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Abstract

Let K be a convex body with C2 boundary in the Euclidean d-
space. Following the work of L. Fejes Tóth, R. Vitale, R. Schneider,
P.M. Gruber, S. Glasauer and M. Ludwig, best approximation of K by
polytopes of restricted number of vertices or facets is well-understood
if the approximation is with respect to the volume or the mean width.
In this paper we consider the circumscribed polytope P(n) of n facets
with minimal surface area, and present an asymptotic formula in n

for the difference of surface areas of P(n) and K.
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1 Introduction

For any notions related to convexity in this paper, consult P.M. Gruber [21],
R. Schneider [27] or T. Bonnesen and W. Fenchel [2]. For any quadratic form
q, we write tr q to denote the sum, and det q to denote the product of the
eigenvalues of q, respectively. As usual we call a compact convex set in E

k

with non-empty relative interior a convex body in E
k. For a convex body K

in E
d, we write V (K) to denote its volume, and S(K) to denote its surface

area. When integrating on the boundary ∂K, we always do it with respect
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to the (d− 1)-dimensional Hausdorff measure (see K.J. Falconer [10] or C.A.
Rogers [25] for definition and main properties). An X ⊂ ∂K is called Jordan
measurable if its relative boundary on ∂K is of (d − 1)-measure zero. If K
has C2 boundary and x ∈ ∂K, then let Qx denote the second fundamental
form at x, let H(x) = tr Qx, and let κ(x) = det Qx be the Gauß-Kronecker
curvature. These notions naturally depend on K but we drop the reference
to K. We say that K has Ck

+ boundary if ∂K is Ck and the Gauß-Kronecker
is positive at each point.

Best approximation of a convex body K with C2 boundary by circum-
scribed polytopes with respect to the volume or the mean width has very
extensive literature since the 1970’s (see the papers P.M. Gruber [16], [17],
[18] and [20] for general surveys on related problems), and many of the ma-
jor questions have been resolved. Here we only summarize the main results
concerning the volume. P.M. Gruber [15] proved when ∂K is C2

+, and K.
Böröczky, Jr. [3] in the general case that if P vol

(n) is a polytope containing K
with n facets that has minimal volume, then as n tends to infinity, we have

V (P vol
(n)) − V (K) ∼ divd−1

2

(∫

∂K

κ(x)
1

d+1 dx

) d+1
d−1

· 1

n
2

d−1

(1)

where divd−1 > 0 depends only on d. P.M. Gruber [14] determined that

div1 = 1
12

and div2 = 5
√

3
18

, and it follows from the work of P.L. Zador [28]
that

divd−1 = 1
2eπ

d + O(ln d) (2)

where the implied constant in O(·) is an absolute constant.
In many cases important information available about the extremal bodies

in polytopal approximation. If Ξn ⊂ ∂K has cardinality n for n ≥ d + 1,
and f is a non-negative measurable function on ∂K whose integral on ∂K
is positive, then {Ξn} is uniformly distributed with respect to f (compare
S. Glasauer and R. Schneider [12]) provided that for any Jordan measurable
X ⊂ ∂K, we have

lim
n→∞

#(X ∩ Ξn)

n
=

∫
X

f(x) dx∫
∂K

f(x) dx
.

In addition {Ξn} satisfies the Delone property (compare P.M. Gruber [19]) if
there exists α, β > 0 depending on K and the sequence {Ξn} such that the

distance between any two points of Ξn is at least αn
−1
d−1 , and for any x ∈ ∂K

there exists y ∈ Ξn of distance at most βn
−1
d−1 from x.

Now let Ξvol
n be the family of points where the facets of P vol

(n) touch P vol
(n) .

S. Glasauer and P.M. Gruber [13] proved that if ∂K is C2
+, then the {Ξvol

n }
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is uniformly distributed on ∂K with respect to κ(x)
1

d+1 , and the result was
extended to any convex body K with C2 boundary by K. Böröczky, Jr. [3].
In addition, if ∂K is C2

+ then P.M. Gruber [19] proved the Delone property
for {Ξvol

n }.
The analogous results are also known in the case of approximation by

circumscribed polytopes with respect to the mean width (see P.M. Gruber
[21]). However if closeness is measured in terms of the surface area then the
asymptotic formula was only known if K is ball (in that case approximation
with respect to the volume and with respect to the surface area are equiv-
alent). The goal of this paper is to fill this gap. It is especially desirable
because if best approximation of smooth convex bodies is replaced by ran-
dom approximation then we have essentially the same amount of information
for all these three quermassintegrals (see K. Böröczky, Jr. and M. Reitzner
[6]).

We will assign certain number, which is denoted by div(q∗), to any positive
definite quadratic form q in d− 1 variables in Section 6. We prove (see (85))

divd−1 ≤ div(q∗) ≤ d
d−1

· divd−1 (3)

for any positive definite q where equality holds in the upper bound if the
eigen values of q coincide. It follows by (2) that independently of the eigen
values of q, we have

div(q∗) = 1
2eπ

d + O(ln d) (4)

where the implied constant in O(·) is an absolute constant. If q is a positive
semi-definite quadratic form in d − 1 variables that is not positive definite
then we define div(q∗) = divd−1. In particular while div(q∗) does depend on
the eigen values of q, this dependence is rather ”light”. If d = 2, then the
upper bound in (3) yields

div(q∗) = 2div1 = 1/6. (5)

Unfortunately if d ≥ 3, then one cannot expect a ”nice” closed formula for
div(q∗) in terms of the eigen values of q. If d = 3 and τ2 ≥ τ1 > 0 are the
eigen values of q then K.J. Böröczky and B. Csikós [4] prove

div(q∗) =
2τ1 + τ2

18(τ1 + τ2)
· 4τ1 + 8τ2 + (4τ 2

1 − 2τ1τ2 + 7τ 2
2 )1/2

[2τ1 + 4τ2 + (4τ 2
1 − 2τ1τ2 + 7τ 2

2 )1/2]1/2
. (6)

This formula could be expressed in terms of the trace and the determinant
of q, but the new formula would be even more complicated.
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Theorem 1.1 Given a convex body K in E
d, d ≥ 2, with C2 boundary, if

P(n) is a circumscribed polytope with n facets that has minimal surface area
then as n tends to infinity,

S(P(n)) − S(K) ∼ 1

2

(∫

∂K

div(Q∗
x)

d−1
d+1 H(x)

d−1
d+1 κ(x)

1
d+1 dx

) d+1
d−1

· 1

n
2

d−1

.

We note that some cases of Theorem 1.1 have been already known. If
K is a ball of radius r then S(P(n)) = dV (P(n))/r and S(K) = dV (K)/r,
and hence P.M. Gruber’s (1) in [15] verifies Theorem 1.1. In addition if K
is planar and its boundary is C2

+, then Theorem 1.1 is due to D.E. McClure
and R.A. Vitale [9].

If K ⊂ P for the convex bodies K and P in E
d then their Hausdorff

distance δH(P,K) is the maximal distance of the points of P from K (see
Section 5). It is known (see K. Böröczky, Jr. [3]) that if K has C2 boundary
and P has at most n facets then δH(P,K) ≥ α

n
2

d−1
where α is a positive

constant depending on K.

Theorem 1.2 For any convex body K in E
d, d ≥ 2, with C2 boundary, if

P(n) is a circumscribed polytope with n facets that has minimal surface area,
and Ξn is a family of n points where the n facets of P(n) touch ∂K then

(i) {Ξn} is uniformly distributed with respect to div(Q∗
x)

d−1
d+1 H(x)

d−1
d+1 κ(x)

1
d+1 ;

(ii) δH(P(n), K) ≤ βn
−2
d−1 where β depends on K;

(iii) if moreover ∂K is C2
+ then {Ξn} satisfies the Delone property.

The rough idea of the proof of Theorem 1.1 is the same like for the
volume difference as it was initiated by P.M. Gruber [15], and developed
also by M. Ludwig [23]; namely, one thinks patches on ∂K being patches on
suitable paraboloids, and uses the fact the power diagrams in E

d−1 correspond
naturally to polytopal (piecewise linear) surfaces approximating paraboloids
(see F. Aurenhammer [1]). In the cases of volume approximation, the problem
is reduced (in a non-trivial way) to some properties of the second moment in
E

d−1 as follows. Let C be a convex body in E
d−1. For finite Ξ ⊂ C, if y ∈ Ξ,

then we define the Dirichlet-Voronoi cell Πy of y to be the family of x ∈ C
with ‖x− y‖ ≤ ‖x− z‖ for all z ∈ Ξ, and assign the second moment integral

∑

y∈Ξ

∫

Πy

‖x − y‖2 dx
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to Ξ, where ‖ · ‖ denotes the Euclidean norm. Now for large n, the question
is the asymptotics of the minimum of the integral above as Ξ runs through
all subset of C of cardinality at most n. This problem was solved by L. Fejes
Tóth [11] if C is planar, and by P.M. Gruber [15] for higher dimensions.

In the case of polytopal approximation with respect to the surface area, a
similar problem arises in E

d−1. Only in this case a positive definite quadratic
form q in d−1 variables is given, and we integrate not ‖x−y‖2, but q(x−y)
above Πy in the expression above. The fact that we define the Dirichlet-
Voronoi cells with respect to the standard quadratic form, and integrate
another quadratic form, causes much technical difficulty, especially when
transforming the asymptotic result in E

d−1 to polytopal approximation in
E

d.
Concerning the structure of the paper, we discuss the above version of the

moment problem in Section 2. For the later study, we need to understand
related properties of convex hypersurfaces, which is done in Sections 3 and 4.
Using these properties, we establish Theorem 1.2 (ii) and (iii) in Section 5,
and prove the core result about approximation of paraboloids in Section 6.
Next we discuss polytopal approximation of convex hypersurfaces of positive
curvature in Section 7. Finally Theorem 1.1 is proved in Section 8, and
Theorem 1.2 (i) in Section 9 using the method of K. Böröczky, Jr. [3].

Let us summarize notation. We write o to denote the origin in E
d, 〈·, ·〉

to denote the scalar product. Moreover let Bd denote the unit ball centred
at o. For non-colinear points u, v, w, the angle of the halflines vu and vw
is ∠(u, v, w). Given a set X ⊂ E

d, the affine hull, the convex hull and the
interior of X are denoted by affX, convX, and intX, respectively.

The (d − 1)-dimensional Hausdorff measure of a measurable subset X of
E

d is denoted by |X|. if X is a subset of the boundary of a closed convex set
in E

d with non-empty interior then we write relintX to denote its relative
interior. In addition X is called Jordan measurable if it is bounded, and its
relative boundary relbdX is of (d − 1)-measure zero. If in addition if X is
the closure of relintX then X is called a convex hypersurface.

Given two real functions f and g, we write f = O(g) if |f | ≤ c ·g for some
constant c depending only on the dimension d, and f = OΞ(g) if in addition
c also depends on some object Ξ. Moreover ⌊t⌋ and ⌈t⌉ stand for the largest
integer not larger, and the smallest integer not smaller, respectively, than
t ∈ R.
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2 A version of the Moment Lemma

While this section can be read independently from the rest of the paper, we
work in E

d−1 because this is the setup how our main result Theorem 2.1 is
applied in this paper. We write Υn to denote the family of all non-empty
subsets of E

d−1 of cardinality at most n. P.M. Gruber [15] proved the exis-
tence of divd−1 > 0 depending only on d with the following property. If C is
a Jordan measurable subset of E

d−1, then as n tends infinity, we have

min
Ξ∈Υn

∫

C

min
y∈Ξ

‖x − y‖2 dx ∼ divd−1 · |C| d+1
d−1 · 1

n
2

d−1

. (7)

If C is planar then (7) follows from the celebrated Moment Lemma of L. Fejes
Tóth [11]. Far reaching generalizations of (7) where ‖x − y‖2 is replaced by
f(‖x − y‖) for some increasing function f with a “growth condition” are
proved in P.M. Gruber [20].

For Ξ ∈ Υn and y ∈ Ξ, the Dirichlet-Voronoi cell of y with respect to Ξ
and C is

Π(y, Ξ, C) = {x ∈ C : ‖x − y‖ ≤ |x − z| for all z ∈ Ξ}.

In particular in (7), we have
∫

C

min
y∈Ξ

‖x − y‖2 dx =
∑

y∈Ξ

∫

Π(y,Ξ,C)

‖x − y‖2 dx.

Now let q be a positive definite quadratic form in d − 1 variables. For any
finite subset Ξ of E

d−1, we define

Ω(C, Ξ, q) =
∑

y∈Ξ

∫

Π(y,Ξ,C)

q(x − y) dx.

It follows by compactness argument that there exists an extremal Ξq,C,n ∈ Υn

such that Π(y, Ξq,C,n, C) 6= ∅ for all y ∈ Ξq,C,n, and

Ω(C, Ξq,C,n, q) = min
Ξ∈Υn

Ω(C, Ξ, q) = min
Ξ∈Υn

∑

y∈Ξ

∫

Π(y,Ξ,C)

q(x − y) dx.

