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Submodular functions

f is submodular over any lattice:
f(A)+f(B) > f(AANB)+ f(AV B).

In R" this is the min and max, coordinatewise.

Diminishing return property (coordinatewise):
f(x +cei) — f(x) = fy +eei) — f(y)

ify=x+Xe;, A>0,and e > 0.

(Investing the same amount of resouce, if you have more of that
resource then the return is smaller.)
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Entropy-like function

(a) f is defined on {x € R" : x > 0}

(b) £(0) =0 (pointed)

(c) non-decreasing: 0 < x <y = f(x) < f(y)

(d) submodular: f(x)+ f(y) > f(xAy)+f(xVy)
(e) has the diminishing return property

Motivation: secret sharing of n groups.

Symmetric for any permutation fixing all groups.

f(x1,...xp) is the scaled entropy of the shares given to x; - N
people from the i-th group
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Left and right partial derivatives

Left i-th partial derivative (if exists)

_ . f(x) = f(x—ce)
f} (X) - al—I>T-0 S

Right i-th partial derivative (if exists)

F4(x) = “To f(x+ 665,') — f(x)
E—
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Basic properties

@ f is continuous

@ concave along any positive direction: for 0 < x <y
AF(x) + (1= A)f(y) < F(Ax) + (1= A)y).

© D.R. property holds for any x < y (not only coordinatewise)
@ f has left and right partial derivatives everywhere inside

@ partial derivatives are > 0 and decreasing along positive
directions.



Continuos submodular optimization

Proof of (2)

Concave along any coordinate by continuity and DR property.
By induction for points (¢, x,a) < (d,y, a):

M(cdd,x,a)+ (1 —Nf(cdd,y,a) <f(cdd,xdy,a),
MNf(c,x,a) + M1 —N)f(d,x,a) < M(cdd, x,a),
)‘(1_)‘)f(c’y>a)+(1_>‘)2f(d7y’a)S( ) (c4>d,y,a),

M(c,x,a) + (1= AN)f(d,y,a) < f(cdd,xby,a)
Use submodularity A(1 — \) times:

f(C’X7 a) + f(d7y7 a) S f(C,y,a) + f(d7x7 a)
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A 2-dimensional example
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The optimization problem

f is feasible for the n — 1-dimensional surface S if in each point
x € S the partial derivatives drop by at least 1:

fF(x)—fr(x)>1 (1<i<n).
The cost of f is
Cost(f) = max{f;"(0), 5 (0),..., £, (0) },
and the optimization problem is:

minimize:  Cost(f)
subject to: f is an S-feasible EL function.
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Linear constraints

S is a hyperplane c1x1 + coxo + - - - + cpxp = M. Search an optimal
function among k > O:

f(y) = k-min{>ciyi, M}.

Here £, (x) — f* = k - ¢; at points of S (f is linear), so
k > 1/ min{c;}. Also, Cost(f) = k - max{c;}, thus

max{c;}

OPT(s) < (Tt
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Theorems

Theorem (Lower bound)

For every s-surface S, inner point x € S and 1 < i,j < n the
following inequality holds:

VS;(x)
OPT(S) > VSJ,-(X)’

where VS(x) is the outward normal of S at x € S.

Theorem (Existence)

Suppose S is smooth and OPT(S) < +oo. Then the optimal value
is taken by some S-feasible function f, that is, Cost(f) = OPT(S).
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2-dimensional case

S is a strictly decreasing continuous curve.
S={(x.a(x)): 0<x < a}, and S = {(B(y).y) : 0 < y < b}.
b

0 tx a

S is either convex or concave = VS;(x)/VS;(x) is increasing or
decreasing along the curve = attains its maximal value at one
of the endpoints.
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For strictly convex S the lower bound is tight

C + min{y — a(x),0} if x > t,

f(x,y) =4 C+min{x —p(y),0} ify>t,
X4y otherwise,
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For strictly concave S the lower bound in tight

y + min{x, B(y)} if x> t,
f(x,y) = ¢ x+min{y,a(x)} ify>t,
X+y otherwise.
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Questions

Problem (1)

For every smooth S with bounded normal there is a feasible
function f.

Problem (1a)

Show that there a feasible function with finite cost.

Problem (2)

Find an S where the lower bound is not tight.

Problem (3)

Determine the cost of convex surfaces in dimensions > 2.



