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Abstract

G. Wegner [12] gave a geometric characterization of all so–called Groe-
mer packing of n ≥ 2 unit discs in E

2 that are densest packings of n unit
discs with respect to the convex hull of the discs. In this paper we provide
a number theoretic characterization of all n satisfying that such a “Wegner
packing” of n unit discs exists, and show that the proportion of these n is 23

24
among all natural numbers.
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1 Introduction
For a convex compact set C in E

2, we write A(C) to denote the area and P(C) to
denote the perimeter of C where P(C) is twice of its length if C is a segment. In
addition B2 denotes the unit disc centred at the origin. Given n ≥ 2, we investigate
the configurations that minimize the area of the convex hull of n non–overlapping
discs. Equivalently we define the density of a finite packing of unit discs to be the
ratio of the total area of the discs over the area of their convex hull, and we search
for some packing of n unit discs of maximal density. Let us describe the known
results.

L. Fejes Tóth proved in his paper [3] from 1949 that if the compact convex set
D contains n ≥ 2 non–overlapping unit discs then

A(D) > n ·2
√

3. (1)

The inequality (1) is optimal in the sense that no factor less than 2
√

3 works for all
n, but it is unfortunate from our point of view that we never have equality in (1).
A decade later H. Groemer [7] and N. Oler [8] proved that if the convex compact
set C contains the centres of n non–overlapping unit discs then

1
2
√

3
A(C)+ 1

4 P(C)+1 ≥ n, (2)

where for any n there exists some C such that equality holds in (2) (see the discus-
sion below). Since C +B2 contains the n unit discs,

A(C +B2) = A(C)+P(C)+π, (3)

and P(C) ≥ 4 for n ≥ 2, the inequality (2) yields (1). We note that N. Oler [8]
generalized (2) to Minkowski planes, and his inequality is known as the Oler in-
equality. Actually A. Thue proved certain weaker version of (2) already around
1900 (see [9], [10] and [11]). Therefore we call (2) the Thue–Groemer inequal-
ity. For other proofs of the Thue–Groemer inequality, see J.H. Folkman and R.L.
Graham [6], or K. Böröczky, Jr. [1].

H. Groemer [7] also described the equality case in (2); namely, either C is a
segment of length 2(n− 1), or C is the convex hull of the n centres and can be
triangulated using the n centres as vertices into regular triangles of edge length
two (see Figure 1). In the latter case each side of C is parallel to some side of a
fixed regular triangle from the tiling, hence C has at most six sides. If equality
holds in (2) then the corresponding packing of n unit discs is called a Groemer
packing.
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The central question of this paper is whether any densest packing of n unit
discs is some Groemer packing. In the following let n ≥ 2, and let Cn always
denote the convex hull of the centres in a Groemer packing of n unit discs. Since
equality holds in (2) for Cn, (3) yields that the Groemer packings of highest den-
sities are the ones that minimize P(Cn). As Cn has at most six sides, we have
A(Cn) ≤

√
3

24 P(Cn)
2 according to the isoperimetric inequality for hexagons (see

say A. Florian [5]). In addition 1
2 P(Cn) is an integer, and equality holds in the

Thue–Groemer inequality (2), therefore P(Cn) ≥ 2
⌈√

12n−3−3
⌉

.
L. Fejes Tóth conjectured in [4] that if n = 6

(k
2

)

+ 1 for some k ≥ 2 then in
the densest packing of n unit discs, the convex hull of the centres is the regu-
lar hexagon of side length 2(k − 1). G. Wegner [12] proved this conjecture in
a more general form. To state his result, we call a Groemer packing of n unit
discs a Wegner packing if the convex hull Cn of the centres satisfies P(Cn) =
2
⌈√

12n−3−3
⌉

. In particular any Wegner packing of n unit discs is a densest
Groemer packing. A typical example is when n = 6

(k
2

)

+1 for some k ≥ 2 and Cn
is the regular hexagon of side length 2(k− 1). On the one hand there exist two
non–congruent Wegner packings of 18 unit discs, on the other hand there may
not exist any Wegner packing for a given n where the smallest such n is 121 (see
G. Wegner [12]). Now G. Wegner [12] proved L. Fejes Tóth’s conjecture in the
following form:

Theorem 1.1 (Wegner’s Inequality) If D is the convex hull of n non–overlapping
unit discs then

A(D) ≥ 2
√

3 · (n−1)+(2−
√

3) ·
⌈√

12n−3−3
⌉

+π.

