Approximation of smooth convex bodies by
circumscribed polytopes with respect to the
surface area

Kiroly J. Boroczky: Balazs Csikés'

November 11, 2008

Abstract

Let K be a convex body with C? boundary in the Euclidean d-
space. Following the work of L. Fejes T6th, R. Vitale, R. Schneider,
P.M. Gruber, S. Glasauer and M. Ludwig, best approximation of K by
polytopes of restricted number of vertices or facets is well-understood
if the approximation is with respect to the volume or the mean width.
In this paper we consider the circumscribed polytope P, of n facets
with minimal surface area, and present an asymptotic formula in n
for the difference of surface areas of P,y and K.
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1 Introduction

For any notions related to convexity in this paper, consult P.M. Gruber [21],
R. Schneider [27] or T. Bonnesen and W. Fenchel [2]. For any quadratic form
q, we write tr g to denote the sum, and det g to denote the product of the
eigenvalues of ¢, respectively. As usual we call a compact convex set in E*
with non-empty relative interior a convex body in E*. For a convex body K
in E¢, we write V(K) to denote its volume, and S(K) to denote its surface
area. When integrating on the boundary 0K, we always do it with respect
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to the (d — 1)-dimensional Hausdorff measure (see K.J. Falconer [10] or C.A.
Rogers [25] for definition and main properties). An X C 0K is called Jordan
measurable if its relative boundary on 0K is of (d — 1)-measure zero. If K
has C? boundary and = € 0K, then let ), denote the second fundamental
form at x, let H(z) = tr Q,, and let x(x) = det @), be the GauB-Kronecker
curvature. These notions naturally depend on K but we drop the reference
to K. We say that K has C’_’f_ boundary if K is C* and the GauB-Kronecker
is positive at each point.

Best approximation of a convex body K with C? boundary by circum-
scribed polytopes with respect to the volume or the mean width has very
extensive literature since the 1970’s (see the papers P.M. Gruber [16], [17],
[18] and [20] for general surveys on related problems), and many of the ma-
jor questions have been resolved. Here we only summarize the main results
concerning the volume. P.M. Gruber [15] proved when dK is C%, and K.
Boroezky, Jr. [3] in the general case that if P(V;J)l is a polytope containing K
with n facets that has minimal volume, then as n tends to infinity, we have

d+1

Ve v ~ T2 ([ o) o)

nda-1

where divy_; > 0 depends only on d. P.M. Gruber [14] determined that

L and divy = 223 and it follows from the work of P.L. Zador [28]

divy = 33 18

that
divg_1 = 5= d + O(Ind) (2)

where the implied constant in O(+) is an absolute constant.

In many cases important information available about the extremal bodies
in polytopal approximation. If =, C 0K has cardinality n for n > d + 1,
and f is a non-negative measurable function on K whose integral on 9K
is positive, then {=,} is uniformly distributed with respect to f (compare
S. Glasauer and R. Schneider [12]) provided that for any Jordan measurable
X C 0K, we have

. H#H(XNE,) f f(z)dx
Jim, n - fa); f(z)dz

In addition {Z,,} satisfies the Delone property (compare P.M. Gruber [19]) if
there exists «, 3 > 0 depending on K and the sequence {=,} such that the

distance between any two points of =, is at least omd__—ll, and for any x € 0K

there exists y € =, of distance at most 5nd_T11 from .
Now let ='°! be the family of points where the facets of P(Vrf)l touch P(VT‘L))I.
S. Glasauer and P.M. Gruber [13] proved that if 9K is C2, then the {=}°'}
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is uniformly distributed on 0K with respect to /i(x)ﬁ, and the result was
extended to any convex body K with C? boundary by K. Boroczky, Jr. [3].
In addition, if 9K is C% then P.M. Gruber [19] proved the Delone property
for {E¥°'}.

The analogous results are also known in the case of approximation by
circumscribed polytopes with respect to the mean width (see P.M. Gruber
[21]). However if closeness is measured in terms of the surface area then the
asymptotic formula was only known if K is ball (in that case approximation
with respect to the volume and with respect to the surface area are equiv-
alent). The goal of this paper is to fill this gap. It is especially desirable
because if best approximation of smooth convex bodies is replaced by ran-
dom approximation then we have essentially the same amount of information
for all these three quermassintegrals (see K. Boroczky, Jr. and M. Reitzner
).

We will assign certain number, which is denoted by div(g*), to any positive
definite quadratic form ¢ in d — 1 variables in Section 6. We prove (see (85))

divg_y < div(g") < 7% - divgy (3)

for any positive definite ¢ where equality holds in the upper bound if the
eigen values of ¢ coincide. It follows by (2) that independently of the eigen
values of ¢, we have

div(¢*) = 5= d + O(Ind) (4)

where the implied constant in O(+) is an absolute constant. If ¢ is a positive
semi-definite quadratic form in d — 1 variables that is not positive definite
then we define div(¢*) = divy_;. In particular while div(¢*) does depend on
the eigen values of ¢, this dependence is rather ”light”. If d = 2, then the
upper bound in (3) yields

div(¢*) = 2div; = 1/6. (5)

Unfortunately if d > 3, then one cannot expect a "nice” closed formula for
div(¢*) in terms of the eigen values of ¢. If d = 3 and 5 > 7, > 0 are the
eigen values of ¢ then K.J. Boroczky and B. Csikés [4] prove

27'1+TQ 4Tl+872+(4T12—27172+7T22)1/2

div(a*) = ) )
v(") 18(11 +12) 271 + 47 + (478 — 21T + T72)1/2]1/2

(6)

This formula could be expressed in terms of the trace and the determinant
of ¢, but the new formula would be even more complicated.



Theorem 1.1 Given a conver body K in E¢, d > 2, with C? boundary, if
Py is a circumscribed polytope with n facets that has minimal surface area
then as n tends to infinity,

d+1

1 d—1 1
+1/<:(x)#dx) C—.

nd—1

B
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() = 5(8) ~ 5 ([ av@# a)

We note that some cases of Theorem 1.1 have been already known. If
K is a ball of radius r then S(Py)) = dV(Pyy)/r and S(K) = dV(K)/r,
and hence P.M. Gruber’s (1) in [15] verifies Theorem 1.1. In addition if K
is planar and its boundary is C%, then Theorem 1.1 is due to D.E. McClure
and R.A. Vitale [9].