We note that it is not clear whether Ξq,C,n has n elements. The reason is that
if the eigenvalues of q are different then there exist C, Ξ and y such that

Ω(C, Ξ ∪ {y}, q) > Ω(C, Ξ, q).

Our main goal is to prove the following generalization of (7).
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Theorem 2.1 For any positive definite quadratic form q in d − 1 variables
there exists div(q) > 0 with the following property. If C is a Jordan measur-
able subset of E

d−1, then as n tends infinity, we have

Ω(C, Ξq,M,n, q) ∼ div(q) · |C| d+1
d−1 · n −2

d−1 .

Before proving Theorem 2.1, we verify two auxiliary statements used in
the proof. The first estimate is a consequence of the fact that given |M | for a
Jordan measurable M ⊂ E

d−1,
∫

M
‖y‖2 dy is minimal if M is the (d− 1)-ball

centred at o.

Proposition 2.2 If M ⊂ E
d−1 is Jordan measurable then

∫

M

‖y‖2 dy ≥ d − 1

(d + 1) · |Bd−1| 2
d−1

· |M | d+1
d−1 .

The second estimate is the Hölder inequality for positive a1, . . . , ak and
n1, . . . , nk in the form

a
d+1
d−1

1 n
−2
d−1

1 + . . . + a
d+1
d−1

k n
−2
d−1

k ≥ (a1 + . . . + ak)
d+1
d−1 (n1 + . . . + nk)

−2
d−1 , (8)

where equality holds if and only if ai/aj = ni/nj for i, j = 1, . . . , k.
Next we discuss two properties of Ω(M, Ξq,M,n, q) that will be also used

in Section 6. The first is its homogeneity; namely, If λ > 0 and n ≥ 1, then

Ω(λM, Ξq,λM,n, q) = λd+1Ω(M, Ξq,M,n, q) (9)

holds for any Jordan measurable M in E
d−1. Now if M is a convex body in

E
d−1 with o ∈ M , then for any ε ∈ (0, 1), (9) yields

Ω((1 − ε)M, Ξq,M,n, q) ≥ (1 − ε)d+1Ω(M, Ξq,M,n, q).

In turn we deduce

Ω(M\(1 − ε)M, Ξq,M,n, q) ≤ ε · 2d · Ω(M, Ξq,M,n, q). (10)

Proof of Theorem 2.1: There exists some ω ≥ 1 such that

‖z‖2/ω ≤ q(z) ≤ ω‖z‖2 for any z ∈ E
d−1.

Since q is fixed, we set Ξq,M,n = ΞM,n.
Let M be a Jordan measurable set that is the closure of its relative

interior. It follows by Proposition 2.2 and the Hölder inequality (8), that
if Ξ ∈ Υn, then

Ω(M, Ξ, q) ≥
∑

y∈Ξ

γ1|Π(y, Ξ,M)| d+1
d−1 ≥ γ1|M | d+1

d−1 n
−2
d−1 , (11)
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where γ1 depends on ω and d. There exists ñ depending on M such that if
n > ñ, then in any face to face tiling of E

d−1 by cubes of (d − 1)-measure

2|M |/n, the number of the tiles intersecting M is at most n. Taking Ξ̃ to
be the centres of these tiles shows that that there exists a γ̃ depending on ω
and d such that if n > ñ, then

Ω(M, ΞM,n, q) ≤ Ω(M, Ξ̃, q) ≤ γ̃n
−2
d−1 |M | d+1

d−1 . (12)

Next we show that

lim
n→∞

max
y∈Ξq,M,n

diam[{y} ∪ Π(y, ΞM,n,M)] = 0. (13)

Since M is the closure of its interior, for any δ > 0 there exists some η > 0
depending on δ and M such that if x ∈ M then |(x + δBd−1) ∩ M | > η. Let
us assume that diam[{y0} ∪ Π(y0, ΞM,n,M)] ≥ 4δ for some y0 ∈ Ξq,M,n. In
particular there exists some x0 ∈ M such that ‖x0−y‖ ≥ 2δ for all y ∈ ΞM,n.
If z ∈ (x + δBd−1) ∩ Π(y, ΞM,n,M) for some y ∈ ΞM,n then q(z − y) ≥ δ2/ω,
therefore

Ω(M, ΞM,n, q) ≥ δ2η/ω. (14)

In particular (12) yields (13).
For W = [−1

2
, 1

2
]d−1, we define

cn = n
2

d−1 Ω(W, ΞW,n, q).

It follows by (11) and (12) that

div(q) = lim inf
n→∞

cn

is a positive and finite real number.
Turning to C, we assume that C is the closure of its relative interior. It

is suffient to prove that for any small ε > 0, there exist an N depending on
ε, C, d and ω such that if n > N then

Ω(C, ΞC,n, q) = (1 + Oω(ε)) · div(q) · |C| d+1
d−1 · n −2

d−1 . (15)

It follows by the definition div(q), and applying (13) to M = W , that there
exists some Nε depending on ε and d such that if n ≥ Nε, then

(i) (1 − ε)div(q) ≤ cn ≤ (1 + ε)div(q);

(ii) diam[{y} ∪ Π(y, ΞW,n,W ) < ε/2 for y ∈ ΞW,n.
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We start with the lower bound implied in (15). Choose pairwise disjoint
homothetic copies W1, . . . ,Wk of W in relintC whose total (d − 1)-measure
is at least (1− ε)|C|. It follows by (13) that there exists some N ′

ε depending
on ε, C and W1, . . . ,Wk such that for n > N ′

ε and i = 1, . . . , k, any Dirichlet-
Voronoi cell Π(y, ΞC,n, C), y ∈ ΞC,n, intersects at most one Wi, and the the
number ni of Dirichlet-Voronoi cells intersecting Wi is at least Nε for each i.
In particular n1 + . . . + nk ≤ n. Therefore the condition (i) and the Hölder
inequality (8) yield in this case that

Ω(C, ΞC,n, q) ≥
k∑

i=1

Ω(W, ΞC,n, q) ≥
k∑

i=1

(1 − ε)div(q) · |Wi|
d+1
d−1 · n

−2
d−1

i

≥ (1 − ε)2div(q) · |C| d+1
d−1 · n −2

d−1 . (16)

Next we choose λ > 0, and homothets wi + λW , i = 1, . . . ,m, with
pairwise disjoint relative interiors such that the m homothetic copies of W
cover C, and their total (d−1)-measure is at most (1+ε)|C|. We may assume
that λ is small enough to ensure mNε > 1/ε. If n > mNε then let

Ξn = ∪m
i=1(wi + λΞW,⌊n/m⌋).

It follows by (ii) that if x ∈ wi + (1 − ε)λW , i = 1, . . . ,m, then any closest
point of Ξn to x lies in wi + λΞW,n. In particular

m∑

i=1

Ω(wi + (1 − ε)λW, Ξn, q) ≤ mcnλ
d+1⌊n/m⌋ −2

d−1

≤ (1 + ε)3div(q)|C| d+1
d−1 n

−2
d−1 . (17)

Let Wε = W\(1 − ε)W , and hence (10) yields

Ω(Wε, ΞW,⌊n/m⌋, q) ≤ ε · 2dc⌊n/m⌋⌊n/m⌋ −2
d−1 ≤ ε · 3d div(q)(n/m)

−2
d−1 .

For any x ∈ wi + λWε, i = 1, . . . ,m, we consider a closest point y of Ξn to
x, and closest point z of wi + λΞW,n. It follows by the definition of ω that

q(x − y) ≤ ω‖x − y‖2 ≤ ω‖x − z‖2 ≤ ω2q(x − z).

Therefore

m∑

i=1

Ω(wi + λWε, Ξn, q) ≤ ε · mω23d div(q)λd+1(n/m)
−2
d−1

≤ ε · ω24d div(q)|C| d+1
d−1 n

−2
d−1 . (18)
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Finally combining (16), (17) and (18) yields (15), and in turn completes the
proof of Theorem 2.1. Q.E.D.

Next we discuss a weak stability version of Theorem 2.1 if C is convex.

Corollary 2.3 Let C ⊂ E
d−1 be convex body satisfying αrBd−1 ⊂ C ⊂

(r/α)Bd−1 for α, r > 0, and let q be a quadratic form in d − 1 variables
satifying ω−1‖z‖ ≤ q(z) ≤ ω‖z‖ for ω ≥ 1. Then for any ε ∈ (0, 1), there
exists n0 depending only on the parameters d, ε, α and ω such that if n > n0,
then

Ω(C, Ξq,C,n, q) = (1 + O(ε))div(q) · |C| d+1
d−1 · n −2

d−1 , (19)

Π(y, Ξq,C,n, C) ⊂ y + εC. (20)

Proof: Let C1, C2 be convex bodies in E
d−1, and let q1, q2 be positive definite

quadratic forms in d − 1 variables satisfying

(1 + ε)−1C1 ⊂ C2 ⊂ (1 + ε)C1 and (1 + ε)−1q1 ≤ q2 ≤ (1 + ε)q1

for ε ∈ (0, 1). Writing Ξi = Ξqi,Ci,n, we deduce by (9) that

Ω(C2, Ξ
2, q2) ≥ Ω((1 + ε)−1C1, Ξ

2, (1 + ε)−1q1) ≥ (1 + ε)−(d+2)Ω(C1, Ξ
1, q1).

In particular for given n, Ω(C, Ξq,C,n, q) is a continuous function of q and a
convex body C in E

d−1.
To prove both statements in Corollary 2.3, we may assume that

αBd−1 ⊂ C ⊂ (1/α)Bd−1 (21)

by homogeneity. Under this assumption, the space of all possible C and q is
compact, therefore (19) follows from Theorem 2.1. Since the η in (14) in the
proof of Theorem 2.1 depends only on δ, d and α by (21), we deduce (20)
from (14) and (19). Q.E.D.

Remark 2.4 It follows from Theorem 2.1 that if q1 and q2 are quadratic
forms in d − 1 variables satifying (1 + ε)−1q1 ≤ q2 ≤ (1 + ε)q1 for ε ∈ (0, 1),
then (1 + ε)−1div(q1) ≤ div(q2) ≤ (1 + ε)div(q1).

In general, we only have the following estimate for div(q) in terms of
divd−1.
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Lemma 2.5 If q is a positive definite quadratic form in d−1 variables whose
minimal eigenvalue is τ , then

τ · divd−1 ≤ div(q) ≤ tr q

d − 1
· divd−1,

where equality holds in the upper bound if the eigen values of q coincide.

Proof: The lower bound readily holds. To prove the upper bound on div(q),
we may assume that q(y) =

∑d−1
j=1 τjt

2
j for y = (t1, . . . , td−1). We write pjy to

denote the jth coordinate of y ∈ E
d−1.

Let W = [−1
2
, 1

2
]d−1. According to (7), if ε > 0 and n is large then there

exists Ξ = {y1, . . . , yn} ∈ Υn such that
∫

W

n

min
i=1

‖x − yi‖2 dx ≤ (1 + ε) · divd−1 · n
−2
d−1 .

Writing Πi = Π(yi, Ξ,W ), we define

αj =
n∑

i=1

∫

Πi

[pj(x − yi)]
2 dx for j = 1, . . . , d − 1.

Now there exists a permutation σ : {1, . . . , d− 1} → {1, . . . , d− 1} satisfying

d−1∑

j=1

τj · ασ(j) ≤
tr q

d − 1
·

d−1∑

j=1

αj.

Therefore writing Ψ to the linear transformation with pjΨy = pσ(j)y, we have
ΨW = W and

n∑

i=1

∫

Πi

q(x − yi) dx ≤ (1 + ε) tr q

d − 1
· divd−1 · n

−2
d−1 .

In turn we conclude Lemma 2.5. Q.E.D.

We note that div1 = 1
12

and div2 = 5
√

3
18

according to P.M. Gruber [14],
and it follows from the work of P.L. Zador [28] that

divd−1 = 1
2eπ

d + O(ln d) (22)

where the implied constant in O(·) is an absolute constant.
It follows from Lemma 2.5 that if d = 2 and q(x) = κx2 then div(q) =

κ/12. In addition the value of div(q) has been determined in K.J. Böröczky,
B. Csikós [4] if q has two variables and the eigen values are not too different:
If q is a positive definite quadratic form in two variables with eigenvalues
τ < κ ≤ 2.4τ , then

div(q) =

√
τ [4κ + (4κ2 − 6τκ + 3τ 2)1/2]

18[2κ + (4κ2 − 6τκ + 3τ 2)1/2]1/2
. (23)
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3 Convex hypersurfaces

In this section we start the study of convex hypersurfaces. Let us discuss
first some notions associated to a positive definite quadratic q form in d − 1
variables. We can choose a orthonormal bases for E

d−1 such that if y =
(y1, . . . , yd−1) ∈ E

d−1 then q(y) = τ1y
2
1 + . . . + τd−1y

2
d−1 where τ1, . . . , τd−1

are the associated eigen values. Using this notation, we assign the positive
definite quadratic form q◦ to q defined by

q◦(y) = τ 2
1 y2

1 + . . . + τ 2
d−1y

2
d−1.

