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Secret sharing

How to share the lock code among three people I don’t trust?

Alice 4 7 2
Bob 1 5 6
Charlie 6 2 1

Code 1 4 9

Even if two of them colludes, they have no information.

Easily generalizes for n shares.
More difficult structures, e.g., any pair is qualified?

Theorem (Ito–Shaito–Nishizeki, 1987)

Every structure is realizable by a perfect secret sharing scheme.

The price: share size could be exponentially large.
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A secret sharing example

Four participants: a, b, c , d ; qualified subsets: ab, bc, cd .
The secret s1s2 is two bits; x , y , z , t are independent random bits.

a b c d

x x ⊕ s1 x
y y ⊕ s2 y

z z ⊕ s2 t ⊕ s1 t

2 bits 3 bits 3 bits 2 bits

secret sharing

share size

The complexity of this scheme is

maximal share size

secret size
=

3

2
.

Can we do better?
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Using entropies to show that “no”

secret
sa b c d

ξ and η are independent iff H(ξη) = H(ξ) + H(η).
ξ determines η iff H(ξη) = H(ξ).
So we have

unqualified qualified

H(as) = H(a) + H(s) H(abs) = H(ab)

H(bs) = H(b) + H(s) H(bcs) = H(bc)

H(acs) = H(ac) + H(s) H(abcs) = H(abc)
. . . . . .

H(bds) = H(bd) + H(s) H(abcds) = H(abcd)

plus all Shannon inequalities, e.g., H(b)+H(c) ≥H(bc),

and derive from them that

one of H(a), H(b), H(c), H(d) is at least 3
2H(s).
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What is the problem?

The Shannon inequalities do not capture the entropy region.

the entropy region Γ∗

closure of Γ∗

Shannon inequalities ≡
polymatroids

Negligible

Find new bounds on Γ∗
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What is the problem?

The Shannon inequalities do not capture the entropy region.

the entropy region Γ∗

closure of Γ∗

Shannon inequalities ≡
polymatroids

Negligible

(in volume)

Find new bounds on Γ∗
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Entropy

Let A be a random variable taking k values with probability

p1, p2, . . . , pk , (p1 + p2 + · · ·+ pk = 1).

The entropy of A is

H(A)
def
=

k∑
i=1

− pi log2(pi ).

The outcome of A can be described by H(A) bits.
H(A) is the information content of the event A.

Coin-flipping is 1 bit: −1

2
log2

1

2
− 1

2
log2

1

2
= 1.
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The entropy region Γ∗

f : 2N → R is entropic if there are discrete random variables
ξ = 〈ξi : i ∈ N〉 such that for each marginal ξA = 〈ξi : i ∈ A〉

f (A) = H(ξA) A ⊆ N.

The entropy region Γ∗ ⊂ R2N−1 is the set all entropic f on
subsets of N.

The almost entropic – aent region Γ̄∗ is the closure of Γ∗ in
the usual Euclidean topology.

An entropic function f is a polymatroid since it satisfies

1 f (∅) = 0 pointed

2 f (B) ≥ f (A) whenever B ⊇ A monotone

3 f (AC ) + f (BC ) ≥ f (C ) + f (ABC ) submodular (Shannon)
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How to define a distribution?

Simplest method: list the values and the probabilities.

ξ1 ξ2 . . . ξn Prob

u1 v1 . . . z1 p1

u2 v1 . . . z1 p2

u1 v2 . . . z1 p3

. . . . . . . . . . . . . . .

uj vk . . . z` ps

The probabilities sum to 1:∑
pi = 1.

An example: the ringing bells

We have two ropes, c and d . When
any of them is pulled, a rings, when
both are pulled, b rings. Pull each
rope independently with 1/2
probability.

a b c d Prob

0 0 0 0 1/4

1 0 0 1 1/4

1 0 1 0 1/4

1 1 1 1 1/4
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Marginals

To get the marginal for a subset of variables: take their columns,
merge identical rows, and sum the probabilities.