Equality holds if and only if the packing is a Wegner packing.

The lower bound of Theorem 1.1 is a very good estimate even if strict inequal-
ity holds, as we prove

Theorem 1.2 For any n ≥ 2, there exists a Groemer packing of n unit discs whose
convex hull D satisfies

A(D) ≤ 2
√

3 · (n−1)+(2−
√

3) ·
⌈√

12n−3−3
⌉

+π+2−
√

3.

Our main results are to characterize all n such that a Wegner packing of n unit
discs exists, and to show that the proportion of these n is 23

24 among all natural
numbers:

3



Theorem 1.3 A Wegner packing of n ≥ 2 unit discs exists if and only if for any
positive k,m ∈ Z, we have

⌈√
12n−3

⌉2
+3−12n 6= (3k−1) ·9m.

Theorem 1.4 Given N ≥ 2, let f (N) be the number of 2 ≤ n ≤ N such that there
exists a Wegner packing of n unit discs. Then

lim
N→∞

f (N)

N
=

23
24

.

The results above support the following conjecture:

Conjecture 1.5 Any densest packing of n unit discs is some Groemer packing.
In other words if D is the convex hull of n unit discs in a densest packing then
equality holds either in Theorem 1.1 or in Theorem 1.2.

2 Proofs
Proof of Theorem 1.3: First we present certain formulae that hold for any Groe-
mer packing of n unit discs provided the convex hull C of the centres is a polygon.
There exists a regular triangle T circumscribed around C such that at least two
sides of T contain some side of C (see Figure 1). We write v1,v2,v3 to denote the
vertices of T . If vi, i = 1,2,3, is not a vertex of C then it is the vertex of a regular
triangle Ti ⊂ T such that C∩Ti is a common side. If vi is a vertex of C then we
define Ti = {vi}, which we consider a degenerate regular triangle of side length
zero. We define the non–negative a,b,c ∈ Z by the property that the side lengths
of T1, T2 and T3 are 2a, 2b and 2c, respectively, and define d ∈ Z by the property
that the side length of T is 2(a + b + c + d). We note that if C is a hexagon then
three of its sides with lengths 2(a + d), 2(b + d), 2(c + d) are contained in the
boundary of T , and the other three sides are of lengths 2a, 2b and 2c. In any case
we have

p = 1
2 P(C) = 2a+2b+2c+3d, (4)

n = 1
2
√

3
A(C)+ 1

2 p+1, (5)

A(C) =
√

3 · ((a+b+ c+d)2 −a2 −b2 − c2). (6)

Thus the isoperimetric deficit p2 −2
√

3A(C) can be expressed as

(p+3)2 +3−12n = (2a−b− c)2 +3(b− c)2 +3d2
. (7)
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Figure 1:

Let us consider a Wegner packing of n unit discs. We may assume that n ≥ 3,
hence the convex hull C of the centres is a polygon. Using the notion as above, we
have p+3 = d

√
12n−3e. As x2 +3y2 +3z2, x,y,z ∈ Z is never of the form (3k−

1) ·9m for positive k,m ∈ Z, (7) yields the necessity condition in Theorem 1.3.
To prove the sufficiency of the condition in Theorem 1.3, we assume that p =

⌈√
12n−3−3

⌉

satisfies that Ω = (p+3)2 +3−12n is not of the form (3k−1) ·9m

for positive k,m ∈ Z. It is known that Wegner packings do exist for n ≤ 30 (see
G. Wegner [12]), hence let n ≥ 31.