We say that a convex hypersurface X ⊂ E
d is proper if convX is a convex

body in E
d. In this case we write uX(x) to denote some exterior unit normal

at x ∈ relintX that is unique for all x ∈ relintX but of a set of (d − 1)-
measure zero. When integrating over X, we always do it with respect to the
(d − 1)-dimensional Hausdorff measure. If the closest point x of convX to
some y lies in X then we write πX(y) = x. We note that

‖πX(y) − πX(y′)‖ ≤ ‖y − y′‖,

hence if πX is defined and injective on some convex hypersurface Y then
|πX(Y )| ≤ |Y |, and πX(Y ) is also a convex hypersurface. We will also meet
the following setup: Given convex hypersurfaces X,Y such that X = πX(Y ),
let Z ⊂ relintX be a convex hypersurface. Then the subset Z ′ of Y satisfying
πX(Z ′) = Z is a convex hypersurface, as well. We note if L is the boundary
of a closed convex set in E

d with non-empty interior then we also write πL

to denote the closest point map into L.
If the convex hypersurface Y ⊂ E

d is the union of F1, . . . , Fk such that
each Fi is a Jordan measurable subset of some hyperplane and has positive
(d − 1)-measure, and affF1, . . . , affFk are pairwise different then we call Y
a convex polytopal hypersurface, and F1, . . . , Fk the facets of Y . If affFi for
i = 1, . . . , k touches some proper convex hypersurface X then we say that Y
is circumscribed around X.

For certain calculations it is useful to consider patches as graphs of func-
tions. We think E

d as E
d−1 × R where x = (y, t) is the point of E

d corre-
sponding to y ∈ E

d−1 and t ∈ R, and define Bd−1 = Bd ∩ E
d−1. We write

ξ = (o,−1)

to denote the ”downwards” unit normal to E
d−1. If C ⊂ E

d−1 has non-empty
interior in E

d−1, and θ : C → R is any function then the graph of θ is

Γ(θ) = {(y, θ(y)) : y ∈ C} ⊂ E
d. (24)
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In particular the graph of any convex function defined on convex body in
E

d−1 is a convex hypersurface.
We say that a convex hypersurface X is a C2 convex hypersurface if any

point of X has an open neighbourhood on X that is congruent to the graph of
some C2 function. In order to define the principle curvatures at x0 ∈ relintX,
we may assume that E

d−1 is the tangent hyperplane to X at x0 = (y0, 0),
and a neighbourhood X0 ⊂ X of x0 is the graph of a C2 function θ on an
open convex Ψ ⊂ E

d−1. Then the principle curvatures κ1(x0), . . . , κd−1(x0)
of X at x0 are the eigenvalues of the symmetric matrix corresponding to the
quadratic form representing the second derivative of θ at y0. For x ∈ X, we
define σ0(x) = 1, and write σj(x) to denote the jth symmetric polynomial of
the principal curvatures for j = 1, . . . , d − 1; namely,

σj(x) =
∑

1≤i1<...<ij≤d−1

κi1(x) · . . . · κij(x).

In particular, H(x) = σ1(x) and κ(x) = σd−1(x). Naturally σj(x) depends
on X but what X is will be always clear from the context.

Let Y be a convex hypersurface such that πX is defined on Y and is
bijective. If πX(y) = x for y ∈ relint Y then we write y = xY and define
rX,Y (x) = ‖y − x‖. Now the difference of the (d − 1)-measures is (see K.
Böröczky, Jr. and M. Reitzner [6])

|Y | − |X| =

∫

X

(
1

〈uX(x), uY (xY )〉 − 1

)
dx (25)

+
d−1∑

j=1

∫

X

rX,Y (x)j σj(x)

〈uX(x), uY (xY )〉 dx.

We note that if Y is a compact convex (d − 1)-dimensional set, L = affY
and X ⊂ ∂K for some convex body K in E

d then sometimes abusing the
notation we write rX,Y (x) = r∂K,L(x).

Let us present an application of (25). Let K ⊂ P be convex bodies, and
let K have C2 boundary. We claim that there exist ̺0, ξ

∗ > 0 depending on
K such that if X ⊂ ∂K and Y ⊂ ∂P are convex hypersurfaces satisfying
π∂KY = X and δH(Y,X) ≤ ̺ for ̺ ∈ (0, ̺0), then

|Y | − |X| ≤ ξ∗̺ · |X|. (26)

We use that there exists a η > 0 depending on K with the following property
(see say K. Leichtweiß [22]): If x ∈ ∂K then there exists a ball that lies

13



in K, is of radius η, and touches ∂K from inside at x. Since any tangent
hyperplane to relint Y avoids int K, if x ∈ relint X then

〈uX(x), uY (xY )〉 ≥ η
η+̺

. (27)

Therefore (25) yields (26).

4 Some basic properties of graphs of convex

functions

The main goal of this section is to observe some basic properties of convex
hypersurfaces that are needed in the paper. First we introduce the notions
that we discuss until (45), and state the conditions (28) to (43) on these
notions. Let q be a positive definite quadratic form in d − 1 variables, and
let ω > 1 satisfy

ω−1 ≤ ·‖z‖2q(z) ≤ ω · ‖z‖2 for z ∈ E
d−1. (28)

In addition, let
ε ∈ (0, 1

20ω2 ). (29)

We investigate a non-negative C2 function θ defined on the (d−1)-dimensional
convex body C, where

C ⊂ √
ε Bd−1 with o ∈ relintC. (30)

We write ly to denote the linear form and qy to denote the quadratic form
representing the second derivative of θ at y ∈ C. We assume that

θ(o) = 0 and lo(z) = 0;
q(z) − ε · ‖z‖2 ≤ qy(z) ≤ q(z) + ε · ‖z‖2

}
for z ∈ E

d−1. (31)

We define X ′ = Γ(θ). It follows by the Taylor formula for y, z ∈ C that

θ(z) − θ(y) − ly(z − y) = 1
2
qy+t(z−y)(z − y) for t ∈ (0, 1); (32)

= 1
2
q(z − y) + O(ε) ‖y − z‖2; (33)

‖lz − ly‖2 = q◦(z − y) + O(εω) ‖z − y‖2. (34)

If y ∈ relintC and x = (y, θ(y)) then

uX′(x) = (1 + ‖ly‖2)
−1
2 · (ly,−1). (35)
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It follows by (30), (34) and (35) that if x, x′ ∈ relintX ′ for x = (y, θ(y)) and
x′ = (y′, θ(y′)) then

〈uX′(x), uX′(x′)〉 = 1 − 1
2
q◦(y − y′) + O(εω2) ‖y − y′‖2. (36)

If x′ = o then we have a more precise formula. Since X ′ does not intersect
the interior of the ball of radius 1

2ω
centred at −1

2ω
ξ, there is a point z on the

boundary of this ball where the exterior unit normal is uX′(x) and ‖πEd−1z‖ ≤
2
√

ε. We conclude

〈ξ, uX′(x)〉 ≥ (1 + 8ω2ε)
−1
2 ≥ 1 − 4ω2ε for x ∈ relintX ′. (37)

It also follows that if z ∈ C and πX′z is well defined then

‖z − πEd−1πX′z‖ ≤ ℵ̃‖z‖3 for ℵ̃ > 1 depending on ω and d. (38)

Recalling that σj(x) denotes the jth symmetric polynomial of the principal
curvatures x ∈ relintX ′ for j = 1, . . . , d − 1, we have

H(x) = tr q + O(ε); (39)

κ(x) = det q + O(εωd−2); (40)

σj(x) = O(ωj). (41)

Next let Y be a convex hypersurface such that πX′ is defined on Y and
it is injective, and let X = πX′(Y ). We will assume that if x ∈ X then

rX,Y (x) ≤ ̺ where ̺ ∈ (0, ε); (42)

‖x − x′‖ > 2
√

̺ω for x ∈ X and x′ ∈ relbd X ′. (43)

Since all eigen values of qy are at most 2ω for any y ∈ C, there is a ball of
radius 1

2ω
touching X from inside at any x ∈ X such that the ball intersects

X only in x, which in turn yields

〈uX(x), uY (xY )〉−1 ≤ 1 + 2̺ω. (44)

As a rough estimate, (25) yields the analogue of (26); namely,

|Y | − |X| = O(̺ω) · |X|. (45)

We also consider a polytopal hypersurface Z circumscribed around X ′

such that Z is the graph of a convex function h defined on a subset of C.
Assume that a facet F of Z touches X ′ in (y0, θ(y0)) for y0 ∈ C, and let
x ∈ F of the form x = (y, h(y)), y ∈ C. Now d(x,X ′) is at most the distance
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of x from x′ = (y, θ(y)), and at least the distance of x from the tangent plane
to X ′ at x′. In particular the Taylor formula (32) and (37) yield

1−5ω2ε
2

· q(y − y0) ≤ d(x,X ′) ≤ 1+ωε
2

· q(y − y0). (46)

It also follows that if some facet of Z touches X ′ at (z0, θ(z0)) for z0 ∈ C
then

1
2
q(y − z0) ≤ q(y − y0) ≤ 2q(y − z0). (47)

In the final part of the section, our main goal is to establish Lemma 4.2
that allows us to shift between patches on smooth convex hypersurfaces.
First we verify a simple technical statement.

Proposition 4.1 Let z1, z2 ∈ E
d−1 such that ‖z2 − z1‖ ≤ τ for some τ > 0,

and let Y be the graph of a convex positive function on z1 +2τBd−1 such that
〈uY (y), ξ〉 ≥

√
3

2
for y ∈ Y . If y1, y2 ∈ Y satisfy that 〈 zi−yi

‖zi−yi‖ , ξ〉 ≥
√

3
2

for
i = 1, 2 then

‖y1 − y2‖ ≤ 2 · [‖z1 − z2‖ + ‖z1 − y1‖ · ∠(z1 − y1, o, z2 − y2)].

Proof: We define y′
1 ∈ Y by the property that the vectors z1 − y′

1 and z2 − y2

are parallel, and prove

‖y1 − y′
1‖ ≤ 2 ‖z1 − y1‖ · sin ∠(y1, z1, y

′
1). (48)

Let σ be the arc that is the intersection of the triangle y1z1y
′
1 and Y , and let

y be the point of σ farthest from the segment y1y
′
1. Then the tangent line to

σ at y is parallel to the line y1y
′
1, hence 〈uY (y), ξ〉 ≥

√
3

2
yields that the angle

of y′
1 − y1 and ξ is between π

3
and 2π

3
. Thus the angle of the triangle z1y1y

′
1

at y′
1 is between π

6
and 5π

6
, therefore the law of sine implies (48).

Now an argument as above shows that ‖y2 − y′
1‖ ≤ 2 ‖z2 − z1‖, which in

turn yields Proposition 4.1. Q.E.D.

Let us set up the notation used in Lemma 4.2. Let q be a positive definite
quadratic form in d − 1 variables with

ω−1‖z‖ ≤ q(z) ≤ ω‖z‖ for z ∈ E
d−1.

For ε ∈ (0, 1
16ω2 ) and ̺ ∈ (0, ε8), let the convex functions h1, h2, f1, f2 defined

on
20

√
̺

ε
Bd−1 satisfy the following properties: We have f2(o) = 0, f ′

2(o) = 0,

f1 and f2 are C2. In addition if y ∈ 8
√

̺

ε
Bd−1 then

h1(y) ≤ f1(y) ≤ f2(y) ≤ h1(y) + ̺ and f1(y) ≥ 0, (49)
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and writing qi,y to denote the quadratic form representing the second deriva-
tive of fi at y for i = 1, 2, we have

q(z) − ε8 · ‖z‖2 ≤ qi,y(z) ≤ q(z) + ε8 · ‖z‖2 for z ∈ E
d−1.

For i = 1, 2, we define Yi = Γ(hi) and Xi = Γ(fi) (see Figure 1). We assume
that Yi is a polytopal hypersurface circumscribed around Xi, and the affine
hulls of the of the facets of Y1 and Y2 are in bijective correspondence in a way
that the affine hulls of the corresponding facets are parallel. In particular

h1(y) ≤ h2(y) for y ∈ 20
√

̺

ε
Bd−1.

X1

X2

Y1

Y2

E
d−1

Figure 1:

Lemma 4.2 Given ω > 1 and d, there exists ε0 ∈ (0, 1
16ω2 ) depending on d

and ω with the following properties. Using the notation as above, if C ⊂ E
d−1

is a compact convex satisfying
√

̺

4ε
Bd−1 ⊂ C ⊂ 4

√
̺

ε
Bd−1, and X̃i = πXi

(C),

moreover Ỹi denote the subset of Yi satisfying X̃i = πXi
(Ỹi) for i = 1, 2, then

|X̃i| = [1 + O(ε)] · |C| for i = 1, 2; (50)

|Ỹ1| − |X̃1| = |Ỹ2| − |X̃2| + O(ε̺) · |C|. (51)

Proof: Readily if ε0 is sufficiently small then

πEd−1(X̃i), πEd−1(Ỹi) ⊂ 2C, i = 1, 2.