Original (abcd)
a b c d Prob

0 0 0 0 1/4

1 0 0 1 1/4

1 0 1 0 1/4

1 1 1 1 1/4

Marginal (bc)
b c Prob

0 0 1/2

0 1 1/4

1 1 1/4

Marginal (ab)
a b Prob

0 0 1/4

1 0 1/2

1 1 1/4

The entropy is H =
∑

i −pi log2(pi ). Since

−(1/4) log2(1/4) = 1/2, −(1/2) log2(1/2) = 1/2, thus we have

H(abcd) = 2, H(bc) = 3/2, H(ab) = 3/2.
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Redefining a distribution

Variables: ~a,~c ,~b

Probabilities: P = (~a~c~b)

Marginals: (~a~c) =
∑

~b
(~a~c~b)

(~c~b) =
∑

~c(~a~c~b)

(~c) =
∑

~a,~b
(~a~c~b)

New probabilities: P∗ =
(~a~c) (~c~b)

(~c)

~a ~b~c

Marginals of P and P∗ on ~a~c and ~c~b are the same.

The entropy change is

H(P∗)−H(P) = −
∑ (~a~c) (~c~b)

(~c) log (~a~c) (~c~b)
(~c) +

∑
(~a~c~b) log(~a~c~b)

= H(~a,~b |~c) ≥ 0.

Zero iff ~a and ~b are independent given ~c , and then P = P∗
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Merging two distributions

Variables: ~a~c and ~c~b

Probabilities: (~a~c) and (~c~b)

Marginals are the same on (~c):∑
~a(~a~c) =

∑
~b

(~c~b)

Joint probabilities: P∗ =
(~a~c) (~c~b)

(~c)

~a ~b~c

After merging, ~a and ~b become independent given ~c , that is,

H(~a,~b|~c) = 0.

A structural property of entropic polymatroids

Any two entropic polymatroids on XM and MY with the same
distribution on M have an amalgam on XMY with (X ,Y |M) = 0.

not the same entropies
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Operations

1 Polymatroids are vectors ⇒ linear combination.

2 Direct union with rank f (A ∩ Nf ) + g(A ∩ Ng ).

3 Discard the subset T ⊆ N ⇒ contract

4 Factor over an equivalence on N ⇒ factoring

5 Restrict to N−T ⇒ restriction

6 Tightening (next slide)

7 Principal extension, and many more . . .

The general idea

Find operations which preserve entropic (or aent) polymatroids
but

don’t preserve general polymatroids.
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Tightening

λrA is entropic polymatroid for A ⊆ N and λ ≥ 0, where

rA : J →

{
0 if A ∩ J = ∅,
1 if A ∩ J 6= ∅.

f + λra ⇒ a ∈ N gets λ information
f − λra ⇒ take away λ information from a

Definition (Tightening)

Take away as much private information as possible:
f ↓a = f − λra for maximal λ such that f − λra ≥ 0.

To get f ↓, tighten at every a ∈ N.

Clearly, if f is polymatroid, then so is f ↓.

Theorem (Frantisek Matúš)

If f is almost entropic, then so is f ↓.
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Operations

Operation polymatroid entropic aent

Sum f +g

Direct union f⊕g
Scaling λf

Conic
∑
λi fi

Factoring f/∼
Restriction f \T
Contraction f/T

Tightening f ↓
Principal extension

M.E.P. embedding

Copy lemma

Ahlswede-Körner

None of them works! Fortunately
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Maximum entropy principle

We have random variables with unknown joint probabilities, but

ξ1 ξ2 . . . ξM Prob

u1 v1 . . . z1 ?

u2 v1 . . . z1 ?

u1 v2 . . . z1 ?

. . . . . . . . . . . . . . .

uj vk . . . z` ?

known marginal distributions
on J1, J2, · · · ⊂ M.

⇒ linear constraints on the
unknown probabilities

⇒ Q = all distributions
satisfying these constraints.

Choose P ∈ Q with maximum entropy

As the entropy is strictly convex, there is a unique solution.

M.E.P. (in physics, statistics, philosophy, etc.) If you face
uncertainty, your best bet is to take the distribution with the
largest entropy — the one with maximum uncertainty.
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The M.E.P. heuristics

〈ξi : i ∈ M〉 is the M.E. extension using the marginal
distributions on J1, J2, · · · ⊂ M.

f (A) = H(ξA) for A ⊆ M. A BC

Claim

Let A ∪ C ∪ B = M be a partition of M such that for each Ji ,
either Ji ⊆ A ∪ C or Ji ⊆ C ∪ B. Then f (A,B |C ) = 0.

Proof.

If not, you can redefine the distribution with larger entropy and the
same marginals on each Ji .