If K C P for the convex bodies K and P in E¢ then their Hausdorff
distance 0y (P, K) is the maximal distance of the points of P from K (see
Section 5). Tt is known (see K. Boroezky, Jr. [3]) that if K has C? boundary

and P has at most n facets then dy(P, K) > —%— where « is a positive
nd-1

constant depending on K.

Theorem 1.2 For any conver body K in E¢, d > 2, with C? boundary, if
Py is a circumscribed polytope with n facets that has minimal surface area,
and 2, is a family of n points where the n facets of Py touch OK then

d—1 1
1

(i) {=.} is uniformly distributed with respect to div(Qz)%H(x)W/@(x)m;
(11) 0 (P, K) < ﬁnd% where 3 depends on K ;
(iii) if moreover OK is C% then {Z,} satisfies the Delone property.

The rough idea of the proof of Theorem 1.1 is the same like for the
volume difference as it was initiated by P.M. Gruber [15], and developed
also by M. Ludwig [23]; namely, one thinks patches on 0K being patches on
suitable paraboloids, and uses the fact the power diagrams in E*~! correspond
naturally to polytopal (piecewise linear) surfaces approximating paraboloids
(see F. Aurenhammer [1]). In the cases of volume approximation, the problem
is reduced (in a non-trivial way) to some properties of the second moment in
E1! as follows. Let C be a convex body in E4~!. For finite Z C C, if y € Z,
then we define the Dirichlet-Voronoi cell II,, of y to be the family of x € C
with ||z —y|| < ||z — z|| for all z € =, and assign the second moment integral

S / o — g2 de
1
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to =, where || - || denotes the Euclidean norm. Now for large n, the question
is the asymptotics of the minimum of the integral above as = runs through
all subset of C' of cardinality at most n. This problem was solved by L. Fejes
Té6th [11] if C' is planar, and by P.M. Gruber [15] for higher dimensions.

In the case of polytopal approximation with respect to the surface area, a
similar problem arises in E9~!. Only in this case a positive definite quadratic
form ¢ in d — 1 variables is given, and we integrate not ||z —y||?, but ¢(z —v)
above II, in the expression above. The fact that we define the Dirichlet-
Voronoi cells with respect to the standard quadratic form, and integrate
another quadratic form, causes much technical difficulty, especially when
transforming the asymptotic result in E?~! to polytopal approximation in
E<.

Concerning the structure of the paper, we discuss the above version of the
moment problem in Section 2. For the later study, we need to understand
related properties of convex hypersurfaces, which is done in Sections 3 and 4.
Using these properties, we establish Theorem 1.2 (ii) and (iii) in Section 5,
and prove the core result about approximation of paraboloids in Section 6.
Next we discuss polytopal approximation of convex hypersurfaces of positive
curvature in Section 7. Finally Theorem 1.1 is proved in Section 8, and
Theorem 1.2 (i) in Section 9 using the method of K. Boroczky, Jr. [3].

Let us summarize notation. We write o to denote the origin in E?, (-, )
to denote the scalar product. Moreover let B¢ denote the unit ball centred
at o. For non-colinear points u,v,w, the angle of the halflines vu and vw
is /(u,v,w). Given a set X C E? the affine hull, the convex hull and the
interior of X are denoted by aff X, conv.X, and int.X, respectively.

The (d — 1)-dimensional Hausdorff measure of a measurable subset X of
E? is denoted by | X|. if X is a subset of the boundary of a closed convex set
in E¢ with non-empty interior then we write relintX to denote its relative
interior. In addition X is called Jordan measurable if it is bounded, and its
relative boundary relbdX is of (d — 1)-measure zero. If in addition if X is
the closure of relint X then X is called a convex hypersurface.

Given two real functions f and g, we write f = O(g) if | f| < ¢- g for some
constant ¢ depending only on the dimension d, and f = O=(g) if in addition
c also depends on some object =. Moreover [t| and [t] stand for the largest
integer not larger, and the smallest integer not smaller, respectively, than
teR.



2 A version of the Moment Lemma

While this section can be read independently from the rest of the paper, we
work in E?~! because this is the setup how our main result Theorem 2.1 is
applied in this paper. We write T,, to denote the family of all non-empty
subsets of E?~! of cardinality at most n. P.M. Gruber [15] proved the exis-
tence of divy_; > 0 depending only on d with the following property. If C' is
a Jordan measurable subset of E?~!, then as n tends infinity, we have
d+1 1
min/m1n||x—y||2dx~dlvd 1 |ClaT s —5—. (7)
ZeT, C ye= nd—1
If C' is planar then (7) follows from the celebrated Moment Lemma of L. Fejes
Téth [11]. Far reaching generalizations of (7) where ||z — y||? is replaced by
f(llx — y||) for some increasing function f with a “growth condition” are
proved in P.M. Gruber [20].
For = € T, and y € =, the Dirichlet-Voronoi cell of y with respect to =
and C' is

Oy, 2,C)={zeC :|lr—y| < |r—z forall zeZ}.

In particular in (7), we have

Lminte iz =32 [ e

y€eE

Now let ¢ be a positive definite quadratic form in d — 1 variables. For any
finite subset = of E?~!, we define

It follows by compactness argument that there exists an extremal =, ¢, € T,
such that II(y,ZE,cn,C) # 0 for all y € =, ¢, and

Q(C, 2.0, q) = min Q(C,E,q) = min Z/ q(z —y) dx.
= Y (y,5.0)

=ZeTy, BEeT,
yez

We note that it is not clear whether =, ¢, has n elements. The reason is that
if the eigenvalues of ¢ are different then there exist C', = and y such that

QC,ZU{y},q) > Q(C.E,q).