It follows by (37) that if ε0 is sufficiently small then 〈uXi
(x), ξ〉 ≥

√
3

2
for

any x ∈ relintXi. In addition if y = (z, hi(z)) for z ∈ 2C, i = 1, 2, and u is
an exterior unit normal to Yi at y then d(y,Xi) ≤ ̺ and (32) yield that there

exists x ∈ Xi ∩ (y + 4
√

ω̺Bd) with u = uXi
(x), hence 〈u, ξ〉 ≥

√
3

2
, as well.
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In addition the conditions on h1, h2, f1, f2 and applying (32) to f1, f2 yield
that

h1(z) ≥ h2(z) > 0 if z ∈ (2C)\(1
2
C); (52)

f2(z) ≤ 64ω̺
ε2 if z ∈ 2C; (53)

f2(z) − f1(z) ≤ 64ε6̺ if z ∈ 2C; (54)

h2(z) − h1(z) ≤ 64ε6̺ if z ∈ 2C. (55)

Therefore combining (45), (53) and 64ω̺
ε2 · ω < ε leads to (50).

For z ∈ C, we define θYi
(z) = Yi ∩ conv{z, πXi

(z)} for i = 1, 2, θ′X1
(z) =

X1 ∩ conv{z, πX2(z)} and θ′Y1
(z) = Y1 ∩ conv{z, πX2(z)}, which points exist

by (52). In particular Ỹi = θYi
(C) for i = 1, 2, and the relative boundaries of

Ỹ1, θ′Y1
(C), X̃1 and θ′X1

(C) are the corresponding images of ∂C. We deduce
by (45), (54) and (55) that if ε0 is small enough then

|θ′X1
(C)| − |X̃2| = O(ε̺) · |C|; (56)

|θ′Y1
(C)| − |Ỹ2| = O(ε̺) · |C|. (57)

Now we prove

|X̃1| − |θ′X1
(C)| = O(ε̺) · |C|; (58)

|Ỹ1| − |θ′Y1
(C)| = O(ε̺) · |C|. (59)

Let z ∈ ∂C. It follows by (53) that ‖z − θX1(z)‖ ≤ 64ω̺
ε2 , and the discussion

above shows that 〈 z−θY1
(z)

‖z−θY1
(z)‖ , ξ〉 ≥

√
3

2
. In addition the analogous two inequal-

ities hold for πX1(z), θ′X1
and θ′Y1

in place of θX1 . Next let xi = πXi
(z),

i = 1, 2. Since d(θ′X1
(z), X2) ≤ 64ε6̺ by (54), and there exists a ball of

radius 1
4ω

touching X2 from inside at x2, we deduce that the angle α2 of
uX2(x2) and uX1(θ

′
X1

(z)) is O(ε3ω
√

̺). It follows that ‖θ′X1
(z) − x1‖ =

O(ε3ω
√

̺)‖θ′X1
(z) − z‖ = O(εω2̺

3
2 ), hence the angle α1 of uX1(x1) and

uX1(θ
′
X1

(z)) is O(εω3̺
3
2 ) according to (36). Therefore choosing ε0 small

enough, we have

∠(z − πX1(z), o, z − θ′X1
(z)) = ∠(z − θY1(z), o, z − θ′Y1

(z))

≤ α1 + α2 = O(ε3ω3√̺) <
ε2√̺

128ω
. (60)

We provide the rest of argument only for (59), and (58) can be similarly
proved. It follows by Proposition 4.1, (60) and ‖θY1(z) − z‖ ≤ 64ω̺

ε2 that

‖θ′Y1
(z) − θY1(z)‖ ≤ ̺

3
2 , (61)
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hence (59) is a consequence of
∣∣∣Y1 ∩

(
θY1(relbdC) + ̺

3
2 Bd

)∣∣∣ = O(ε̺) · |C|. (62)

To prove (62), let τ =
√

̺

4ε
, and let z1, . . . , zk ∈ ∂C be a maximal family of

points with the property that ‖zi − zj‖ ≥ 3̺
3
2 for i 6= j. Since zi + ̺

3
2 Bd−1

are pairwise disjoint for i = 1, . . . , k, and each is contained in the difference

of (1 + ̺
3
2

τ
) C and (1 − ̺

3
2

τ
) C, we deduce that

k = O

(
̺

3
2

τ

)
· |C| · (̺ 3

2 )−(d−1) = O(ε̺) · |C| · (̺ 3
2 )−(d−1). (63)

Now let y ∈ Y1 satisfy that ‖y − θY1(z)‖ ≤ ̺
3
2 for some z ∈ ∂C. There

exists some zi such that ‖zi − z‖ ≤ 3̺
3
2 , hence ‖πX1(zi)− πX1(z)‖ ≤ 3̺

3
2 . In

particular (36) implies that the angle of zi − θY1(zi) and z − θY1(z), which is

the angle of uX1(πX1(zi)) and uX1(πX1(z)) is at most 4ω̺
3
2 (after choosing

ε0 small enough). Thus ‖z − θY1(z)‖ ≤ 1
8ω

and Proposition 4.1 yield that

‖θY1(zi) − θY1(z)‖ ≤ 7ω̺
3
2 , hence ‖θY1(zi) − y‖ ≤ 8̺

3
2 . We deduce by (63)

that

∣∣∣Y1 ∩
(
θY1(∂C) + ̺

3
2 Bd

)∣∣∣ ≤
k∑

i=1

∣∣∣Y1 ∩
(
θY1(zi) + 8̺

3
2 Bd

)∣∣∣

≤ k · S(8̺
3
2 Bd) = O(ε̺) · |C|.

We conclude (62), and in turn (59) and (58).
Finally combining (56), (57), (58) and (59) yields (51), and in turn

Lemma 4.2. Q.E.D.

5 The Delone property of the extremal body

In this section we establish Theorem 1.2 (ii) and (iii). For x ∈ E
n and a

compact X ⊂ E
n, we write d(x,X) to denote the minimal distance between

x and the points of X. If X and Y are compact sets in E
n then their Hausdorff

distance is

δH(X,Y ) = max

{
max
x∈X

d(x, Y ), max
y∈Y

d(y,X)

}
.

To verify our main result Lemma 5.2, we need Proposition 5.1. We write
Hd−2(·) to denote the (d − 2)-dimensional Hausdorff measure.
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Proposition 5.1 If M ⊂ N are convex bodies in E
d such that for some

x ∈ ∂M , there exists a ball B ⊂ M of radius η touching ∂M at x, and
x + δ · u∂M(x) ∈ N for 0 < δ < η then

S(N) − S(M) > c · η d−3
2 · δ d+1

2

where c > 0 depends only on d.

Proof: We may assume that x = o, E
d−1 is the supporting hyperplane to

M at x, and u∂M(x) = ξ. We define C = E
d−1 ∩ N , x0 = x + δ · u∂M(x),

and Y to be the convex hypersurface that is the union of the segments of
the form conv{x0, y} for y ∈ ∂C. In addition we define uy ∈ E

d−1 to be an
exterior unit normal to ∂C at y ∈ ∂C, and the radial function ̺(z) > 0 by
the property ̺(z) · z ∈ ∂C for z ∈ Bd−1. The existence of B yields that
̺(z) > 1

2

√
ηδ for all z ∈ Bd−1. Therefore

S(N) − S(M) ≥ |Y | − |C| =
1

d − 1

∫

∂C

√
〈uy, y〉2 + δ2 − 〈uy, y〉 dy

>
δ2

4(d − 1)

∫

∂C

1

〈uy, y〉
dy =

δ2

4(d − 1)

∫

∂Bd−1

̺(z)d−3

〈u̺(z)·z, z〉2
dz

≥ Hd−2(∂Bd−1)

4(d − 1)
· η d−3

2 · δ d+1
2

where the integration always occurred with respect to Hd−2(·). Q.E.D.

We prove Theorem 1.2 (ii) and (iii) as part of Lemma 5.2.

Lemma 5.2 Let K be a convex body in E
d with C2 boundary, let P(n) be a

circumscribed polytope with n ≥ d + 1 facets that has minimal surface area,
and let X ⊂ ∂K be a convex hypersurface such that the Gauß-Kronecker
curvature is positive at the points of X. Then δH(P(n), K) ≤ β0

n
2

d−1
, and

if F is a facet of P(n) with π∂K(F ) ∩ X 6= ∅ and F touches K in x then

diamF ≤ β

n
1

d−1
, and F contains a (d − 1)-ball with centre x and radius α

n
1

d−1

where α, β, β0 are positive, β0 depends on K, and α, β depend on X and K.

Proof: Readily it is sufficient to consider the case when n is large. It is known
(see say K. Leichtweiß [22]) that for suitable η > 0 depending on K, if x ∈ ∂K
then there exists a ball that lies in K, is of radius η, and touches ∂K from
inside at x. In addition we write Lx to denote the supporting hyperplane to
K at x ∈ ∂K, and L+

x to denote the half space containing K. During the
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proof of Lemma 5.2, α1, α2, . . . and β1, β2, . . . denote positive constants that
depend on X and K.

Our first task is to establish the order S(P(n))−S(K) (see (64) and (69).
According to K. Böröczky, Jr. [3] (or E.M. Bronštĕın and L.D. Ivanov [8] in a
more general framework), there exists a polytope Q(n) circumscribed around

K with n facets satisfying δH(K,Q(n)) < β1

n
2

d−1
, therefore

S(P(n)) − S(K) ≤ S(Q(n)) − S(K) <
β2

n
2

d−1

. (64)

Let δ = δH(K,P(n)), let v be a vertex of P(n) with d(v,K) = δ, and let
x̃ = π∂K(v). We deduce by Proposition 5.1 that

S(P(n)) − S(K) ≥ α1 · δ
d+1
2 . (65)

Comparing with (64) shows that δH(K,P(n)) tends to zero; namely,

δ = δH(K,P(n)) <
β3

n
4

d2−1

. (66)

Now there exist convex hypersurfaces X1, X2 ⊂ ∂K such that the princi-
ple curvatures at each point of X2 are positive, and

X ⊂ relintX1 ⊂ X1 ⊂ relintX2.

Next there exist γ > 0 and ω > 1 depending on X and K with the following
two properties: First if y ∈ X2 then H(y) = σ1(y) > ω−1. Secondly assuming
that Φx = (x + γ Bd)∩ ∂K intersects X1 for x ∈ ∂K, we have Φx ⊂ X2, and
if y ∈ Φx then

tan ∠(u∂K(x), o, u∂K(y)) ≤ ω · ‖y − x‖; (67)

ω−1 · ‖y − x‖2 ≤ r∂K,Lx
(y) ≤ ω · ‖y − x‖2. (68)

We write F1, . . . , Fn to denote facets of P(n), and xi to denote a point of
∂K where Fi touches K. We assume that π∂K(Fi) ∩ X 6= ∅ if and only if
i ≤ k, and Fj intersects some Fi with i ≤ k if and only if i ≤ k0. According
to (66) and (68), we may assume that n is large enough to ensure that if
i ≤ k and Fj intersects Fi then

π∂K(Fi) ∪ π∂K(Fj) ⊂ Φxi
.
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We write Ci to denote the orthogonal projection of π∂K(Fi) into Lxi
, and

deduce by (25) and Proposition 2.2 that if i ≤ k then

|Fi| − |π∂K(Fi)| >

∫

π∂K(Fi)

r∂K,Lxi
(y)H(y) dy

>

∫

π∂K(Fi)

ω−2 · ‖y − x‖2 dy >

∫

Ci

ω−2 · ‖z − x‖2 dz

> α2 · |Ci|
d+1
d−1 > α3 · |π∂K(Fi)|

d+1
d−1 .