M.E.P. heuristics

Entropic polymatroids can be embedded into (entropic)
polymatroids with this additional structural property.
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The Zhang–Yeung inequality from M.E.P.

1. Take an entropic polymatroid on abcd . z a∗ b∗ c∗ d∗

a b c d
Embed it into za∗b∗c∗d∗ so that

za∗b∗ has the same distribution as cab

a∗b∗c∗d∗ has the same distribution as abcd

with these constraints za∗b∗c∗d∗ has maximum entropy.

2. The partition z ∪ a∗b∗ ∪ c∗d∗
A C B

satisfies the requirement that each
fixed marginal is either in AC or in CB, thus (z , c∗d∗ |a∗b∗) = 0.
3. The following inequality holds in every polymatroid1:

− (a∗, b∗) + (a∗, b∗ |c∗) + (a∗, b∗ |d∗) + (c∗, d∗) +

+ (a∗, b∗ |z) + (a∗, z |b∗) + (b∗, z |a∗) ≥ −3(z , c∗d∗ |a∗b∗).

4. Because corresponding marginals are equal, abcd satisfies

−(a, b)+(a, b |c)+(a, b |d)+(c, d)+(a, b |c)+(a, c |b)+(b, c |a) ≥ 0.

1See https://www.personal.ceu.edu/witip



L. Csirmaz: Exploring the Entropic Region 21 / 34

The Zhang–Yeung inequality from M.E.P.

1. Take an entropic polymatroid on abcd . z a∗ b∗ c∗ d∗

a b c d
Embed it into za∗b∗c∗d∗ so that

za∗b∗ has the same distribution as cab

a∗b∗c∗d∗ has the same distribution as abcd

with these constraints za∗b∗c∗d∗ has maximum entropy.

2. The partition z ∪ a∗b∗ ∪ c∗d∗
A C B

satisfies the requirement that each
fixed marginal is either in AC or in CB, thus (z , c∗d∗ |a∗b∗) = 0.
3. The following inequality holds in every polymatroid1:

− (a∗, b∗) + (a∗, b∗ |c∗) + (a∗, b∗ |d∗) + (c∗, d∗) +

+ (a∗, b∗ |z) + (a∗, z |b∗) + (b∗, z |a∗) ≥ −3(z , c∗d∗ |a∗b∗).
4. Because corresponding marginals are equal, abcd satisfies

−(a, b)+(a, b |c)+(a, b |d)+(c, d)+(a, b |c)+(a, c |b)+(b, c |a) ≥ 0.

1See https://www.personal.ceu.edu/witip



L. Csirmaz: Exploring the Entropic Region 22 / 34

Witip
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A special case: the Copy Lemma

f is a polymatroid on N, and N = X ∪M is a partition.

Lemma (Copy Lemma)

if f is entropic, then there is an entropic extension g to
X ′ ∪ X ∪M such that

(i) g�(X ′ ∪M) is isomorphic to f = g�(X ∪M), and

(ii) g(X ′,X |M) = 0.

Proof Take the maximum entropy extension on X ′XM which
satisfies (i).

Remark As g is also entropic, the Copy Lemma can be iterated

⇐⇒
g satisfies additional inequalities generated by the Copy Lemma
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What is it?

An intermediate result in an Ahlswede–Körner paper was extracted
and used by MMRV, and finally formulated by Kaced:

Lemma (Ahlswede–Körner lemma)

Suppose f is entropic on MX ∪ {z}. There is an almost entropic
extension to MX ∪ {z , z ′} such that f (z ′M) = f (M), and
f (z ′A) = f (zA)− f (zM) + f (M) for all A ⊆ M.

R. Ahlswede, J. Körner (1975) Source coding with side information and a
converse for degraded broadcast channels. IEEE trans. on Inf Theory
21(6) 629–637.

K. Makarychev, Yu. Makarychev, A. Romashchenko, N. Vereshchagin
(2002) A new class of non-Shannon-type inequalities for entropies. Comm.
in Inf. and Systems 2(2) 147–166.

T. Kaced (2013) Equivalence of two proof techniques for
non-Shannon-type inequalities. Proceedings of the 2013 IEEE ISIT,
Istanbul, Turkey, July 7-12, 236–240.
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Ahlswede–Körner lemma in action

Lemma (Repeated)

Suppose f is entropic on MX ∪ {z}. There is an almost entropic
extension to MX ∪ {z , z ′} such that f (z ′M) = f (M), and
f (z ′A) = f (zA)− f (zM) + f (M) for all A ⊆ M.

