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Abstract

Given a graph G, a perfect secret sharing scheme based on G is a method to distribute a secret
data among the vertices of G, the participants, so that a subset of participants can recover the
secret if they contain an edge of G, otherwise they can obtain no information regarding the key.
The average information rate is the ratio of the size of the secret and the average size of the share
a participant must remember. The information rate of G is the supremum of the information rates
realizable by perfect secret sharing schemes.

Based on the entropy-theoretical arguments due to Capocelli et al [3], and extending the results
of M. van Dijk [6] we construct a graph Gn on n vertices with average information rate below
< 4/ log n. We obtain this result by determining, up to a constant factor, the average information
rate of the d-dimensional cube.
Key words. Secret sharing scheme, polymatroid, information theory.

1 Introduction

Secret sharing scheme is a method of distributing a secret data among a set of participants so that
only qualified subsets are able to recover the data. If, in addition, unqualified subsets have no extra
information, i.e. their joint shares is statistically independent of the secret, the scheme is called perfect.
The goodness of a scheme is usually measured by how much information a participant must remember in
the worst case, or in the average. Finding optimal perfect secret sharing schemes is important from both
practical and theoretical point of view. Practically, the less information a participant must remember
the more reliable the scheme is. Theoretically, the known upper and lower bounds are very far from each
other, and closing the gap even in some special cases is also an intriguing task. For a more complete
description of the problem as well as a detailed list of references, see e.g. [1].

This paper is organized as follows. First we give the necessary definitions, and then state the
theorems to be proved. Section 3 gives the proofs, and in Section 4 we conclude the paper. For
undefined notions see [1] for secret sharing schemes, and [5] for those in information theory.

2 Definitions

In this section we give a rough definition of the notions we shall use later. First we define formally what
a perfect secret sharing scheme is, then connect it to certain submodular function.
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Let G be a graph, we denote the set of its vertices by V , and the number of the vertices by n. A
subset A of V is independent or stable, if there is no edge between vertices in A. A covering of the graph
G is a collection of subgraphs of G such that every edge of G is contained in one of the (not necessarily
spanned) subgraphs in the collection. Kp,q denotes the complete bipartite graph with disjoint classes
of cardinality p and q. K1,q is called picturesquely as a star. For subsets of vertices we usually omit the
∪ sign, and denote A∪B by AB. Also, if v is a vertex then Av denotes A∪{v}. Finally, all logarithms
in this paper are in base 2.

A perfect secret sharing scheme S for a graph G is a collection of random variables ξv for v ∈ V and
ξs so that

(i) ξs is the secret, and ξv is the share of v;

(ii) (edges can determine the secret) if there is an edge between v and w ∈ V then ξv and ξw together
determines the value of ξs;

(iii) (the scheme is perfect) if A ⊆ V is independent, then ξs and the collection {ξv : v ∈ A} are
statistically independent.

We define the size of the random variable ξ as its entropy, or information content, denoted by H(ξ),
cf. [5]. This is roughly the number of random bits necessary to determine the value of ξ. Thus the size
of the secret is H(ξs), and the size of the share of v ∈ V is H(ξv). The average size of the shares is∑

v∈V H(ξv)/n, and we are interested in the average information rate of S

ρ̃S =
n ·H(ξs)∑
v∈V H(ξv)

.

For a given graph G its average information rate ρ̃ = ρ̃(G) is the supremum of ρ̃S as S runs over all
possible perfect secret sharing schemes defined on G.

Claim 2.1 For any graph G, ρ̃(G) is at least 1/d, where d is the average degree.

Proof. We need to present a secret sharing scheme realizing the given rate. Let the secret be a single
random unbiased bit s i.e. Prob(s=0) = Prob(s=1) = 0.5. For each edge (v, w) in G choose a random
bit r independently of s and the previous choices, and tell the vertex v the bit r, and the vertex w the
bit r⊕s, their mod 2 sum. This is a perfect secret sharing scheme. Indeed, each edge can determine the
secret, and an independent subset has a collection of independent random bits. The size of the secret is
1. For a vertex v, its share consists of independent random bits, one for each neighbor, thus the size of
v’s share is the degree of v. Consequently the average size is the average degree, and we are done.