Therefore the Hölder inequality (8) yields

S(P(n)) − S(K) ≥
k∑

i=1

[|Fi| − |π∂K(Fi)|] ≥
α3 · |X| d+1

d−1

k
2

d−1

. (69)

Comparing with (64) leads to k > α4n.
We are ready to face directly the Delone property. It follows by (68) that

‖z − xi‖ <
√

ωδ if i ≤ k0 and z ∈ Fi, (70)

which in turn yields that

δ ≥ α5 · k
−2
d−1 ≥ α5 · n

−2
d−1 . (71)

For any i = 1, . . . , k0, we write νi to denote the minimal distance of the
(d − 2)-faces of Fi from xi, and define ν = mini=1,...,k νi. Readily

ν ≤ β4 · k
−1
d−1 ≤ β5 · n

−1
d−1 , (72)

and let m ≤ k satisfy ν = νm. We observe that P̃ = P(n) ∩ L+
x̃ has n + 1

facets, and

S(P(n)) − S(P̃ ) > α6 · δ
d+1
2 (73)

according to Proposition 5.1. We define F̃m = Fm ∩ P̃ , and

P ′ = L+
x̃ ∩

(
∩ i6=m

i≤n
L+

xi

)
,

which is a polytope circumscribed around K with n facets. We write Y to
denote the part of ∂P̃ cut off by Lxm

. If G is a facet of P̃ intersecting F̃m

and touching K in y then ‖y − xm‖ < 2
√

ωδ (see (70)), hence (67) yields

tan ∠(u∂K(xm), o, u∂K(y)) ≤ 2ω
3
2 · δ 1

2 . (74)
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We define w = xm+2ωδ·u∂K(xm), thus Y is contained in C = conv{w, F̃m}.
In addition there exists some xj with j ≤ k0, j 6= m, such that A = Lxm

∩Lxj

contains a (d − 2)-face of Fm, and the distance of xm from A is ν. Since
‖xj − xm‖ ≤ (1 + ω2)ν follows by (68), (67) implies

tan ∠(u∂K(xm), o, u∂K(xj)) ≤ 2ω3 · ν. (75)

We define C ′ = C ∩ L+
xj

and Y ′ = ∂C ′\relintF̃m, hence Y ⊂ C ′ yields

S(P ′) − S(P̃ ) = |Y | − |F̃m| ≤ |Y ′| − |F̃m|. (76)

It follows by (74) that if y ∈ relintY ′ and n is large then

〈u∂K(xm), uY ′(y)〉−1 ≤ 1 + 8ω3 · δ. (77)

In addition if y ∈ relint(Y ′ ∩ Lxj
) then (75) yields

〈u∂K(xm), uY ′(y)〉−1 ≤ 1 + 8ω6 · ν2. (78)

Next we prove that if
√

δ > 2dω3ν then

(
1 − 2ω3ν√

δ

)
· (F̃m − xm) + xm ⊂ πLxm

(Y ′ ∩ Lxj
). (79)

Let x ∈ (1− 2ω3νν√
δ

) · (F̃m − xm) + xm, and let y ∈ Y and z ∈ Y ′ ∩Lxj
satisfy

that πLxm
(y) = πLxm

(z) = x. Now the definition of Y shows that

‖z − x‖ ≥ 2ω3ν√
δ
· 2ωδ = 4ω4 · ν

√
δ. (80)

Since the distance of x from A is at most 2
√

ωδ, we deduce ‖y−x‖ ≤ 4ω
7
2 νδ

1
2

by (75), which inequality combined with (80) yield (79). In turn we conclude

by (77), (78) and |F̃m| ≤ β6δ
d−1
2 that if

√
δ > 2dω3ν then

|Y ′|−|F̃m| ≤ β7δ
d−1
2 ·

[(
1 − 2ω3ν√

δ

)d−1

· ν2 +

(
1 −

(
1 − 2ω3ν√

δ

)d−1
)
· δ

]
. (81)

Since S(P(n)) ≤ S(P ′), combining (73), (76) and (81) leads to

α6 · δ
d+1
2 < β7δ

d−1
2 ·

[
ν2 + 2dω3ν√

δ
· δ

]
.

Therefore δ < β8ν
2 in any case, hence the estimates (71) and (72) complete

the proof of Lemma 5.2. Q.E.D.
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6 Approximating paraboloids

If K is a convex body with C2 boundary, and the Gauß-Kronecker curvature
is non-zero at x ∈ ∂K, then a small neighbourhood of x on ∂K can be very
well approximated by a patch on a parabaloid. Using Lemma 4.2, polytopal
approximation of this neighbourhood of x can be related to polytopal ap-
proximation of the patch on the paraboloid. Therefore in this section we
consider the latter problem.

Let q be a positive definite quadratic form in d − 1 variables, and let
ω ≥ 1 satisfy

ω−1 · ‖z‖2 ≤ q(z) ≤ ω · ‖z‖2 for z ∈ E
d−1. (82)

We choose a orthonormal bases for E
d−1 such that if y = (t1, . . . , td−1) ∈ E

d−1

then q(y) = τ1t
2
1 + . . . + τd−1t

2
d−1, and hence ω−1 ≤ τi ≤ ω for each τi. We

assign the positive definite quadratic form q∗ to q defined by

q∗(y) = ‖y‖2 +
1

tr q
· q(y) =

d−1∑

i=1

(
1 +

τi

τ1 + . . . + τd−1

)
· t2i . (83)

The role of q∗ will be explained by Lemma 6.1. We frequently estimate q∗(z)
by

‖z‖2 ≤ q∗(z) ≤ 2 · ‖z‖2. (84)

Since tr q∗ = d, Lemma 2.5 yields

divd−1 ≤ div(q∗) ≤ d
d−1

· divd−1, (85)

where equality holds in the upper bound if the eigen values of q coincide.
In Lemma 6.1, we further consider the graph X ′ the graph of 1

2
q above

E
d−1, and a compact convex set C in E

d−1 with

rBd−1 ⊂ C ⊂ 16rBd−1 (86)

for some r > 0. In addition let X = πX′(C).

Lemma 6.1 For ω ≥ 1 and d ≥ 2, there exist ε0,ℵ > 0 with the following
properties. If ε ∈ (0, ε0), and q, C, X ′ and X as above, and C ⊂ √

ε Bd−1,
and n > n0 where n0 depends on ω, d and ε, then we have (i) and (ii) below.

(i) If Y is a polytopal convex hypersurface circumscribed around X ′ satisfy-
ing X = πX′(Y ), and Y has at most n facets then

|Y | − |X| ≥ (1 − ℵε)div(q∗)
2

· (tr q) · (det q)
1

d−1 |C| d+1
d−1 · n −2

d−1 .
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(ii) There exists a polytopal convex hypersurface Y circumscribed around X ′

with at most n facets such that X = πX′(Y ), and

|Y | − |X| ≤ (1 + ℵε)div(q∗)
2

· (tr q) · (det q)
1

d−1 |C| d+1
d−1 · n −2

d−1 , (87)

δH(Y,X) ≤ ℵn
−2
d−1 |C| 2

d−1 . (88)

Proof: We write ly to denote the linear function representing the derivative
of 1

2
q at y ∈ E

d−1. The bases of the argument is the Taylor formula (32);
namely, for z, y ∈ E

d−1,

1
2
q(z) = 1

2
q(y) + ly(z − y) + 1

2
q(z − y). (89)

First we prove an estimate for |Y | − |X| if Y is a polytopal convex hy-
persurface circumscribed around X ′ with X = πX′(Y ) and at most n facets,
and Y satisfies the following:

(∗) If a facet F of Y touches X ′ at y, then πEd−1(F ) ⊂ πEd−1(y) + εC.

If ε0 is chosen small enough then we deduce

max
y∈relbdY

‖y − πX′(y)‖ < min
z∈relbdC

‖z − πX′(z)‖. (90)

We write F1, . . . , Fk to denote the facets of Y . We define xi to be the point
where affFi touches X ′, yi = πEd−1(xi) and Πi = πEd−1(Fi) for i = 1, . . . , k.
In particular, if i = 1, . . . , k then (89) yields

Πi = {z ∈ πEd−1(Y ) : q(z − yi) ≤ q(z − yj) for j = 1, . . . , k}. (91)

We define
f(z) = tr q · q(z) + q◦(z),

and claim that

|Y | − |X| =
1 + Oω(ε)

2

k∑

i=1

∫

Πi

f(y − yi) dy. (92)

To prove (92), we observe that C ⊂ √
ε Bd−1 and (90) yield

πEd−1(X), πEd−1(Y ) ⊂ √
ε Bd−1. (93)

We have ‖ly‖ ≤ ω · ‖y‖, and hence if ‖y‖ < 2
√

ε, then

〈ξ, uX′(x)〉 ≥ 1 − 1
2
ω2‖y‖2 ≥ 1 − 2 ω2ε for x = (y, q(y)). (94)
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Since q(z) ≤ ω‖z‖2, a ball of radius 1
ω

rolls above X ′. In other words, for
any x ∈ X ′ there exists a ball of radius 1

ω
that touches X ′ at x and lies in

convX ′.
For z ∈ Fi, let x = πX(z) and y = πEd−1(z). In particular ‖z−x‖ = Oω(ε)

by the condition (*) and the existence of the rolling ball. It follows from the
estimates on ‖ly‖ and the existence of the rolling ball that

rX,Y (x) = 1+Oω(ε)
2

q(y − yi) = Oω(ε).

In addition (36) yields

〈uX(x), uY (z)〉−1 = 〈uX(x), uX′(xi)〉−1 = 1 + 1+Oω(ε)
2

q◦(y − yi) = 1 + Oω(ε).

Since the Jacobian of the map πX : Fi → X is 1 + Oω(ε), we deduce

|Y | − |X| =
1 + Oω(ε)

2

k∑

i=1

∫

Fi

f(πEd−1(z) − yi) dz,

by (25) and (39), and hence we conclude (92).
Before continuing to prove (i) and (ii), we observe that if z ∈ Bd−1 and

z′ = πEd−1πX′(z), then
‖z − z′‖ = Oω(‖z‖2). (95)

It follows by (95) that if ε0 is small enough and (∗) holds, then (90) yields

(1 − ε)C ⊂ πEd−1(X), πEd−1(Y ) ⊂ (1 + ε)C. (96)

Let us prove (i) first. We may assume that

|Y | − |X| ≤ div(q∗)
2

· (tr q) · (det q)
1

d−1 |C| d+1
d−1 · n −2

d−1 . (97)

To verify that (*) holds for large n, we assume only C ⊂ Bd−1 instead of
C ⊂ √

εBd−1 for the time being. It follows by the condition (86) that there
exists some α > 0 depending only on d such that if y ∈ C and ̺ ∈ (0, r),
then

|(x + ̺Bd−1) ∩ C| > α1̺
d−1.

Thus the existence of the rolling ball of radius 1
ω

for X ′ yields the existence
of t0 > 0 and α2 depending on d and ω with the following property. If
x0 ∈ X satisfies rX,Y (x0) ≥ t ∈ (0, t0) then there exists some A ⊂ X with

|A| ≥ α2t
d−1
2 such that rX,Y (x) ≥ t/2 for x ∈ A. In particular (25) yields

that |Y | − |X| ≥ α3t
d+1
2 for some α3 > 0 depending on d, ω, and hence we

deduce by (97) that

δH(Y,X) = Oω(n
−4

d2−1 )|C| 2
d−1 . (98)
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Therefore the condition (*) holds for n > n1 where n1 depends on d, ω and
ε.

Let Π′
i = Πi ∩ (1 − ε)C. Some of the Πi’s might be the empty, therefore

we renumber F1, . . . , Fk in a way such that Π′
i 6= ∅ if and only i ≤ k′ for some

k′ ≤ k. In particular, if i = 1, . . . , k′ then

Π′
i = {z ∈ (1 − ε)C : q(z − yi) ≤ q(z − yj) for j = 1, . . . , k′}. (99)

It follows from (92) that

|Y | − |X| ≥ 1 − Oω(ε)

2

k′∑

i=1

∫

Π′
i

f(y − yi) dy.

Next let Ψq be the linear transformation of E
d−1 defined by

Ψqz = (
√

τ1t1, . . . ,
√

τd−1td−1) for z = (t1, . . . , td−1), (100)

and hence

tr q · q∗(Ψqz) = tr q · q(z) + q◦(z) = f(z) and ‖Ψqz‖2 = q(z). (101)

It follows that
ω− 1

2 rBd−1 ⊂ ΨqC ⊂ 16ω
1
2 rBd−1. (102)

Writing Ξ = Ψq{y1, . . . , yk′}, we have (compare (99)),

|Y | − |X| ≥ 1 − Oω(ε)

2
· (det q)

−1
2 · tr q · Ω(Ψq((1 − ε)C), Ξ, q∗).

Here Ξ has at most n elements. According to Corollary 2.3, if n > n2 where
n2 > n1 depends on d, ω and ε, then

|Y | − |X| ≥ 1 − Oω(ε)

2
· (det q)

−1
2 · tr q · div(q∗)|Ψq((1 − ε)C)| d+1

d−1 · n −2
d−1

≥ (1 − Oω(ε))div(q∗)
2

· (tr q) · (det q)
1

d−1 |C| d+1
d−1 · n −2

d−1 ,

completing the proof of (i).
To prove (ii), we take a reverse path. It follows by (102) that there exist

ϑ > 0 depending on d and ω, moreover n3 > n2 depending on d, ω and ε
with the following property. For n > n3, one finds a set Ξ0 of cardinality at
most ϑεn such that

Ξ0 ⊂ Ψq((1 + ε)C)\Ψq((1 − 3ε)C) ⊂ Ξ0 + |ΨqC| 1
d−1 n

−1
d−1 Bd−1.
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According to Corollary 2.3 and (10), if n > n4 where n4 > n3 depends on d,
ω and ε, there exists Ξ′ of cardinality at most (1 − ϑε)n such that

Ω(Ψq((1 + ε)C), Ξ′, q∗) ≤ (1 + Oω(ε))div(q∗)|Ψq((1 + ε)C)| d+1
d−1 · n −2

d−1 , (103)

Ω(Ψq((1 + ε)C)\Ψq((1 − 19ωε)C), Ξ′, q∗) ≤ Oω(ε) · Ω(Ψq((1 + ε)C), Ξ′, q∗),
(104)

Π(y, Ξ′, ΨqC) ⊂ y + εΨqC for y ∈ Ξ′. (105)

It follows from (103) and applying Corollary 2.3 to (1−3ε)C that Ξ′∩(1−3ε)C
has at least (1 − Oω(ε))n points, and hence

Ξ′\(1 − 3ε)C has Oω(εn) points. (106)

Let Ξ̃ = Ξ′ ∪ Ξ0, and hence the cardinality of Ξ̃ is at most n. For any
x ∈ Ψq((1 + ε)C), let y be a closest point of Ξ̃ to x, and let z be a closest
point of Ξ′ to x. First we assume x ∈ (1 − 19ωε)C. It follows by (102) and
(105) that

‖z − x‖ ≤ ‖y − x‖ ≤ ε · 16rω
1
2 ,

and hence again (102) yields

z ∈ x + ε · 16ωΨqC ⊂ (1 − ε3ω)ΨqC.