Use M = {a, b}, X = {d}, and z = c . In the z ′abcd extension1

f (z ′) ≤ f (a, b |c) + f (a, b |d) + f (c, d) +

+ 2
(
f (az ′) + f (z ′b)− f (a)− f (b)

)
.

Using that

f (z ′J) = f (cJ)− f (abc) + f (ab) for J ⊆ {a, b},
this rewrites to the Zhang-Yeung inequality

−(a, b)+(a, b |c)+(a, b |d)+(c, d)+(a, b |c)+(a, c |b)+(b, c |a) ≥ 0.
1See http://www.personal.ceu.edu/witip
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Proof of the A–K lemma

Lemma (Repeated)

Suppose f is entropic on MX ∪ {z}. There is an almost entropic
extension to MX ∪ {z , z ′} such that f (z ′M) = f (M), and
f (z ′A) = f (zA)− f (zM) + f (M) for all A ⊆ M.

Proof

1 Extend f to M ∪ Xz ∪ X ′z ′ using the Copy Lemma. Then
g(Xz ,X ′z ′|M) = 0 ⇒ g(Xz , z ′|M) = 0.

2 Restrict the extension to M ∪ Xz ∪ z ′. Then g(z ′A) = f (zA)
for A ⊆ M, and independence gives

g(MXzz ′)− g(MXz) = g(Mz ′)− g(M) = f (zM)− f (M).

3 Tighten g at z ′ by λ = . This g↓z ′ extends f and

g↓z ′(z ′A) = g(z ′A)− λ = f (zA)− λ,

thus g↓z ′ is a good A–K extension.
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Direct proof of the A–K lemma

1 Use typical sequences to make M ×{z} to be
quasi-uniform: each non-zero cell has the
same probability; rows, columns have equal
number of x-es

2 Make |M| and |z | large.

x x x
x x x

x x x
xx x

z

M

3 Choose rows randomly so that each column contains exactly
one non-zero cell (except for ε|M| columns).

4 z ′ is determined by M via the chosen rows.

Then ?• H(z ′M) = H(M) as M determines z ′.
• H(z ′A)−H(zA) is constant as each row contains the same
number of non-empty cells even in columns corresponding to the
subset A.
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The methods

1 Maximum entropy method
Given an entropic polymatroid on N, label elements of M by
N, and choose J ⊂ 2N with each J ∈ J has different labels.
Require all J ∈ J to be isomorphic to its labels. Compute all
conditional independences, and compute the consequences on
N.

2 Copy Lemma
A simple version of MaxEnt: choose a subset of N, and take a
copy of the rest. Compute all consequences.

3 Ahlswede–Körner method
Take the A–K extension of N and compute its consequences.

All methods can be iterated, which is the same as using established
knowledge on the larger (almost) entropic polymatroid.

None of the methods distinguishes entropic and almost entropic
polymatroids.
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Ahlswede-Körner method

Theorem

(a) All results provided by the A–K method are also given by a
single application of the Copy Lemma.

(b) There is a single application of the Copy Lemma which is
stronger than two iterations of the A–K method.

Actually, we have an exact characterization of the strength of the
A–K method: it is equivalent to a restricted application of the
Copy Lemma, which, in turn, is weaker than the full strength Copy
Lemma.
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Maximum Entropy method

Clearly, the Copy Lemma is a special case of MaxEnt.
The iterated Copy Lemma uses local manipulation, while MaxEnt
applies to a global arrangement.

Theorem (L. Csirmaz, 2021)

The MaxEnt method is equivalent to the iterated usage of the
Copy Lemma.

The easy direction is a simulation of the iterated Copy lemma
using some complicated MaxEnt arrangement.
The hard direction uses induction on the number of conditional
independences used in the MaxEnt method.
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And the winner is . . .

No other methods are known which work for a wide range of
polymatroids (and not for a sporadic set only). By these results,
everything which can be proved using these methods, can be
proved using the Copy Lemma only.

By exploiting the underlying symmetry provided by the Copy
Lemma, several otherwise untractable problems can be solved
numerically.

So our winner is the

Copy Lemma
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Děkuji za pozornost
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