Our main goal is to prove the following generalization of (7).
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Theorem 2.1 For any positive definite quadratic form q in d — 1 variables
there ezists div(q) > 0 with the following property. If C is a Jordan measur-
able subset of B~ then as n tends infinity, we have

da+1 -2

QC, Zymmsq) ~div(g) - |Cl+T - naT,

Before proving Theorem 2.1, we verify two auxiliary statements used in
the proof. The first estimate is a consequence of the fact that given |M| for a
Jordan measurable M C E*~, [, |ly||? dy is minimal if M is the (d — 1)-ball
centred at o.

Proposition 2.2 If M C E?! is Jordan measurable then

d—1 il
INIRE M
M (d+1)-|Bd-1ta1
The second estimate is the Holder inequality for positive aq, ..., a; and

ni,...,n; in the form

d+1 —2 a+1 -2

afjnﬁ"‘-""‘a/:jnfZ(‘11+---+ak>%(n1+---+nk)d%2la (8)

where equality holds if and only if a;/a; = n;/n; fori,j =1,... k.
Next we discuss two properties of Q(M, =, vy, ¢q) that will be also used
in Section 6. The first is its homogeneity; namely, If A > 0 and n > 1, then

Q<>\M7 Eq,AM,m q) = )‘d+IQ(M7 EQ,MJw Q) (9)

holds for any Jordan measurable M in E?~!. Now if M is a convex body in
E4~1 with 0 € M, then for any € € (0, 1), (9) yields

QU1 —&)M,Egrrn,q) > (1 — &) UM, Zg arn ).
In turn we deduce
QM\(1 = )M, Zgasn, q) <e-2d- UM, Zg 110, q)- (10)
Proof of Theorem 2.1: There exists some w > 1 such that
12)I?/w < q(z) < wl|2||* for any z € E4L.

Since q is fixed, we set =y a1 = Enrn-

Let M be a Jordan measurable set that is the closure of its relative
interior. It follows by Proposition 2.2 and the Hélder inequality (8), that
if =€ 7, then

OM,Z,q) > Y mll(y, 2, M)|&7 >y |M|&naT, (11)

ye=



where v, depends on w and d. There exists n depending on M such that if
n > 1, then in any face to face tiling of E¢~! by cubes of (d — 1)-measure
2|M|/n, the number of the tiles intersecting M is at most n. Taking Z to
be the centres of these tiles shows that that there exists a 4 depending on w
and d such that if n > n, then

QM, Eprnrq) < UM, E,q) < JniT| M|, (12)
Next we show that
lim max diam[{y}UIl(y, Eprn, M)] = 0. (13)

n—00 Y€ M,n

Since M is the closure of its interior, for any ¢ > 0 there exists some 1 > 0
depending on ¢ and M such that if z € M then |(z + 6B N M| > n. Let
us assume that diam[{yo} U IL(yo, Zrrn, M)] > 49 for some yp € Z, 5. In
particular there exists some xy € M such that ||xo—y|| > 20 for all y € Zj,,.
If 2 € (x + 6B N1(y, Eprn, M) for some y € Zpr,, then gz —y) > 6% /w,
therefore

Q(M, EM,n7q> > (5277/(,0. (14)
In particular (12) yields (13).
For W = [—1, 17!, we define

Cp = n%Q(W, EWn, Q).
It follows by (11) and (12) that

div(g) = liminf ¢,

n—oo

is a positive and finite real number.

Turning to C, we assume that C' is the closure of its relative interior. It
is suffient to prove that for any small € > 0, there exist an N depending on
e, C, d and w such that if n > N then

2

UC,Zgn, q) = (14 0y(2)) - div(q) - |C|TT - nTT, (15)

It follows by the definition div(q), and applying (13) to M = W, that there
exists some N, depending on € and d such that if n > N_, then

(i) (1 - e)div(g) < ¢ < (1+&)div(g);

(ii) diam[{y} UII(y, Ew.,, W) < €/2 for y € Ew,.



We start with the lower bound implied in (15). Choose pairwise disjoint
homothetic copies W7, ..., Wy of W in relintC' whose total (d — 1)-measure
is at least (1 —¢)|C|. It follows by (13) that there exists some N! depending
one, C'and Wy, ..., Wy such that forn > Nl and i = 1,..., k, any Dirichlet-
Voronoi cell II(y, Z¢,, C), y € E¢,, intersects at most one W;, and the the
number n; of Dirichlet-Voronoi cells intersecting W; is at least N, for each 1.
In particular ny + ...+ ngy < n. Therefore the condition (i) and the Holder
inequality (8) yield in this case that

k k L =3
AC.Zcma) = Y QW Zcnq) =Y (1 —e)divig) - Wil &1 -
=1 =1
> (1-¢)div(q) - |C|71 - pat. (16)

Next we choose A > 0, and homothets w; + AW, ¢+ = 1,...,m, with
pairwise disjoint relative interiors such that the m homothetic copies of W
cover C, and their total (d—1)-measure is at most (1+¢)|C|. We may assume
that A is small enough to ensure mN. > 1/e. If n > mN, then let

= = U£1<wi + )‘EW,\_n/mJ)-

It follows by (ii) that if x € w; + (1 —e)AW, i = 1,...,m, then any closest
point of =, to z lies in w; + A=y,,. In particular
3 Qwi+ (1 - AW, Epiq) < me, A [n/m e

=1

< (1+¢)*div(q)|C|™=ina1.  (17)

Let W, = W\(1 — €)W, and hence (10) yields

QWe, Zypipnjm)» @) < € - 2dCinm |n/m|TT < e - 3d div(g)(n/m)Tr.
For any x € w; + A\W,, © = 1,...,m, we consider a closest point y of =, to
x, and closest point z of w; + A=y ,. It follows by the definition of w that

gz —y) <wllz —yl]’ Swllz — 2|]* <w?q(z — 2).

Therefore

Z Qw; + MW, E,,q) < e-mw?3d div(q)Ad+1(n/m)d_T21

i=1
d+1 =2
d—1

< e-wddiv(q)|C|=inTT. (18)
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Finally combining (16), (17) and (18) yields (15), and in turn completes the
proof of Theorem 2.1. Q.E.D.

Next we discuss a weak stability version of Theorem 2.1 if C' is convex.