Since Ξ0 ∩ (1 − ε3ω)ΨqC = ∅, we conclude that if x ∈ (1 − 6ωε)C, then
q∗(x − y) = q∗(x − z). On the other hand, if x 6∈ (1 − 19ωε)C, then

q∗(x − y) ≤ 2‖x − y‖2 ≤ 2‖x − z‖2 ≤ 2q∗(x − z).

Therefore (103) and (104) imply

Ω(Ψq((1 + ε)C), Ξ̃, q∗) ≤ (1 + Oω(ε))Ω(Ψq((1 + ε)C), Ξ′, q∗)

≤ (1 + Oω(ε))div(q∗)|Ψq((1 + ε)C)| d+1
d−1 · n −2

d−1 .
(107)

Let Ξ∗ = Ψ−1
q Ξ̃, and let Y ′ be the polytopal convex hypersurface whose

facets touch X ′ in the points whose projection into E
d−1 is Ξ∗. Finally, let

Y ∗ ⊂ Y ′ satisfy πX′(Y ∗) = X. It follows by (105) that Y ∗ satisfies (*).
Therefore (92) and (107) yields

|Y ∗| − |X| ≤ 1 + Oω(ε)

2
div(q∗)(tr q) · (det q)

1
d−1 |C| d+1

d−1 · n −2
d−1 . (108)

In particular Y ∗ satisfies (87); namely, the half of (ii).

28



Next we aim at (88). We show that at least points near the relative

boundary of Y ∗ satisfy (88). We define Ξ∗
0 = Ψ−1

q Ξ̃\(1 − 3ε)C, and write
m to denote the cardinality of Ξ∗

0. It follows from (106) and the definition
of Ξ0 that m = Oω(εn). The choice of Ξ0 also yields that for any x ∈
(1 + ε)C\(1 − 3ε)C, there exists z ∈ Ξ∗

0 satisfying

q(x − z) ≤ Oω

(
|C| 2

d−1 n
−2
d−1

)
. (109)

It follows from (109) that we only need to modify Y ∗ in the “inner” part to
get (88).

We write ΥC
n−m to denote the family of all Ξ ⊂ (1 − 3ε)C of cardinality

at most n − m. For Ξ ∈ ΥC
n−m, let Y ′

Ξ be the polytopal convex hypersurface
whose facets touch X ′ in the points whose projection into E

d−1 is Ξ ∪ Ξ∗
0,

and let YΞ ⊂ Y ′
Ξ satisfy πX′YΞ = X. It follows from (109) that if H is a

hyperplane that touches X in a point x with πEd−1(x) ∈ (1 − 3ε)C then

πEd−1(H ∩ YΞ) ⊂ (1 − 2ε)C. (110)

Let Y(n) = YΞ(n) for Ξ(n) ∈ ΥC
n−m such that

|Y(n)| − |X| = min{|YΞ| − |X| : Ξ ∈ ΥC
n−m}.

Since Y ∗ = YΞ for some Ξ ∈ ΥC
n−m, Y(n) satisfies (87). It follows from (i) and

(87) that Y(n) has at least (1−Oω(ε))n facets, thus Ξ(n) ≥ (1−Oω(ε))n. It

particular the minimal distance between points of Ξ(n) is Oω(|C| 1
d−1 n

−1
d−1 ).

It follows from (110) that we may apply the the argument in Lemma 5.2 to
Y(n), and the extremality of Y(n) yields that for any x ∈ (1−3ε)C there exists

a y ∈ Ξ(n) ∪ Ξ∗
0 with q(x − y) = Oω(|C| 2

d−1 n
−2
d−1 ). Combining this estimate

with (109) completes the proof of (88). Q.E.D.

7 The proof of Theorem 1.1 if ∂K is C2
+

Let K be a convex body in E
d with C2 boundary. In this section we prove

Theorem 7.1 about polytopal approximation of a compact Jordan measurable
subset X such that κ(x) > 0 for x ∈ X. In particular if ∂K is C2

+, and hence
X = ∂K can be assumed, then Theorem 7.1 proves Theorem 1.1. In addition,
Theorem 7.1 forms the core of approximating ∂K also in the case when the
Gauß-Kronecker curvature is allowed to be zero.

29



Theorem 7.1 Given a convex body K in E
d with C2 boundary, and a convex

hypersurface X ⊂ ∂K such that the Gauß-Kronecker curvature is positive at
any x ∈ X, there exist ε0, β̃ > 0 depending on K and X with the following
properties: Let ε ∈ (0, ε0).

(i) If n is large and P(n) is a circumscribed polytope with n facets that has
minimal surface area, and the Y ⊂ ∂P(n) with π∂KY = X has k facets
then

|Y | − |X| ≥ 1 − OK,X(ε)

2

(∫

X

div(Qx)
d−1
d+1 H(x)

d−1
d+1 κ(x)

1
d+1 dx

) d+1
d−1

k
−2
d−1 .

(ii) If k is large then there exists a polytopal convex hypersurface Y cir-
cumscribed around ∂K with at most k facets such that π∂KY = X,

δH(Y,X) ≤ β̃ · k −2
d−1 and

|Y | − |X| ≤ 1 + OK,X(ε)

2

(∫

X

div(Qx)
d−1
d+1 H(x)

d−1
d+1 κ(x)

1
d+1 dx

) d+1
d−1

k
−2
d−1 .

Remark: How large n should be depends on ε,X,K.

7.1 The common parameters for the proofs of (i) and
(ii)

There exists ω > 3 such that the principal curvatures at each x ∈ X lie
between 3

ω
and ω

3
. We choose a convex hypersurface X ′ ⊂ ∂K such that

X ⊂ relintX ′, and the principal curvatures at each x ∈ X ′ lie between 2
ω

and ω
2
. In particular X ′ = ∂K if X = ∂K. There exist ̺0 > 0 and ℵ0 > 1

depending on X and K such that if H is the tangent hyperplane at some
x ∈ X ′, and ‖y − π∂Ky‖ ≤ ̺ for a y ∈ H and ̺ ∈ (0, ̺0), then

‖y − x‖ ≤ ℵ0
√

̺Bd. (111)

Given d and the ω of the previous paragraph, we choose the corresponding
ε0 > 0 in a way such that it is small enough for Lemmas 4.2 and 6.1, moreover

ε0 < (220ℵ̃ · ℵ0 · ω2)−1

where ℵ̃ comes from (38), and ℵ0 comes from (111). We choose γ > 1
depending on ω and d such that

γ−1 < div(Q∗
x)

d−1
d+1 H(x)

d−1
d+1 κ(x)

1
d+1 < γ
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for x ∈ X ′. Let ε ∈ (0, ε0), and let n0 depending on ω, d and ε come from
Lemma 6.1. In addition let ν ∈ (0, ε] be maximal with the properties

ν−(d−1) ≥ 8d−1ℵd−1
0 · n0, (112)

ν−(d−1) ≥ 2d|Bd−1|−1 · n0. (113)

These inequalities will ensure that when we apply Lemma 6.1, the number
of facets of the corresponding polytopal convex hypersurface is at least n0.

We choose convex hypersurfaces Z1, Z2 ⊂ ∂K such that Z1 ⊂ relintX,
X ⊂ relintZ2 and Z2 ⊂ relintX ′, and

∫
Z2

div(Q∗
x)

d−1
d+1 H(x)

d−1
d+1 κ(x)

1
d+1 dx

∫
Z1

div(Q∗
x)

d−1
d+1 H(x)

d−1
d+1 κ(x)

1
d+1 dx

< 1 + ε. (114)

We note that if X = ∂K then we simply choose Z1 = Z2 = ∂K.
It follows via an compactness argument that there exists δ ∈ (0,

√
ε)

depending on K with the following properties: For x ∈ Z2, let H be the
tangent hyperplane to K at x. After identifying x with o and H with E

d−1

in a way such that K lies above E
d−1, there exists a convex C2 function f

on δ Bd−1 whose graph is part of X ′, and writing qy to denote the quadratic
form representing the second derivative of f at y ∈ relint δ Bd−1, we have

Qx(z) − 1
2
ν8 · ‖z‖2 ≤ qy(z) ≤ Qx(z) + 1

2
ν8 · ‖z‖2 for z ∈ E

d−1. (115)

It follows from Remark 2.4 and (35) for div(Q∗
x), and (39) and (40) for H(x)

and κ(x) that if y ∈ relint δ Bd−1 and x′ = (y, f(y)) then

div(Q∗
x′) = (1 + OK,X(ε8)) · div(Q∗

x); (116)

H(x′) = H(x) + OK,X(ε8); (117)

κ(x′) = κ(x) + OK,X(ε8). (118)

In addition for the map π∂K : relint δ Bd−1 → ∂K, we deduce from (26) that

the Jacobian is 1 + OK(‖y‖2) at each y ∈ relint δ Bd−1. (119)

When we say that n or k is large enough then we mean a threshold that
depends on ε, X and K.

7.2 The proof of Theorem 7.1 (i)

According to Lemma 5.2, δH(P(n), K) ≤ β0n
−2
d−1 where β0 depends on K. For

large n, we define

̺ = 220β0n
−2
d−1 . (120)
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Readily ̺ < ν8, ̺ < ̺0 and
20

√
̺

ν
< δ if n is large.

We choose a maximal family s1, . . . , sm′ ∈ ∂K with the property that
‖si − sj‖ ≥ 2

√
̺

ν
for i 6= j, and we write C∗

1 , . . . , C
∗
m′ to denote the facets of

the circumscribed polytope whose facets touch K at s1, . . . , sm′ . Let X∗
i =

π∂KC∗
i , i = 1, . . . ,m′, and let us reindex s1, . . . , sm′ in a way such that

X∗
i ∩ Z1 6= ∅ if and only if i ≤ m for some m ≤ m′.

We write Bi to denote the unit (d−1)-ball that is centred at si, and contained
in the tangent hyperplane to K at si. If n is large and i = 1, . . . ,m, then
X∗

i ⊂ X and

si +
√

̺

2ν
Bi ⊂ C∗

i ⊂ si + 3
√

̺

ν
Bi.

Since δH(P(n), K) ≤ ̺, (111) yields that if π∂KF intersects X for a facet F
of P(n), then diamF ≤ 2ℵ0

√
̺. We define

Ci = si + (1 − 8ℵ0ν)(C∗
i − si), i = 1, . . . ,m.

In particular if n is large and i = 1, . . . ,m, then

si +
√

̺

4ν
Bi ⊂ Ci ⊂ si + 3

√
̺

ν
Bi,

and if π∂KF intersects π∂KCi for a facet F of P(n), then it is disjoint from
π∂KCj for j 6= i. For i = 1, . . . ,m, let π∂KCi = Xi, and let Yi ⊂ ∂P(n) satisfy
that π∂KYi = Xi. Therefore writing ki to denote the number facets of Yi, we
have k1 + . . .+ km ≤ k. Since the projections of the facets of Yi into Ci cover
si +

√
̺

8ν
Bi, (111) and (112) yield that ki > n0. According to Lemma 5.2, any

facet F of P(n) with π∂KF ⊂ X contains a (d− 1)-ball of radius αn
−1
d−1 where

α depends on K and X. Therefore

n0 < ki ≤ OK,X(n|Ci|). (121)

Let π∂KC∗
i = X∗

i for i = 1, . . . ,m.

Proposition 7.2 If n is large and i = 1, . . . ,m then

|Y ∗
i | − |X∗

i | ≥
1 − OK,X(ε)

2

(∫

X∗
i

div(Q∗
x)

d−1
d+1 H(x)

d−1
d+1 κ(x)

1
d+1 dx

) d+1
d−1

· k
−2
d−1

i .