In the proof above G was covered by edges, i.e. by K1,1 subgraphs. The construction can be
generalized by using complete bipartite graphs instead of edges. For each Kp,q in the covering choose
a random bit r, give r to each member of one class, and r ⊕ s to members of the other class. Thus we
have proved the following

Claim 2.2 Suppose G is covered by complete bipartite graphs so that each vertex is covered λ times on

the average. Then ρ̃(G) ≥ 1/λ.

Using stars instead of edges we can improve the bound in Claim 2.1. Orient all the edges of G
arbitrarily. We have two stars at each vertex: one is formed by the incoming edges, the other by the
outgoing edges. Suppose the secret consists of two bits, si and so, and distribute them as follows. For
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each vertex choose two random bits ri and ro, give them to the vertex, and give ri ⊕ si to its incoming
neighbors, and ro ⊕ so to its outgoing neighbors. Each vertex gets one bit from each of its neighbor,
plus two for its own, a total two more than its degree. This is for two bits of secret, which gives the
average rate 2/(d + 2) where d is the average degree. By a more sophisticated argument this still can
be improved:

Theorem 2.3 (Stinson [10]) For any graph G with average degree d, ρ̃(G) ≥ 2/(d+ 1).

The following theorem, which we also quote without proof, shows that for dense graphs, i.e. graphs
with average degree near to n, the previous bound is not the best possible.

Theorem 2.4 (Erdős and Pyber [7]) There is a constant c > 0 so that for any graph G, ρ̃(G) ≥
c log n/n).

In [7] it is proved that every graph can be covered by complete bipartite graphs so that each vertex
is contained by at most c n

logn of the bipartite subgraphs. From here the theorem follows by Claim 2.2.

As J. Komlós observed [9], for random graphs the c n
logn bound is sharp, i.e. if in G every edge has

probability 1/2 then with high probability any cover of G with complete bipartite graphs has average
cover number at least n/4 log n. Therefore it seems a plausible conjecture that the average information
rate of the random graph is also c logn

n . Unfortunately the entropy method, presently the only available
method for proving upper bounds, cannot give better estimate than 1/(1 + α(G)) where α(G) is the
size of the maximal independent set, and this is log n for random graphs.

From the other side Stinson showed in [10] that the average information rate for any cycle of length
≥ 5 is exactly 2/3. Capocelli et al [3] constructed access structures with information rate below 1/2+ε.
For each ε > 0 and d ≥ 2 van Dijk in [6] constructed a d-regular graph with information rate below
ε + 2/(d + 1). In this paper we present a graph with information rate below 1/ log n. In fact we show
that the d-dimensional cube, which is d-regular and has n = 2d vertices, has information rate between
2/ log n and 4/ log n.

To prove upper bounds we use the entropy method introduced by Capocelli et al in [3], but also
observed by others [8]. We recall the definitions and basic facts necessary to present the method. For
a more detailed account on the method see e.g. [3] or [4].

Let S be a perfect secret sharing scheme assigning random variables to the vertices of G. For subsets
A, B ⊆ V of the vertices let us define

f(A)
def
=

H({ξv : v ∈ A})

H(ξs)
,

and

[[A,B]]
def
= f(A) + f(B)− f(A ∪B)− f(A ∩B).

It is clear that ρ̃S = 1
n

∑
v∈V f(v). Using standard properties of the entropy function H it is immediate

that

(i) f(∅) = 0 and f(A) ≥ 0;

(ii) if A ⊆ B ⊆ V then f(B) ≥ f(A);

(iii) [[A,B]] ≥ 0.
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(ii) comes from the monotonicity of the entropy, and (iii) from the fact that the mutual conditional
information is non-negative, cf. [5]. (iii) is referred to as submodularity, having the following immediate
consequence:

f(A) + f(B) ≥ f(A ∪B).