Corollary 2.3 Let C C E%! be convex body satisfying arB*1 c C C
(r/a)B* Y for a,r > 0, and let q be a quadratic form in d — 1 variables
satifying w™|z|| < q(2) < w||z|| for w > 1. Then for any ¢ € (0,1), there
exists ng depending only on the parameters d, €, a and w such that if n > ng,
then

d+1 2

QC Egom ) = (1+0(e))div(q) - [Cler - no, (19)
Oy, Zqcn,C) C y+eC. (20)

Proof: Let C;, Cy be convex bodies in E?~!, and let g1, ¢» be positive definite
quadratic forms in d — 1 variables satisfying

(14+e)'CicCoCc(1+e)C and (1+¢) ' << (1+e)q
for € € (0,1). Writing Z° = Z,, ¢, », we deduce by (9) that
A(Cy, 22, 02) = A(1+)7'CLE2 (L4 0) 7 ) = (146) (0L E ).

In particular for given n, Q(C,E, ¢, q) is a continuous function of ¢ and a
convex body C' in E¢1,
To prove both statements in Corollary 2.3, we may assume that

aB™t c O c (1/a)B*! (21)

by homogeneity. Under this assumption, the space of all possible C' and ¢ is
compact, therefore (19) follows from Theorem 2.1. Since the 1 in (14) in the
proof of Theorem 2.1 depends only on 4, d and « by (21), we deduce (20)
from (14) and (19). QE.D.

Remark 2.4 It follows from Theorem 2.1 that if ¢1 and qo are quadratic
forms in d — 1 variables satifying (1 +¢) g < g2 < (1 +¢)q fore € (0,1),
then (1 + &)~ tdiv(qy) < div(ge) < (1 + &)div(q).

In general, we only have the following estimate for div(q) in terms of
dinfl.

10



Lemma 2.5 Ifq is a positive definite quadratic form in d—1 variables whose
minimal eigenvalue is T, then

t
7 -divgy < div(q) < % -divg_y,

where equality holds in the upper bound if the eigen values of q coincide.

Proof: The lower bound readily holds To prove the upper bound on div(g),
we may assume that ¢(y) = Zd ! 2for y = (t1,...,t4-1). We write p;y to
denote the ™ coordinate of y € Ed

Let W = [—3, 3]%'. According to (7), if £ > 0 and n is large then there

exists = = {y1,...,yn} € ¥, such that
2

/ mi{l |z — yz'Hde <(1+¢)-divgq - na-1,
w =

Writing I1; = I1(y;, =, W), we define
= Z/ [pj(x —y:))?dr forj=1,...,d—1.
i=1 71
Now there exists a permutation o:{L,...,d— 1} —{1,...,d— 1} satistying

d—
> 000 = 315 S
=1

Therefore writing ¥ to the linear transformatlon with p; Wy = ps(;)y, we have
VW =W and

- 1 t —2
Z/ q(z —y;) dx < %-divdl-nﬂ.
i=1 Y1 -

In turn we conclude Lemma 2.5. Q.E.D.

We note that div; = 15 and divy = 51—\§ according to P.M. Gruber [14],

and it follows from the work of P.L. Zador [28] that
divg_y = 5= d + O(Ind) (22)

where the implied constant in O(+) is an absolute constant.

It follows from Lemma 2.5 that if d = 2 and ¢(z) = ka? then div(q) =
k/12. In addition the value of div(g) has been determined in K.J. Boroczky,
B. Csikés [4] if ¢ has two variables and the eigen values are not too different:
If ¢ is a positive definite quadratic form in two variables with eigenvalues
T < Kk <247, then

V74K + (4k? — 67K + 37%)1/?]

d .
vlg) = 18[2k + (4K% — 67K + 372)1/2]1/2

(23)
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3 Convex hypersurfaces

In this section we start the study of convex hypersurfaces. Let us discuss
first some notions associated to a positive definite quadratic ¢ form in d — 1
variables. We can choose a orthonormal bases for E?~! such that if y =
(Y1, .-, ya_1) € EL then q(y) = my? + ... + 74193, where 71,...,74 1
are the associated eigen values. Using this notation, we assign the positive
definite quadratic form ¢° to ¢ defined by

°(y) = Tfy% +...+ Tg—lyg—l'

We say that a convex hypersurface X C E? is proper if convX is a convex
body in E¢. In this case we write ux () to denote some exterior unit normal
at © € relintX that is unique for all z € relintX but of a set of (d — 1)-
measure zero. When integrating over X, we always do it with respect to the
(d — 1)-dimensional Hausdorff measure. If the closest point x of convX to
some y lies in X then we write mx(y) = . We note that

|mx(y) —7x (@) < lv =¥,

hence if mx is defined and injective on some convex hypersurface Y then
ITx(Y)] < |Y], and 7mx(Y") is also a convex hypersurface. We will also meet
the following setup: Given convex hypersurfaces X, Y such that X = 7y (Y),
let Z C relint X be a convex hypersurface. Then the subset Z’ of Y satisfying
wx(Z') = Z is a convex hypersurface, as well. We note if L is the boundary
of a closed convex set in E¢ with non-empty interior then we also write 7,
to denote the closest point map into L.

If the convex hypersurface Y C E? is the union of Fi, ..., F; such that
each F; is a Jordan measurable subset of some hyperplane and has positive

(d — 1)-measure, and affFy, ..., aff F}, are pairwise different then we call Y
a convex polytopal hypersurface, and Fi,. .., F} the facets of Y. If aff F; for
1 =1,..., k touches some proper convex hypersurface X then we say that Y

is circumscribed around X.

For certain calculations it is useful to consider patches as graphs of func-
tions. We think E¢ as E4"! x R where z = (y,t) is the point of E¢ corre-
sponding to y € E4! and t € R, and define B! = B¢ NEY!. We write

§= (07 _1)

to denote the ”downwards” unit normal to E¢~!. If C' C E4~! has non-empty
interior in B!, and # : C' — R is any function then the graph of 6 is

L(0) ={(y.0(y)) : y € C} CE. (24)
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In particular the graph of any convex function defined on convex body in
E?! is a convex hypersurface.