Proof: We may assume that si = o, aff Ci = E
d−1 and K lies above E

d−1.
According to (115), there exists a convex C2 function f1 on

√
ν Bd−1 whose

graph is part of ∂K, and writing qy to denote the quadratic form representing
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the second derivative of f1 at y, we have that if y ∈ 20
√

̺

ν
Bd−1 and n is large

then

Qsi
(z) − 1

2
ν8 · ‖z‖2 ≤ qy(z) ≤ Qsi

(z) + 1
2
ν8 · ‖z‖2 for z ∈ E

d−1.

We define q by

q(z) = Qsi
(z) + 1

2
ν8 · ‖z‖2 for z ∈ E

d−1,

which satisfies that if y ∈ 20
√

̺

ν
Bd−1 then

q(z) − ν8 · ‖z‖2 ≤ qy(z) ≤ q(z) for z ∈ E
d−1. (122)

In addition all eigen values of q lie between 1
ω

and ω.
We write X ′

i ⊂ ∂K to denote the convex hypersurface that is the graph

of a convex function above
20

√
̺

ν
Bd−1, hence Xi ⊂ X ′

i. In addition let X̃ ′
i be

the graph of f2 = 1
2
q above

20
√

̺

ν
Bd−1, and let X̃i = π eX′

i
Ci. We observe that

X̃ ′
i lies “above” X ′

i according to (122), and if x ∈ X ′
i with ‖πEd−1x‖ ≤ 10

√
̺

ν

then (122), ̺ ∈ (0, ν8), and the Taylor formula (32) yield

d(x, X̃ ′
i) ≤ 50ν6̺. (123)

It follows from (38), ̺ < ν8 and the conditions on ε0 that if y = πX′
i
x and

z = π eX′
i
x for x ∈ ∂Ci then

√
q(x − πEd−1y) +

√
q(x − πEd−1z) < ν

√
̺. (124)

During the argument, we frequently apply that
√

q(·) is a norm.
In order to apply Lemma 4.2, we need to extend Yi to a suitable polytopal

convex hypersurface, whose facets touch X ′
i, and that is the graph a convex

function h1 on
20

√
̺

ν
Bi. Let Z be the family of points z ∈ 10

√
̺

ν
Bi such that

q(z − y) ≥ ̺/64 for all y ∈ πEd−1Yi. In addition let Ξ be the family of
projections into E

d−1 of the points where the facets of Yi touch X ′
i, and let

Ξ′ be a maximal family of points in Z such that q(z − y) ≥ ν2̺ for different
z, y ∈ Ξ′. Let Y ′

i be the convex polytopal surface circumscribed around X ′
i

that is the graph of the convex piecewise linear function h1 on
20

√
̺

ν
Bi such

that projections of the points of tangency into E
d−1 is Ξ ∪ Ξ′. For y ∈ Yi,

Lemma 5.2 and the definition of ̺ yield that d(y,Xi) ≤ 2−20̺, and hence
there exists x ∈ Ξ with

q(x − πEd−1y) < 2−18̺ (125)
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according to (46). Since q(x − πEd−1y) > 2−7̺ for any x ∈ Ξ′ by (124), we

deduce that Yi ⊂ Y ′
i by (47). In addition for any z ∈ 8

√
̺

ν
Bi, there exists an

x0 with q(z − x0) ≤ ̺/64 such that either x0 ∈ Z or x0 ∈ πEd−1Yi. Therefore
there exists an x ∈ Ξ ∪ Ξ′ with q(z − x) ≤ ̺/8, and hence (49) is satisfied.

For any y ∈ 10
√

̺

ν
Bi, let ỹ ∈ 20

√
̺

ν
Bi be the point such that the exterior

unit normals to X ′
i at x = (y, f1(y)) and to X̃ ′

i at (ỹ, f2(ỹ)) coincide. Inas-
much as (123) yields that (ỹ, f2(ỹ)) is contained in the cap of K bounded by
the hyperplane parallel to the tangent at x and of distance 50ν6̺ from x, it
follows from the Taylor formula (32) and (46) that

q(y − ỹ) ≤ 200ν6̺. (126)

Next let Ξ̃ = {ỹ : y ∈ Ξ}, and let Ξ̃′ = {ỹ : y ∈ Ξ′}. If Ỹ ′
i is the convex

polytopal hypersurface circumscribed around X̃ ′
i whose facets are in bijective

correspondence with the facets of Yi in a way such that the corresponding
facets are parallel, and Ỹ ′

i is the graph of the convex function h2 over
20

√
̺

ν
Bi,

then the projections of the points of tangency into E
d−1 is Ξ̃∪Ξ̃′. Let Ỹi ⊂ Ỹ ′

i

satisfy π eX′
i
Ỹi = X̃i. If y ∈ Ỹi then combining (124), (125) and (126) shows

that there exists x ∈ Ξ̃ with q(x−πEd−1y) < 2−17̺, while q(z−πEd−1y) > 2−8̺

for any z ∈ Ξ̃′. It follows by (47) that the projections of the points where the

facets Ỹi touch X̃ ′
i into E

d−1 all land in Ξ̃, therefore Ỹi has at most ki facets.

Next we apply Lemma 4.2, where Ci, Xi, Yi, X̃i, Ỹi play the role of C,
X̃1, Ỹ1, X̃2, Ỹ2. We deduce using (121) that

|Xi| − |Yi| ≥ |X̃i| − |Ỹi| − OK,X(ν · n −2
d−1 ) · |Ci|

≥ |X̃i| − |Ỹi| − OK,X(ν · k
−2
d−1

i ) · |Ci|
d+1
d−1 .

Since ki > n0, we may apply Lemma 6.1 (i) to |Ỹi| − |X̃i|, and conclude

|Yi| − |Xi| ≥ (1 − OK,X(ε)) · div(q∗)
2

(trq)(det q)
1

d−1 |Ci|
d+1
d−1 · k

−2
d−1

i

≥ (1 − OK,X(ε)) · div(Q∗
si

)

2
H(si)κ(si)

1
d−1 |C∗

i |
d+1
d−1 · k

−2
d−1

i .

Since |Y ∗
i | − |X∗

i | ≥ |Yi| − |Xi|, the estimates (116), (117), (118) and (119)
complete the proof of Proposition 7.2. Q.E.D.

We have X∗
i ⊂ X for i = 1, . . . ,m, and the union of X∗

1 , . . . , X
∗
m covers Z1.

It follows from Proposition 7.2, the Hölder inequality (8) and k1+. . .+km ≤ k
that

|Y | − |X| ≥
m∑

i=1

|Y ∗
i | − |X∗

i |
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≥ 1 − OK,X(ε)

2

m∑

i=1

(∫

X∗
i

div(Q∗
x)

d−1
d+1 H(x)

d−1
d+1 κ(x)

1
d+1 dx

) d+1
d−1

· k
−2
d−1

i

≥ 1 − OK,X(ε)

2

(∫

Z1

div(Q∗
x)

d−1
d+1 H(x)

d−1
d+1 κ(x)

1
d+1 dx

) d+1
d−1

· k
−2
d−1

i .

Therefore (114) completes the proof of Theorem 7.1 (i).

7.3 The proof of Theorem 7.1 (ii)

For large k, we define

̺ = 224ℵγ
4

d−1 |X| 2
d−1 k

−2
d−1 . (127)

where the ℵ > 1 depending on ω and d comes from Lemma 6.1. Readily
̺ < ν8, ̺ < ̺0 and

20
√

̺

ν
< δ if k is large.

We choose a maximal family s1, . . . , sm′ ∈ ∂K with the property that
‖si−sj‖ ≥ 2

√
̺

ν
for i 6= j, and we write C1, . . . , Cm′ to denote the facets of the

circumscribed polytope whose facets touch K at s1, . . . , sm′ . Let Xi = π∂KCi,
i = 1, . . . ,m′, and let us reindex s1, . . . , sm′ in a way such that

Xi ∩ X 6= ∅ if and only if i ≤ m for some m ≤ m′.

We write Bi to denote the unit (d−1)-ball that is centred at si, and contained
in the tangent hyperplane to K at si. If k is large and i = 1, . . . ,m, then
Xi ⊂ Z2 and

si +
√

̺

2ν
Bi ⊂ Ci ⊂ si + 3

√
̺

ν
Bi. (128)

For i = 1, . . . ,m, let

ki =

⌊∫
Xi

div(Q∗
x)

d−1
d+1 H(x)

d−1
d+1 κ(x)

1
d+1 dx

∫
X

div(Q∗
x)

d−1
d+1 H(x)

d−1
d+1 κ(x)

1
d+1 dx

· k
⌋

It follows from (127) that

̺ = 224ℵ
(

γ2|X|
k

) 2
d−1

≥ 224ℵ
( |Xi|

2ki

) 2
d−1

> 220ℵ
( |Ci|

ki

) 2
d−1

. (129)

We also deduce using (129), (128), and (113) in this order that

ki > ̺
−(d−1)

2 |Ci| ≥ ν−(d−1)2−d|Bd−1| ≥ n0.

In summary,
n0 < ki ≤ OK,X(k|Ci|). (130)
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Proposition 7.3 If k is large and i = 1, . . . ,m then then there exists a
convex polytopal hypersurface Yi circumscribed around ∂K such that π∂KYi =
Xi, Yi has at most ki facets, δH(Yi, Xi) ≤ ̺, and

|Yi| − |Xi| ≤
1 + OK,X(ε)

2

(∫

Xi

div(Q∗
x)

d−1
d+1 H(x)

d−1
d+1 κ(x)

1
d+1 dx

) d+1
d−1

· k
−2
d−1

i .

Proof: We may assume that si = o, aff Ci = E
d−1 and K lies above E

d−1.
According to (115), there exists a convex C2 function f on

√
ν Bd−1 whose

graph is part of ∂K, and writing qy to denote the quadratic form representing

the second derivative of f at y, we have that if y ∈ 20
√

̺

ν
Bd−1 and k is large

then

Qsi
(z) − 1

2
ν8 · ‖z‖2 ≤ qy(z) ≤ Qsi

(z) + 1
2
ν8 · ‖z‖2 for z ∈ E

d−1.

We define q by

q(z) = Qsi
(z) − 1

2
ν8 · ‖z‖2 for z ∈ E

d−1,

which satisfies that if y ∈ 20
√

̺

ν
Bd−1 then

q(z) · ‖z‖2 ≤ qy(z) ≤ q(z) + ν8 for z ∈ E
d−1. (131)

In addition all eigen values of q lie between 1
ω

and ω.
We write X ′

i ⊂ ∂K to denote the convex hypersurface that is the graph

of a convex function above
20

√
̺

ν
Bd−1, hence Xi ⊂ X ′

i. In addition let X̃ ′
i be

the graph of f2 = 1
2
q above

20
√

̺

ν
Bd−1, and let X̃i = π eX′

i
Ci. We observe that

X ′
i lies “above” X̃ ′

i according to (131), and if x ∈ X̃ ′
i with ‖πEd−1x‖ ≤ 10

√
̺

ν

then (131), ̺ ∈ (0, ν8), and the Taylor formula (32) yield

d(x,X ′
i) ≤ 50ν6̺. (132)

Since ki > n0, and (129) yields ̺ > 220ℵ|Ci|
2

d−1 k
−2
d−1

i , Lemma 6.1 (ii) yields

the existence of a convex polytopal surface Ỹi circumscribed around X̃ ′
i such

that X̃i = π eX′
i
Ỹi, Ỹi has at most ki facets, δH(Ỹi, X̃i) ≤ 2−20̺, and

|Ỹi| − |X̃i| ≤ (1 + OK,X(ε)) · div(q∗)
2

(trq)(det q)
1

d−1 |Ci|
d+1
d−1 · k

−2
d−1

i .

It follows from (116), (117), (118) and (119) that

|Ỹi| − |X̃i| ≤
1 + OK,X(ε)

2

(∫

Xi

div(Q∗
x)

d−1
d+1 H(x)

d−1
d+1 κ(x)

1
d+1 dx

) d+1
d−1

· k
−2
d−1

i .
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Finally, the same way how based on Lemma 4.2, the Ỹi was constructed
knowing Yi in the proof of Proposition 7.2, one can construct the Yi for
Proposition 7.3 knowing the Ỹi above. Q.E.D.

It follows from Proposition 7.3 and the definition of ki that if

∆ =

(∫

X

div(Q∗
x)

d−1
d+1 H(x)

d−1
d+1 κ(x)

1
d+1 dx

) 2
d−1

· k −2
d−1 ,

and i = 1, . . . ,m, then

|Yi| − |Xi| ≤
1 + OK,X(ε)

2

∫

Xi

div(Q∗
x)

d−1
d+1 H(x)

d−1
d+1 κ(x)

1
d+1 dx · ∆. (133)

Let Y be the polytopal hypersurface circumscribed around ∂K such that the
set of affine hulls of its facets is the union of the affine hulls of the facets of
Y1, . . . , Ym, and π∂KY = X. It follows that Y has at most k facets, and

δH(Y,X) ≤ ̺ = OK,X(k
−2
d−1 ). (134)

For i = 1, . . . ,m, let Y ⋄
i ⊂ Y such that π∂KY ⋄

i = Xi. We claim that

|Y ⋄
i | − |Xi| ≤

1 + OK,X(ε)

2

∫

Xi

div(Q∗
x)

d−1
d+1 H(x)

d−1
d+1 κ(x)

1
d+1 dx · ∆. (135)

To show (135), we define

C∗
i = si + (1 − 8ℵ0ν)(Ci − si),

X∗
i = π∂KC∗

i , and Y ∗
i ⊂ Y ⋄

i such that π∂KY ∗
i = X∗

i . If F is a facet of Y ,
then diamF ≤ 2ℵ0

√
̺ by (111) and (134). If in addition aff F is the affine

hull of some facet of a Yj with j 6= i, then (128) yields that

π∂KC∗
i ∩ π∂KF = ∅.