Now 3Ω is not of the form (9k−3) ·9m, therefore

3Ω = 3x2 + ỹ2 + z̃2 (8)

for some x, ỹ, z̃ ∈ Z (see L.E. Dickson [2], p.97). Checking remainders modulo 3,
we deduce that ỹ = 3y and z̃ = 3z for some y,z ∈ Z, and hence

(p+3)2 +3−12n = x2 +3y2 +3z2
. (9)

Changing x to −x if necessary, we may assume that p ≡ x (mod 3). Since a
square is 0 or 1 (mod 4), and the roles of y and z are symmetric, we may assume
that p ≡ z (mod 2), and hence x ≡ y (mod 2). We define

a = p+2x−3z
6 , b = p+3y−x−3z

6 , c = p−3y−x−3z
6 , d = z. (10)

The divisibility properties imply that a,b,c,d are integers, and readily

x = 2a−b− c, y = b− c, z = d.
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We want to make a hexagon (namely 1
2C) with sides a, b, c, a+d, b+d and c+d;

to this end we need that they are all positive. We have p <
√

12n−3− 2, hence
(9) yields that

x2 +3y2 +3z2
< (p+3)2 − (p+2)2 = 2p+5. (11)

Here p ≥ 17 follows by n ≥ 31, and hence the Cauchy–Schwarz inequality and
(11) imply

2|x|+3|z| = 2 · |x|+
√

3 · (
√

3 |z|) ≤
√

7(2p+5) < p;

|x|+3|y|+3|z| = 1 · |x|+
√

3 · (
√

3 |y|)+
√

3 · (
√

3 |z|) ≤
√

7(2p+5) < p.

Therefore a, b, c, a+d, b+d and c+d are all positive.
Starting from the regular triangle of side length 2(a+b+ c+d), we can con-

struct a Groemer packing of certain number of discs such that the convex hull C
of the centres has side lengths 2a, 2(c + d), 2b, 2(a + d), 2c and 2(b + d) in this
order. We deduce (4) by (10), hence (9) yields (7). Therefore we have constructed
a Wegner packing of n unit discs, completing the proof of Theorem 1.3. 2

Proof of Theorem 1.4: Let g(N) = N − f (N). It is sufficient to show that for any
ε > 0 and for N large,

g(N) = 1+O(ε)
24 ·N (12)

where the implied constant in O(·) is some absolute constant. Given n ≥ 2, we set
s =

⌈√
12n−3

⌉

and define t by the formula

12n−3 = s2 − t.

The condition s =
⌈√

12n−3
⌉

is equivalent to s2 − t > (s− 1)2, and hence to
s >

t+1
2 . On the other hand n ≤ N is equivalent to s ≤

√
12N −3+ t. Therefore

g(N) is the number of “good” pairs s, t ∈ N such that t = l · 9m for some positive
l,m ∈ Z with l ≡−1 (mod 3), n = s2−t+3

12 is an integer, and

t+1
2 < s ≤

√
12N −3+ t. (13)

If N is large then t < (1 + ε)2
√

12N and m < (1 + ε) log9 2
√

12N follows by
(13). Now n is an integer if and only if either l ≡ −4 (mod 12) and s ≡ ±3
(mod 12), or l ≡ −1 (mod 12) and s ≡ 0,6 (mod 12). We observe that if t
is fixed and t < (1− ε)2

√
12N then a “good” pair s of t occurs uniformly and
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with density 1
6 . Therefore after fixing a large N and an m satisfying 1 ≤ m ≤

(1− ε) log9 2
√

12N, the number of the corresponding “good” pairs s, t ∈ N is

(1+O(ε)) ∑
2≤l≤ (1−ε)2

√
12N

9m
l≡−1,−4 (mod 12)

1
6 ·
(√

12N − l·9m

2

)

= (1+O(ε)) · N
3 ·9m .

We conclude that if N is large then

g(N) = (1+O(ε)) · ∑
m≥1

N
3 ·9m = (1+O(ε)) · N

24
,

completing the proof of Theorem 1.4. 2

Proof of Theorem 1.2: If there exists no Wegner packing for some n then p =
⌈√

12n−3−3
⌉

is divisible by 3 according to Theorem 1.3. Thus (p + 1 + 3)2 +
3− 12n is not equal (3k− 1) · 9m for any positive k,m ∈ Z. Applying the proof
of the sufficiency of the condition in Theorem 1.3 to q = p + 1 in the place of
p yields the existence of a Groemer packing of n unit discs with p + 1 boundary
discs. In turn we conclude Theorem 1.2. 2
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[10] A. Thue: Über die dichteste Zusammenstellung von kongruenten Kreisen in
einer Ebene. Christiana Vid. Selsk. Skr., 1 (1910), 3–9.

[11] A. Thue: Selected papers. Universitetsforlaget, Oslo, 1977.
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