We say that a convex hypersurface X is a C? convex hypersurface if any
point of X has an open neighbourhood on X that is congruent to the graph of
some C? function. In order to define the principle curvatures at o € relintX,
we may assume that E?~! is the tangent hyperplane to X at zq = (yo,0),
and a neighbourhood X, C X of ¢ is the graph of a C? function 6 on an
open convex U C E?-!. Then the principle curvatures ri(zo), . . ., ka_1(To)
of X at z( are the eigenvalues of the symmetric matrix corresponding to the
quadratic form representing the second derivative of 6 at yo. For x € X, we
define o¢(x) = 1, and write o;(z) to denote the j™ symmetric polynomial of
the principal curvatures for j = 1,...,d — 1; namely,

oj(x) = Z Kiy () oo g ().

1<ii<...<i;<d~1

In particular, H(x) = o1(z) and k(x) = 04-1(x). Naturally o;(z) depends
on X but what X is will be always clear from the context.

Let Y be a convex hypersurface such that 7wy is defined on Y and is
bijective. If mx(y) = x for y € relintY then we write y = zy and define
rxy(z) = |ly — z||. Now the difference of the (d — 1)-measures is (see K.
Boroczky, Jr. and M. Reitzner [6])

-1 = [ (e L) (25)
+§/XTX,Y(x)j T %:(2) dz.

), uy (Ty))

We note that if Y is a compact convex (d — 1)-dimensional set, L = affY’
and X C 0K for some convex body K in E? then sometimes abusing the
notation we write rxy(x) = rox ().

Let us present an application of (25). Let K C P be convex bodies, and
let K have C? boundary. We claim that there exist oo, £* > 0 depending on
K such that if X C 0K and Y C OP are convex hypersurfaces satisfying
oY = X and dy (Y, X) < p for o € (0, gg), then

Y- [X] < &e-[X]. (26)

We use that there exists a 7 > 0 depending on K with the following property
(see say K. Leichtwei [22]): If © € OK then there exists a ball that lies
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in K, is of radius 7, and touches 0K from inside at z. Since any tangent
hyperplane to relint Y avoids int K, if € relint X then

(ux (x), uy (y)) = 15 (27)

Therefore (25) yields (26).

4 Some basic properties of graphs of convex
functions

The main goal of this section is to observe some basic properties of convex
hypersurfaces that are needed in the paper. First we introduce the notions
that we discuss until (45), and state the conditions (28) to (43) on these
notions. Let ¢ be a positive definite quadratic form in d — 1 variables, and
let w > 1 satisfy

w < l2]Pg(2) S w - |2]|* for 2z € B4 (28)

In addition, let
e € (0, 3552)- (29)

We investigate a non-negative C? function 6 defined on the (d—1)-dimensional
convex body C, where

C C /e B! with o € relintC. (30)

We write [, to denote the linear form and ¢, to denote the quadratic form
representing the second derivative of # at y € C'. We assume that

0(0) =0 and [,(z) = 0; } de

o ’ for z € E4-1L, 31
o)~ e 217 < gy(z) < alz) +<- el 3y
We define X’ =T'(0). It follows by the Taylor formula for y, z € C' that

0(z) = 0(y) —ly(z —y) = %qwt(zfy)(z —y) fort e (0,1); (32)
3z —y) +0() lly — 2[1% (33)
1. = LlI* = ¢°(z—y) + Oew) ||z — ylI* (34)

If y € relintC’ and = = (y,0(y)) then

uxr(x) = (1+ 1,117 - (1, =1). (35)
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It follows by (30), (34) and (35) that if z,2" € relint X’ for x = (y,0(y)) and
' = (y,0(y)) then

(uxr(2), uxr(2)) = 1= 5¢°(y — o) + Oew?) [ly — y/'II*. (36)

If 2 = o then we have a more precise formula. Since X’ does not intersect
the interior of the ball of radius i centred at ;—i &, there is a point 2z on the

boundary of this ball where the exterior unit normal is ux/(x) and ||mga-1z|| <
2y/e. We conclude

(& ux:/(z)) > (1+8w?) 2 >1— 4w’ for z € relintX’. (37)
It also follows that if z € C' and 7z is well defined then
|2 — Tgaimxoz|| < R||z||* for R > 1 depending on w and d.  (38)

Recalling that o;(z) denotes the j™ symmetric polynomial of the principal

curvatures x € relint X’ for j =1,...,d — 1, we have
H(z) = trq+ O(e); (39)
k(r) = detq+ O(ew™?); (40)
o(x) = OW). (41)

Next let Y be a convex hypersurface such that 7y is defined on Y and
it is injective, and let X = mx/(Y). We will assume that if 2 € X then

rxy(z) < o where o€ (0,¢); (42)
|z —2'|| > 2\/ow for z € X and 2’ € relbd X". (43)

Since all eigen values of g, are at most 2w for any y € C, there is a ball of
radius % touching X from inside at any = € X such that the ball intersects
X only in x, which in turn yields

(ux (), uy (ry)) ™ <1+ 20w. (44)
As a rough estimate, (25) yields the analogue of (26); namely,
Y= 1X] = O(ew) - |X]. (45)

We also consider a polytopal hypersurface Z circumscribed around X’
such that Z is the graph of a convex function h defined on a subset of C.
Assume that a facet F' of Z touches X' in (yo,0(yo)) for yo € C, and let
x € F of the form x = (y,h(y)), y € C. Now d(z, X’) is at most the distance
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of x from 2’ = (y,6(y)), and at least the distance of = from the tangent plane
to X’ at /. In particular the Taylor formula (32) and (37) yield

1=5% gy — o) < d(z, X') < 12 g(y — yo). (46)

It also follows that if some facet of Z touches X' at (zg,0(z)) for zy € C
then

$a(y — 20) < q(y — o) < 2q(y — 20)- (47)

In the final part of the section, our main goal is to establish Lemma 4.2
that allows us to shift between patches on smooth convex hypersurfaces.
First we verify a simple technical statement.