Therefore Y ∗
i ⊂ Yi, and we deduce by (133) that

|Y ∗
i | − |X∗

i | ≤
1 + OK,X(ε)

2

∫

Xi

div(Q∗
x)

d−1
d+1 H(x)

d−1
d+1 κ(x)

1
d+1 dx · ∆.

On the other hand (26) and (134) imply

|Y ⋄
i \Y ∗

i | − |Xi\X∗
i | = OK,X(̺) · |Xi\X∗

i | = OK,X(̺) · |Ci\C∗
i |

= OK,X(ε̺) · |Ci| = OK,X(ε∆) · |Xi|.
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In turn we conclude (135).
Adding (135) for i = 1, . . . ,m leads to

|Y | − |X| ≤ 1 + OK,X(ε)

2

∫

Xi

div(Q∗
x)

d−1
d+1 H(x)

d−1
d+1 κ(x)

1
d+1 dx · ∆

=
1 + OK,X(ε)

2

(∫

X

div(Q∗
x)

d−1
d+1 H(x)

d−1
d+1 κ(x)

1
d+1 dx

) d+1
d−1

· k −2
d−1 .

With this, the proof of Theorem 7.1 is complete. Q.E.D.

8 The proof of Theorem 1.1

In this section, K is a convex body with C2 boundary. For x ∈ ∂K, we define

ϕ(x) = div(Qx)
d−1
d+1 H(x)

d−1
d+1 κ(x)

1
d+1 . (136)

The proof of Theorem 1.1 is along the line set up in K. Böröczky, Jr.
[3]. It is equivalent to proving that for certain ε0 > 0 depending on K, if
ε ∈ (0, ε0), then there exists n0 depending on K and ε with the following
properties: If n > n0 and P is a polytope circumscribed around K with at
most n facets, then

S(P ) − S(K) ≥ 1 − ε

2

(∫

∂K

ϕ(x) dx

) d+1
d−1

· n −2
d−1 , (137)

and in addition there exists a polytope P ′
(n) circumscribed around K with at

most n facets, such that

S(P ′
(n)) − S(K) ≤ 1 + ε

2

(∫

∂K

ϕ(x) dx

) d+1
d−1

n
−2
d−1 . (138)

To prove the lower bound (137), let X ⊂ ∂K be a convex hypersurface
such that the Gauß-Kronecker curvature is positive at any x ∈ X, and

∫

X

ϕ(x) dx >
(
1 − ε

2

) ∫

∂K

ϕ(x) dx.

Let P be a polytope circumscribed around K with at most n facets, and let
Y ⊂ ∂P satisfy π∂KY = X. In particular Y has at most n facets. According
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to Theorem 7.1 (i), there exists n0 depending on K and ε such that if n > n0

then

|Y | − |X| >
1 − ε

2

2

(∫

∂K

ϕ(x) dx

) d+1
d−1

· n −2
d−1

Since S(P ) − S(K) ≥ |Y | − |X|, we conclude (137).
Turning to (138), if the Gauß-Kronecker curvature is positive at any x ∈

∂K then (138) is a direct consequence of Theorem 7.1 (ii), hence we assume
that there exists some point of ∂K such that at least one principal curvature
is zero. For µ > 0, let Σ(µ) denote the set of points on ∂K such that the
minimal principal curvature is less than µ. We observe that Σ(µ) is Jordan
measurable, and hence a convex hypersurface for all but countably many µ.
It follows by Lemma 1 in K. Böröczky, Jr. [3] that there exist µ > 0 and
m0 depending on ε and K with the following properties: Σ(µ) is a convex
hypersurface, and if m > m0, then there exists a polytopal convex surface Ym

circumscribed around ∂K with at most m facets such that π∂KYm = Σ(µ)
and

δH(Ym, Σ(µ)) < ε0 · ε
d+1
d−1 · m −2

d−1 . (139)

It follows form (26) that choosing ε0 depending on K small enough then

|Ym| − |Σ(µ)| <
18

−2
d−1

12

(∫

∂K

ϕ(x) dx

) d+1
d−1

ε
d+1
d−1 · m −2

d−1 . (140)

We define X to be the closure of ∂K\Σ(µ). According to Theorem 7.1
(ii), choosing ε0 depending K small enough, we have the following properties.
For ε ∈ (0, ε0), there exist γ, n1 > 1 depending on K and ε such that if
n > n1 then ⌊ ε

18
n⌋ > m0, and there exists a polytopal convex hypersurface

Ỹ(n) circumscribed around ∂K with at most ⌈(1 − ε
18

)n⌉ facets such that

π∂K Ỹ(n) = X, and

δH(Ỹ(n), X) < γ · n −2
d−1 (141)

|Ỹ(n)| − |X| <
1 + ε

9

2

(∫

∂K

ϕ(x) dx

) d+1
d−1

·
(
1 − ε

18

) −2
d−1

n
−2
d−1

<
1 + ε

3

2

(∫

∂K

ϕ(x) dx

) d+1
d−1

· n −2
d−1 . (142)

Next let Y ′
(n) = Ym for m = ⌊ ε

18
n⌋. In particular (139) and (140) yield that

choosing ε0 depending K small enough, we have

δH(Y ′
(n), Σ(µ)) < γ · n −2

d−1 (143)

|Y ′
(n)| − |Σ(µ)| <

ε

6
·
(∫

∂K

ϕ(x) dx

) d+1
d−1

· n −2
d−1 . (144)
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We consider all supporting halfspaces to K determined by the affine hulls
of the facets of either Y ′

(n) or Ỹ(n), and define P ′
(n) to be the intersection of all

these halfspaces. Then P ′
(n) is a polytope with at most n facets, and (141)

and (143) yield

δH(P ′
(n), K) < γ · n −2

d−1 . (145)

Let Z ⊂ ∂K be a convex hypersurface whose relative interior contains
∂X = ∂Σ(µ), the Gauß-Kronecker is positive at each x ∈ Z, and

|Z| <
ε

6ξ∗γ

(∫

∂K

ϕ(x) dx

) d+1
d−1

,

where ξ∗ comes from (26). Let Y ◦
(n) ⊂ P ′

(n) such that π∂KY ◦
(n) = Z. We

deduce by (26) that

|Y ◦
(n)| − |Z| <

ε

6

(∫

∂K

ϕ(x) dx

) d+1
d−1

· n −2
d−1 . (146)

It follows from (111) that there exists n0 > n1 (depending on K and ε) such
that if n > n0 then

∂P ′
(n)\Y ◦

(n) ⊂ Y ′
(n) ∪ Ỹ(n).

Therefore combining (142), (144) and (146) implies (138). In turn we con-
clude Theorem 1.1. Q.E.D.

9 The proof of Theorem 1.2 (i)

Let K be convex a body in E
d with C2 boundary. In order to prove Theo-

rem 1.2 (i), we use again the desity function ϕ from (136). For each facet of
P(n), we choose a point where the facet touches K, and we write Ξn ⊂ ∂K
to denote the set of these points. In particular Ξn has n elements.

For a Jordan measurable X ⊂ ∂K, we should prove that

lim
n→∞

#(X ∩ Ξn)

n
=

∫
X

ϕ(x) dx∫
∂K

ϕ(x) dx
. (147)

We wite m(n) = #(X ∩ Ξn), and distinguish three cases.

Case 1
∫

X
ϕ(x) dx =

∫
∂K

ϕ(x) dx
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In this case it is equivalent to prove that for any ε ∈ (0, 1), if n > n0

where no depends on K, X and ε, then

m(n) > (1 − ε) n. (148)

Choose a convex hypersurface Z ⊂ relintX such that the Gauß-Kronecker
curvature is positive on Z, and

∫

Z

ϕ(x) dx >

(
1 − 2ε

3(d + 1)

) ∫

∂K

ϕ(x) dx.

Let Y(n) ⊂ ∂P(n) satisfy that π∂KY(n) = Z. Since δH(P(n), K) tends to zero,
there exists n1 such that if n > n1 then all facets of Y(n) touch at some point
of X, and hence Y(n) has at most m(n) facets. It follows by Theorem 1.1,
|Y(n)|− |Z| < S(P(n))−S(K), and Theorem 7.1 (i) that if n > n0 for suitable
n0 > n1 then

|Y(n)| − |Z| <
(1 + ε

3
)

2
d−1

2
·
(∫

∂K

ϕ(x) dx

) d+1
d−1

· n −2
d−1 (149)

|Y(n)| − |Z| >
(1 − ε

3
)

2
d−1

2
·
(∫

Z

ϕ(x) dx

) d+1
d−1

· m(n)
−2
d−1 . (150)

In particular we conclude (148) as

m(n)

n
>

1 − ε
3

1 + ε
3

(
1 − 2ε

3(d + 1)

) d+1
2

> 1 − ε.

Case 2
∫

X
ϕ(x) dx = 0

Since limn→∞
#((∂K\X)∩Ξn)

n
= 1 by Case 1, we conclude limn→∞

#(X∩Ξn)
n

= 0.

Case 3 0 <
∫

X
ϕ(x) dx <

∫
∂K

ϕ(x) dx

In this case it is equivalent to prove that for any ε ∈ (0, 1
2
), if n > n0

where no depends on K, X and ε, then

(1 − ε) ·
∫

X
ϕ(x) dx∫

∂K\X ϕ(x) dx
<

m(n)

n − m(n)
< (1 − ε)−1 ·

∫
X

ϕ(x) dx∫
∂K\X ϕ(x) dx

. (151)

Let ω ≥ 2 be maximal with the property that

2/ω ≤
∫

X
ϕ(x) dx∫

∂K\X ϕ(x) dx
≤ ω/2
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It follows from the equality case of the Hölder inequality (8), that there exists
ν ∈ (0, ε) such that if a1, a2, n1, n2 > 0 satisfies ω−1 ≤ a1/a2 ≤ ω and

a
d+1
d−1

1 n
−2
d−1

1 + a
d+1
d−1

2 n
−2
d−1

2 ≤ (1 + ν)(a1 + a2)
d+1
d−1 (n1 + n2)

−2
d−1 , (152)

then (
1 − ε

2

)
· a1

a2

≤ n1

n2

≤
(
1 − ε

2

)−1

· ai

aj

.

We choose a convex hypersurfaces Z1 ⊂ relintX and Z2 ⊂ relint(∂K\X)
such that the Gauß-Kronecker curvature is positive on Z1 and Z2, and

∫
Z1

ϕ(x) dx∫
X

ϕ(x) dx
> 1 − ν

27
and

∫
Z2

ϕ(x) dx∫
∂K\X ϕ(x) dx

> 1 − ν

27
. (153)

For i = 1, 2, let Y i
(n) ⊂ ∂P(n) satisfy that π∂KY i

(n) = Zi. Since δH(P(n), K)

tends to zero, there exists n1 such that if n > n1 then all facets of Y 1
(n) and

Y 2
(n) touch at some point of X or at ∂K\X, respectively, and hence Y 1

(n)

has at most m(n) facets, and Y 2
(n) has at most n − m(n) facets. It follows

by Theorem 1.1, d+1
d−1

≤ 3 and Theorem 7.1 (i) that if n > n0 for suitable
n0 > n1 then

∑

i=1,2

(|Y i
(n)| − |Zi|) <

1 + ν
9

2
·
(∫

∂K

ϕ(x) dx

) d+1
d−1

· n −2
d−1

<
1 + ν

3

2
·
(∫

Z1∪Z2

ϕ(x) dx

) d+1
d−1

· n −2
d−1

|Y 1
(n)| − |Z1| >

1 − ν
3

2
·
(∫

Z1

ϕ(x) dx

) d+1
d−1

· m(n)
−2
d−1

|Y 2
(n)| − |Z2| >

1 − ν
3

2
·
(∫

Z2

ϕ(x) dx

) d+1
d−1

· (n − m(n))
−2
d−1 .

In particular the choice of ν (see (152)) yields that

(
1 − ε

2

)
·
∫

Z1
ϕ(x) dx∫

Z2
ϕ(x) dx

≤ m(n)

n − m(n)
≤

(
1 − ε

2

)−1

·
∫

Z1
ϕ(x) dx∫

Z2
ϕ(x) dx

.

Therefore we conclude (151) by (153). Q.E.D.
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