If ξ and η are independent random variables then H({ξ, η}) = H(ξ) + H(η), and if ξ determines
the value of η then H({ξ, η}) = H(ξ). Using these facts and the definition of the perfect secret sharing
schemes, we have in addition,

Fact 2.5 (iv) if A ⊆ B ⊆ V , A is an independent set of vertices, B is not, then f(B) ≥ 1 + f(A);

(v) if neither A nor B is independent, but A ∩B is so, then [[A,B]] ≥ 1.

Conditions (iv) and (v) are also sufficient in the following sense. If one assigns random variables to
the secret and to the vertices of G, and the corresponding function f satisfies (iv) and (v), then this
assignment constitutes a perfect secret sharing scheme.

After this introduction the entropy-method can be rephrased as follows. Since the function f arising
from a perfect secret sharing scheme satisfies (i)–(v), if we prove that any function f satisfying (i)–(v)
must take at least λ average value on the vertices, then ρ̃(G) ≤ 1/λ. This is exactly what we shell do.

We omit the easy checking of the following two facts.

Fact 2.6 For every pair A, B we have [[A,B]] = [[B,A]]. If A ∩B ⊆ B′ ⊆ B, then

[[A,B]] = [[A,B′]] + [[AB′, B]].

In particular, [[A,B]] ≥ [[A,B′]].

Fact 2.7 Suppose G2 is a spanned subgraph of G1, and S1 is a perfect secret sharing scheme on G1.

Keeping only the values corresponding to vertices in G2 we get a perfect secret sharing scheme S2 on

G2. Moreover, if A is a subset of vertices of the spanned subgraphs G2, then fS2
(A) = fS1

(A).

3 The result

The d-dimensional cube, denoted by Cd, has 2d vertices which are labelled by 0-1 sequences of length d.
Two vertices are connected by an edge if their labels differ at exactly one position. The d-dimensional
cube is d-regular, has two d − 1-dimensional layers, each one is a d − 1-dimensional cube, and there
is a perfect matching between the layers. One can color the vertices of the cube in a chessboard-like
fashion, showing that it is also a bipartite graph with equal classes of size 2d−1. C1 is an edge, C2 a
square, both has average information rate 1.

The definition of the lattice cube Cd
m is similar. The vertices are sequences of length d of integer

numbers between 0 and m− 1. Two vertices are connected if the corresponding sequences differ in one
position only and these numbers are consecutive ones. Cd

m consists ofm layers of d−1-dimensional lattice
cubes, bipartite with classes differing in size by at most one, and has average degree 2d(1−1/m). Thus
by Stinson’s result the average information rate for the d-dimensional lattice cube is at least 1

d(1−1/m) .

Theorem 3.1 The average information rate for the Cd
m lattice cube is less than 2

d(1−1/m) .
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The next lemma is the key integredient in our proof. Its application requires a large independent
set, this explains while all constructions have small average degree.

Lemma 3.2 Suppose A, B are disjoint subsets of the vertex set of G so that A is independent, B is

not, and for each a ∈ A there is a b ∈ B which is connected to a only in A. Then

[[A,B]] ≥ |A|.

Proof. Let A = {a1, a2, . . ., ak}, and bj ∈ B which is connected to aj only in A. Define A0 = ∅, and
for j ≤ k let Aj = {a1, a2, . . ., aj}. Then by iterated application of Fact 2.6

[[A,B]] = [[Ak, B]] = [[A1, B]] + [[A2, A1B]] + . . . [[Ak, Ak−1B]],

thus the lemma follows immediately from [[Aj , Aj−1B]] ≥ 1. By assumption, the subgraph Aj−1bj is
independent, Ajbj and Aj−1B are not, so by Fact 2.5 [[Ajbj , Aj−1B]] ≥ 1, and then

[[Aj , Aj−1B]] = [[Aj , Aj−1bj ]] + [[Ajbj , Aj−1B]] ≥ 0 + 1 = 1

as was claimed.