Proposition 4.1 Let 2,z € E¥! such that ||zo — 21| < 7 for some 7 > 0,
and let Y be the graph of a convex positive function on z, + 27 B*' such that
(uy(9),€) > L2 fory € Y. If yryp € Y satisfy that (=0 €) > L for
1=1,2 then

lyr = wall < 2-[llzs = 22/l + [l2r = wall - £(z1 = w1, 0,22 — 1))

Proof: We define y; € Y by the property that the vectors z; — y] and 2o — o
are parallel, and prove

lyr = 4l < 220 =l - sin Z(y1, 21, 91)- (48)

Let o be the arc that is the intersection of the triangle y; 21y} and Y, and let
y be the point of o farthest from the segment y;vy]. Then the tangent line to

o at y is parallel to the line 3,9}, hence (uy (y), &) > V3

5> yields that the angle
of ¥} — 1 and ¢ is between 7 and 2?” Thus the angle of the triangle z1y,]
at y} is between T and 2%, therefore the law of sine implies (48).

Now an argument as above shows that |lys — y}|| < 2|22 — 2z1||, which in

turn yields Proposition 4.1. Q.E.D.

Let us set up the notation used in Lemma 4.2. Let ¢ be a positive definite
quadratic form in d — 1 variables with

wz]| < q(z) < w||z|| for z € 41,

For ¢ € (0, —5) and g € (0,&®), let the convex functions ki, ho, f1, f> defined

? 16w?

on % B4=1 satisfy the following properties: We have fo(0) = 0, f4(0) = 0,

f1 and f, are C2. In addition if y € ¥ B4 then
hi(y) < fily) < faly) < haly) + ¢ and fi(y) =0, (49)
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and writing ¢; , to denote the quadratic form representing the second deriva-
tive of f; at y for ¢ = 1,2, we have

4(2) = 8- 27 < iy () < q(=) + 52l for z € B,

For i = 1,2, we define Y; = I'(h;) and X; = I'(f;) (see Figure 1). We assume
that Y; is a polytopal hypersurface circumscribed around X;, and the affine
hulls of the of the facets of Y; and Y, are in bijective correspondence in a way
that the affine hulls of the corresponding facets are parallel. In particular

hi(y) < ha(y) for y € 22 pi-1,

Y2 Xl

Figure 1:

Lemma 4.2 Given w > 1 and d, there exists ey € (0, zsz) depending on d
and w with the following properties. Using the notation as above, if C' C Ed-1
S a compact convex satisfying ){EBd lccCc ‘[ ¢ Bt and X; = 7x,(C),

moreover Y; denote the subset of Y; satisfying XZ = 7y, ( Z) fori=1,2, then

1X;| = [14+0@)]-|C| fori=1,2; (50)
V1| = [Xi| = [Ya| = |Xa| + O(c0) - [C). (51)

Proof: Readily if ¢, is sufficiently small then

TEdfl(Xl'), TTRd— 1( ) C 20 1= 172

It follows by (37) that if € is sufficiently small then (ux,(z),&) > ‘[ for
any x € relintX;. In addition if y = (2, h;(z)) for z € 2C, i = 1, 2, and u is
an exterior unit normal to Y; at y then d(y, X;) < p and (32) yield that there

exists ¥ € X; N (y + 4,/wo BY) with u = uy, (), hence (u,&) > ?, as well.
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In addition the conditions on hy, hs, fi1, fo and applying (32) to fi, fo yield
that

hi(2) > ha(z) > 0 if 2 € 20)\(% O); (52)

foz) < B2 if 2 €2 (53)
fo(2) = fi(2) < 64e% if 2 € 2C; (54)
ho(2) — hi(z) < 64e% if z € 2C. (55)

Therefore combining (45), (53) and 242 - w < ¢ leads to (50).

For z € C, we define 0y, (z) = Y; Nconv{z,7x,(2)} for i = 1,2, 0% (2) =
X1 Nconv{z, mx,(2)} and 64, (2) = Y1 Nconv{z, mx,(2)}, which points exist
by (52). In particular V; = Oy, (C) for i = 1,2, and the relative boundaries of
i, 0y, (C), X, and 0y, (C) are the corresponding images of 9C. We deduce
by (45), (54) and (55) that if €y is small enough then

|9’X1(C)|—|)N£zl = O(e0) - [C]; (56)

163, (C)] = [Y2| = O(eo)-|C]. (57)
Now we prove

X1 =165,(C)] = Ofco)-|C (58)

V1| =105, (C)] = O(eo) - |C1. (59)

Let z € 9C. Tt follows by (53) that ||z — Ox, (2)|| < %2, and the discussion

%, £) > @ In addition the analogous two inequal-
ities hold for 7x,(z), 0, and 6y, in place of Ox,. Next let z; = 7x,(2),
i = 1,2. Since d(fy (2), X3) < 64e% by (54), and there exists a ball of
radius ﬁ touching X, from inside at x5, we deduce that the angle as of
ux,(r2) and uy, (0 (2)) is O(e’wy/0). It follows that [0 (z) — x1] =
O(%wy/0)||0x,(2) — z|| = O(ew®0?), hence the angle a; of ux, (z;) and
ux, (0%, (2)) is O(ew?0?) according to (36). Therefore choosing €, small
enough, we have

Lz =mx,(2),0,2 = 0%,(2)) = Z(z=0n(2),0,2 = by,(2))

128w

We provide the rest of argument only for (59), and (58) can be similarly
proved. It follows by Proposition 4.1, (60) and ||fy,(z) — z|| < % that

above shows that (

B

< aptay =0 /o) < (60)

105.(2) = 6, (2)] < o2, (61)
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hence (59) is a consequence of

Y1ﬂ<0y1(relbd0)+g2 Bd)‘ O(z0) - |C]. (62)

To prove (62), let 7 = *4/—5, and let z1,..., 2, € OC be a maximal family of

points with the property that ||z; — z;|| > 302 for i # 7. Since z; + 02 Bi-1

are pairwise disjoint for ¢ = 1,...,k, and each is contained in the difference
3 3

of (14+22)C and (1 — £)C, we deduce that
k=0 () 10l (0 0oy [Cl- (@D (@

Now let y € Y; satisfy that |ly — 6y, (2)|| < o2 for some z € OC. There

exists some z; such that ||z — 2| < 302, hence ||y, (2) — 7x,(2)|| < 302. In

particular (36) implies that the angle of z; — 6y, (2;) and z — 6y, (z), which is

the angle of uy, (7x, (z)) and ux, (7x,(z)) is at most 4we? (after choosing
1

go small enough). Thus ||z — 6y, (2)|| < g; and Proposition 4.1 yield that

10y, (z:) — Oy, (2)] < 7WQ%, hence ||0y,(z;) — y|| < 8(_)%. We deduce by (63)
that

ﬂ<9y1<80)+gg Bd>‘ < i

N (6 (z0) + 808 BY),

8¢% B") = O(=0) - |C.

k- S(

We conclude (62), and in turn (59) and (58).
Finally combining (56), (57), (58) and (59) yields (51), and in turn
Lemma 4.2. Q.E.D.

