then we can work in a generic extension which collapses the continuum to
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ω1. Since the theorem speaks about finite objects only, the statement is absolute, i.e. it holds in
the generic extension if and only if it holds in the ground model.

As we remarked in Section 2.2, any nonprincipal ultraproduct of finite fields is pseudofinite.
Let F be such an ultraproduct, it is well known that F has continuumly many elements, and
since the continuum hypothesis holds, it is saturated. Pick α ∈ F transcendental over the prime
field of F (only countably many algebraic elements are in F , consequently such an α exists), and
consider the following sets of 5-tuples from F :

R1 = {〈α,pt(n), αn, 1, α〉 : n ∈ ω and n > 0},
R2 = {〈α,pt(n), α−n, 1, α〉 : n ∈ ω} ∪ {〈α, 0, 1,pt(n), αn〉 : n ∈ ω and n > 0},
R3 = {〈α, 0, 1, 1− pt(n), α−n〉 : n ∈ ω},

and, finally, let
R = R1 ∪R2 ∪R3.

Here pt(n) is the parity of n ∈ ω, i.e. pt(n) = 0 if n is even, and pt(n) = 1 if n is odd. Obviously,
R consists of states for the program p, is closed under p, i.e. b ∈ R implies p(b) ∈ R; and R
has the only halting state 〈α, 0, 1, 1, 1〉. Since the initial state a = 〈α, 1, α, 1, α〉 ∈ R satisfies the
input condition of (9), and the only halting state falsifies the output condition, we are home if
R is a relational run. (i) of Definition 3.3 evidently holds, only the inductivity is questionable.
So let Φ(x) ∈ F (t) be a formula with 5 free variables, and assume F |= Φ(a), moreover for each
b ∈ R, F |= Φ(b)→ Φ(p(b)). Then Φ holds for the tuples in R1 since they can be obtained from
a applying p finitely many times. Next, R2 consists of a single chain of states, so if Φ is not true
for all elements in R2 then it is false for a whole initial segment, i.e. for some n0 ∈ ω we have

F |= ¬Φ(α,pt(n), α−n, 1, α) for all n ≥ n0,

in particular
F |= ¬Φ(α, 0, α−2n, 1, α) for all n ≥ n0.(10)

At the same time we know that

F |= Φ(α, 0, α2n, 1, α) for all n > 1.(11)

Let E be the subfield of F generated by α. Since F is saturated, there exists an element β ∈ F
with the property that for any formula ψ(x, y) ∈ F (t) and parameters p from E, if F |= ψ(α2n, p)
for all but finitely many n ∈ ω then F |= ψ(β, p). In particular, by (10) and (11),

F |= ¬Φ(α, 0, β−1, 1, α),

and
F |= Φ(α, 0, β, 1, α).

This is a contradiction if there is an E-automorphism of F interchanging β and β−1, which would
prove that Φ holds indeed for tuples in R2.

Suppose for a moment that this automorphism exists. Then

F |= Φ(α, 0, 1, 0, α2n) for n ≥ 1(12)

8



since all of these 5-tuples are in R2. Just as previously, if Φ does not hold for some element in
R3 then it is false for an initial segment, i.e. for some n1 ∈ ω,

F |= ¬Φ(α, 0, 1, 0, α−2n+1) for n ≥ n1.(13)

(12) and (13) gives F |= Φ(α, 0, 1, 0, β) and F |= ¬Φ(α, 0, 1, 0, αβ−1), which is impossible if there
is an E-automorphism of F sending β to αβ−1.

Summing up, R is the incorrect relational run we are looking for if there are E-automorphisms
π1 and π2 of F with π1(β) = β−1 and π2(β) = αβ−1. So we have to choose the ultraproduct F
and the element α ∈ F according to this requirement.

Since F is uncountable and saturated, we can apply Corollary 2.4 which says that these
automorphisms exist if

{f ∈ ZZ[x, y, z] : f(x, α, β) = 0 has a solution in F } =

{f ∈ ZZ[x, y, z] : f(x, α, β−1) = 0 has a solution in F } =

{f ∈ ZZ[x, y, z] : f(x, α, αβ−1) = 0 has a solution in F . }
(14)

Now α was chosen to be transcendental over the prime field of F , which means that the different
powers of α are different Any polynomial f ∈ E[x] has only finitely many roots, therefore
f(α2n) 6= 0 for all but finitely many n. By the definition of β ∈ F this means that f(β) 6= 0,
i.e. β is transcendental over E, and then for every f ∈ ZZ[y, z],

f(α, β) = 0 iff f(α, β−1) = 0 iff f(α, αβ−1) = 0 iff f is identically zero.

Therefore the sets in (14) share the same members in ZZ[y, z], and their equality follows im-
mediately if f(x, α, β) = 0 is solvable for every other polynomial in ZZ[x, y, z]. This latter is a
consequence of the (apparently weaker) condition that g(x, α) = 0 is solvable (in F ) for every
g ∈ ZZ[x, y] \ ZZ[y]. Indeed, fixing f ∈ ZZ[x, y, z] \ ZZ[y, z],

F |= ∃x f(x, α, αn) = 0 for every n ≥ 1,

and then, by the definition of β ∈ F , we have

F |= ∃x f(x, α, β) = 0,

i.e. f(x, α, β) = 0 is solvable.
To finish the proof, we have to find a nonprincipal ultraproduct F of those finite fields of

characteristic q in which the universal Floyd-Hoare derivation of our asserted program works,
and an element α ∈ F so that

(i) α is transcendental over the prime field of F ;

(ii) for each g ∈ ZZ[x, y] \ ZZ[y], g(x, α) = 0 is solvable in F .

Let {fj : j ∈ ω} enumerate the nontrivial polynomials in ZZ[y], and {gj : j ∈ ω} enumerate
the set ZZ[x, y] \ ZZ[y]. For i ∈ ω define the finite field Fi of characteristic q and element αi ∈ Fi

as follows. First find a field F ′i and an element αi ∈ F ′i such that αi is not the solution of any
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fj(y) = 0 with j ≤ i. Second, take an algebraic extension Fi of F ′i in which all gj(x, αi) = 0
has a solution for j ≤ i. Since by assumption only finitely many of the fields do not respect
our derivation, we may choose Fi to be one in which the Floyd-Hoare derivation works. In any
nontrivial ultraproduct F of these Fi’s the element α ∈ F with coordinates αi ∈ Fi satisfies (i)
and (ii), so the theorem is proved.
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