The next lemma is purely information-theoretical. It is a generalization of the identity f(A)+f(B) =
f(AB) + [[A,B]] which holds whenever A and B are disjoint.

Lemma 3.3 Suppose A1, A2, . . ., Ak are disjoint subsets of G. Then

∑

1≤i≤k

f(Ai) ≥ f(
⋃

1≤i≤k

Ai) +
∑

1≤i<k

[[Ai, Ai+1]].

Proof. For 1 ≤ i ≤ k let Bi =
⋃

j≤i Aj , then Bi ∪ AiAi+1 = Bi+1. Using this, rearranging the terms
in the sum

[[B2, A2A3]] + [[B3, A3A4]] + · · ·+ [[Bk−1, Ak−1Ak]] + f(Bk) +
∑

i<k

[[Ai, Ai+1]]

one gets
∑

i≤k f(Ai). Since [[Bi, AiAi+1]] is always non-negative, the claim of the lemma follows.

Now we can prove Theorem 3.1. Suppose S is a perfect secret sharing scheme on the d-dimensional
lattice cube Cd

m, and f = fS is the submodular function on the subsets of Cd
m defined from the entropy.

We shall determine a sequence of constants λd so that the following inequality holds:
∑

v∈Cd
m

f(v) ≥ f(Cd
m) + λd · |C

d
m|, (1)

where λd will depend on m but not on the scheme S. The idea of considering this inequality comes
from van Dijk [6].

For the case d = 1 we have a path of length m, let the vertices of the graph be V = {v1, . . . , vm} in
this order. Let A1 = v1, A2 = v2v3, A3 = v3, A4 = v4v5, etc. alternately grouping one and two vertices.
By the subadditivity

∑

v∈C1
m

≥ f(A1) + f(A2) + . . . ≥ f(C1
m) +

∑
[[Ai, Ai+1]]
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applying Lemma 3.3. By Lemma 3.2 a member on the right hand size sum is ≥ 1 if at least one of Ai

and Ai+1 has two connected elements. If m > 2 then there are at least 2
3 (m− 1) such a pair, thus

∑

v∈C1
m

≥ f(C1
m) +

2

3
(m− 1) > f(C1

m) +
m− 1

2m
|C1

m|.

This means that for m > 2 (1) holds with λ1 = m−1
2m ; for m = 2 we choose λ1 = 0.

Now suppose we know that (1) holds for d with some λd, and we would like to determine λd+1.
The d+ 1-dimensional cube Cd+1

m consists of m layers, each of them is a Cd
m cube. As Fact 2.7 shows,

restricting the scheme S to any of the subcubes induces a subscheme with the same f function. Denoting
the j-th layer by Aj , thus we can apply (1) to Aj which yields

∑

v∈Aj

f(v) ≥ f(Aj) + λd · |C
d
m|,

since Aj is a d-dimensional lattice cube. Adding up these inequalities and using Lemma 3.3 to the
disjont subsets A1, . . ., Am we get

∑

v∈Cd+1
m

f(v) ≥ f(Cd+1
m ) +

∑

1≤j<m

[[Aj , Aj+1]] +mλd|C
d
m|.

Next we estimate [[Aj , Aj+1]]. In Cd+1
m there is a perfect matching between Aj and Aj+1, and neither

Aj nor Aj+1 is independent. Suppose B ⊆ Aj is a maximal independent set, then Fact 2.6 and Lemma
3.2 gives

[[Aj , Aj+1]] ≥ [[B,Aj+1]] ≥ |B| ≥
1

2
|Cd

m|,

as the maximal independent set in Cd
m has size ⌊(|Cd

m|+ 1)/2⌋. Thus

∑

v∈Cd+1
m

f(v) ≥ f(Cd+1
m ) +

m− 1

2
|Cd

m|+mλd|C
d
m|.