5 The Delone property of the extremal body

In this section we establish Theorem 1.2 (ii) and (iii). For z € E" and a
compact X C E", we write d(z, X) to denote the minimal distance between
x and the points of X. If X and Y are compact sets in E” then their Hausdorff
distance is

5i(X,Y) = max {max d(x,Y), max d(y,X)} .

reX

To verify our main result Lemma 5.2, we need Proposition 5.1. We write
H?2(-) to denote the (d — 2)-dimensional Hausdorff measure.
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Proposition 5.1 If M C N are conver bodies in E? such that for some
x € OM, there exists a ball B C M of radius n touching OM at x, and
x+0-ugpy(z) €N for 0 <6 <mn then

d+1

S(N)—S(M) > con'T 5T
where ¢ > 0 depends only on d.

Proof: We may assume that x = o, E?! is the supporting hyperplane to
M at x, and ugp(z) = €& We define C = BN N, 29 = 2+ 6 - ugnr(2),
and Y to be the convex hypersurface that is the union of the segments of
the form conv{zg,y} for y € C. In addition we define u, € E*~! to be an
exterior unit normal to 0C at y € 0C, and the radial function p(z) > 0 by
the property o(z) -z € 9C for = € B?1. The existence of B yields that
o(z) > 3+/né for all z € B*. Therefore

1
S(N)—=SM) > |Y|_|C|:ﬁ \/ (uy, y)? + 6% — (uy, y) dy
— 1 Jac
52 1 52 d—3
S P N R S
A(d —=1) Joo (uy, y) A(d = 1) Jopi-r (Ug(z)z: 2)
7{d_2(813d_1) Qgé 54%1
- 4(d—1)
where the integration always occurred with respect to H2(-). Q.E.D.

We prove Theorem 1.2 (ii) and (iii) as part of Lemma 5.2.

Lemma 5.2 Let K be a convex body in E? with C? boundary, let Py be a

circumscribed polytope with n > d + 1 facets that has minimal surface area,

and let X C 0K be a convex hypersurface such that the Gauf-Kronecker

curvature is positive at the points of X. Then dy(Puyy, K) < B and
nd—1

if F'is a facet of Py with mox(F) N X # 0 and F touches K in x then

diamF < —2—, and F contains a (d — 1)-ball with centre x and radius —<

nd—1 nd—1

where «, 3, By are positive, By depends on K, and «, 3 depend on X and K.

Proof: Readily it is sufficient to consider the case when n is large. It is known
(see say K. Leichtweif} [22]) that for suitable > 0 depending on K, if z € 0K
then there exists a ball that lies in K, is of radius 7, and touches 0K from
inside at x. In addition we write L, to denote the supporting hyperplane to
K at x € 0K, and L} to denote the half space containing K. During the
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proof of Lemma 5.2, aq, s, ... and (1, Bs, ... denote positive constants that
depend on X and K.

Our first task is to establish the order S(F,)) — S(K) (see (64) and (69).
According to K. Boroczky, Jr. [3] (or E.M. Bronstein and L.D. Ivanov [§8] in a
more general framework), there exists a polytope Q) circumscribed around

K with n facets satisfying 0 (K, Q) < B therefore
nd—1
s
S(Piy) — S(K) < S(Qny) — S(K) < ni (64)

Let § = 0p(K, Pyy), let v be a vertex of P,y with d(v,K) = ¢, and let
T = mpxr (v). We deduce by Proposition 5.1 that

S(P(n))—S(K) >0 2 . (65)
Comparing with (64) shows that dy (K, P,)) tends to zero; namely,

0= (5H(K, P(n)) < ﬁ—i. (66)

nd271

Now there exist convex hypersurfaces X, Xo C 0K such that the princi-
ple curvatures at each point of X, are positive, and

X CrelintX; C Xy C relintX5.

Next there exist v > 0 and w > 1 depending on X and K with the following
two properties: First if y € X, then H(y) = 01(y) > w™!. Secondly assuming
that &, = (z + de) N 0K intersects X for x € 0K, we have ®, C X5, and
if y € ®, then

tan Z(uok (), 0, w0k (y)) < w-[ly — z|; (67)
wlly =2l < rorr,(y) < w-lly -2 (68)
We write Fi, ..., F), to denote facets of FP,), and x; to denote a point of

0K where F; touches K. We assume that mpr (F;) N X # () if and only if
© < k, and F} intersects some F; with ¢ < k if and only if ¢ < ky. According
to (66) and (68), we may assume that n is large enough to ensure that if
© < k and F} intersects F; then

WaK(Fi) U 7T3K(Fj) C (I)xi'
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We write C; to denote the orthogonal projection of myx(F;) into L,,, and
deduce by (25) and Proposition 2.2 that if i < k then

B = |moc(F)| > / rorc 2. () H(y) dy
Tor (F3)

> / w2, ||y—x||2dy>/ w_2-||z—x||2dz
7oK (Fi) C;

i1 d+1
> Q9 - |Ci|d—1 > Qs - |7T3K(F’i)|d—1.