Since m|Cd
m| = |Cd+1

m |, with λd+1 = λd +
m−1
2m inequality (1) will also hold for d+ 1.

As f(Cd
m) > 0, from (1) we can conclude immediately that the average information rate of Cd

m is
less than 1/λd. We have seen that for m > 2 λd = dm−1

2m is a good choice and this proves Theorem 3.1
in this case.

For the case m = 2 this gives only λd = (d− 1)/4. The missing 1/4 will come from the first member
f(Cd) in (1). The d-dimensional cube has two d − 1-dimensional layers A1 and A2, and we have seen
that

[[A1, A2]] ≥
1

2
|Cd−1| =

1

4
|Cd|.

Since f(Cd) = f(A1A2) ≥ [[A1, A2]] this proves Theorem 3.1 for m = 2 too.
In terms of number of vertices, the best (i.e. smallest) value is 4/ log n given by m = 2, compared

to 4.755/ log n and 5.33/ log n when m = 3 or m = 4.
In the reasoning above we have used the existence half of the edges only between the consecutive

layers of Cd+1
m . This means that we can simply remove these edges without affecting the upper bound

but almost halving the average degree. For this truncated graph the upper and lower bounds are
practically equal.
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4 Conclusion

We have presented a graph with average information rate below 4/ log n. The best general construction
of [7] shows that we cannot go below logn

n .

Problem 4.1 Do there exist graphs Gn on n vertices with average information rate (ω(n) log n)−1 such
that ω(n) tends to infinity?

Our graph was the d-dimensional cube. For d = 1 and d = 2 we know the exact values: both
of them has average information rate 1. The next case is the 3-dimensional cube. This is 3-regular,
thus Stinson’s theorem gives the lower bound 1/2. Our theorem gives the upper bound 4/3 which is
worthless since 1 is also an upper bound. By a result of [3] the two middle points of a path consisting
three edges have average information rate at most 2/3. Observing that each edge of the cube can be
the middle segment of a spanned path of length three, we get that the average information rate of the
cube cannot exceed 2/3.

Problem 4.2 Determine the average information rate of the 3-dimensional cube. It is between 1/2
and 2/3.

We remark that 2/3 is the limit of the entropy method, since there exists a function f on the subset
of vertices satisfying (i)-(v) of Section 2 with f(v) = 3/2 for all vertices.

In general the lower and upper bounds differ by a factor of 2, for Cd the average information rate is
between cd/ log n where 2 ≤ cd ≤ 4. It is not clear that cd should converge, however we conjecture that
it does.

Problem 4.3 Determine the constant c in the asymptotic information rate c/ log n of the d-dimensional
cube Cd.

We have seen that there is a graph Gn on n vertices with information rate Ω(1/ log n). We know that
the random graph on n vertices contains as spanned subgraph every possible graph on log n vertices,
thus Glogn too. It means that the information rate of some vertex in the random graph is Ω(1/ log log n).
Unfortunately this gives very poor estimate on the average information rate.

Problem 4.4 Prove that the average information rate of the random graph is less than c/ log n) for
some constant c.

The best upper bound on the average as well as on the worst case information rate is above 1/(α(G)+
1) as the following reasoning shows. For each subset A of the vertices define f(A) as a function on the
number of vertices in A as follows. If |A| = 1 then f(A) = 1 + α(G); if v /∈ A and 1 ≤ |A| ≤ α(G) then
f(Av) = f(A)+1+α(G)−|A|, and if α(G) < |A| then f(Av) = f(A). It is a routine to check that this
f satisfies conditions (i)-(v) of Section 2, therefore it will met any bound using the entropy inequalities
only. For the random graph α(G) = log n, thus the entropy method cannot give better result than what
Problem 4.4 requires.

Problem 4.5 Determine the average information rate of the random graph, or at least prove that it
is ω(n)/ log n where ω(n) tends to zero.
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