Therefore the Holder inequality (8) yields

k d+1

S(Py) = S(K) = > [|Fi| = |mox (F)] = as - | X

(69)
i=1 kit

Comparing with (64) leads to k > ayn.
We are ready to face directly the Delone property. It follows by (68) that

|z — ]| < Vwé if i < ko and z € F, (70)
which in turn yields that
0> a5 ki1 > qg-nat, (71)

For any ¢ = 1,...,ky, we write v; to denote the minimal distance of the
(d — 2)-faces of F; from z;, and define v = min,;—; ;1. Readily

v < By kT < By ema, (72)

and let m < k satisfy v = 1,,,. We observe that P = Py N L;f has n + 1
facets, and
da+1

S(Puy) = S(P) > ag- 6%
according to Proposition 5.1. We define E, =F,nN ﬁ, and

(73)

P,:L%—m< 1;&mL )

i<n
which is a polytope circumscribed around K with n facets. We write Y to
denote the part of P cut off by L. . If G is a facet of P intersecting E,
and touching K in y then |y — z,,]| < 2V wé (see (70)), hence (67) yields

M\w
N

tan Z(ugr (Tm), 0, uak (y)) < 2w?2 - d2. (74)
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We define w = 2, +2wd-ugx (), thus Y is contained in C' = conv{w, F,, }.
In addition there exists some x; with j < ko, j # m, such that A = L, NL,,
contains a (d — 2)-face of F},, and the distance of z,, from A is v. Since
lz; — zm|l < (14 w?)v follows by (68), (67) implies

tan £ (ugx (Tm), 0, Ugr (5)) < 2w - v. (75)
We define ¢ = C'N L7 and Y’ = 0C' \relint £, hence Y C € yields
S(P') = S(P) = [Y| = |Fn| < Y| = |Fy|- (76)
It follows by (74) that if y € relintY” and n is large then
(upr (Tm), uy(y)) ' < 1+ 8w 4. (77)
In addition if y € relint(Y" N L,,) then (75) yields
(wor (), uy (y)) ™ <1+ 8° -2 (78)

Next we prove that if v/§ > 2dw’v then

(1 - 20?;) (B = ) + & C 7 (YO L), (79)

Let z € (1 — 2“3%) (Epy — ) + T, and let y € Y and 2 € Y/ N L, satisfy

that 7., (y) = 7, (2) = . Now the definition of ¥ shows that

Iz — ]| > 222 - 206 = dw* - V3. (80)

Since the distance of z from A is at most 2v/wd, we deduce ||y —z|| < 4w?vde
by (75), which inequality combined with (80) yield (79). In turn we conclude

by (77), (78) and |F,,| < Bs0“T that if v/§ > 2dw’v then

V| = |F| < Br6°7 - [(1 - wa?)dl Rt (1 - (1 - %g)dl) -5} . (81)

Since S(P,)) < S(P'), combining (73), (76) and (81) leads to

d+1

ag- 0% < 30T [zﬂ 4 2y ~5] .

Vs

Therefore § < (g% in any case, hence the estimates (71) and (72) complete
the proof of Lemma 5.2. Q.E.D.
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6 Approximating paraboloids

If K is a convex body with C? boundary, and the Gauf-Kronecker curvature
is non-zero at x € JK, then a small neighbourhood of z on K can be very
well approximated by a patch on a parabaloid. Using Lemma 4.2, polytopal
approximation of this neighbourhood of x can be related to polytopal ap-
proximation of the patch on the paraboloid. Therefore in this section we
consider the latter problem.

Let ¢ be a positive definite quadratic form in d — 1 variables, and let
w > 1 satisfy

w2 < q(z) w - ||z||* for z € 4L (82)

We choose a orthonormal bases for E¢~! such that if y = (¢,...,tq_1) € E¢!
then q(y) = mt? + ... + 74115, and hence w™' < 7; < w for each 7,. We
assign the positive definite quadratic form ¢* to ¢ defined by

d—1

q*<y>=||y||2+ﬁ-q<y>=2(1+ )-t%. (83)

i—1 Tl+~--+7—d—l

The role of ¢* will be explained by Lemma 6.1. We frequently estimate ¢*(z)
by
2] < g*(2) <2 [|=[* (84)

Since tr ¢* = d, Lemma 2.5 yields
divgy < div(q") < 7% - divgy, (85)

where equality holds in the upper bound if the eigen values of ¢ coincide.
In Lemma 6.1, we further consider the graph X’ the graph of %q above
E?! and a compact convex set C' in E*! with

rBt ¢ ¢ c 16rB*! (86)
for some r > 0. In addition let X = mx/(C).

Lemma 6.1 For w > 1 and d > 2, there exist 9, X > 0 with the following
properties. If ¢ € (0,&0), and q, C, X' and X as above, and C' C \/z B* !,

and n > ng where ng depends on w, d and e, then we have (i) and (ii) below.

(i) If Y is a polytopal convexr hypersurface circumscribed around X' satisfy-
ing X =7x/(Y), and Y has at most n facets then

Y] 1X] > (1= Re) B4 - (trg) - (det @) T1[C|5T - nr.
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(ii) There exists a polytopal convex hypersurface Y circumscribed around X'
with at most n facets such that X = nx/(Y'), and

V|- |X] < (1+ Ng)dw(q ). (trq) - (det q)TT|C|TT - naT, (87)
op(V, X) < Np a1 |C] -1, (88)
Proof: We write [, to denote the linear function representing the derivative

of %q at y € E¥"!. The bases of the argument is the Taylor formula (32);
namely, for z,y € E¢ 1,

3a(2) = 54() +1,(z —y) + 5 a(z — y). (89)

First we prove an estimate for |Y| — | X| if Y is a polytopal convex hy-
persurface circumscribed around X’ with X = mx/(Y) and at most n facets,
and Y satisfies the following:

(x) If a facet F' of Y touches X' at y, then mga—1(F) C mga-1(y) + eC.

If g9 is chosen small enough then we deduce

Jnax ly = mo(y) < min 2= 7o (2)]) (90)

We write F1, ..., F} to denote the facets of Y. We define z; to be the point
where aff F; touches X', y; = mga—1(x;) and II; = a1 (F;) for i = 1,... k.
In particular, if i = 1,..., k then (89) yields

M= {z € mpr(V): qlz—9) <qlz—y;) forj=1,.... kb  (91)

We define
f(z)=trq-q(2) +¢°(»),

and claim that

|- ) = 2 Z/fy ) dy 92

To prove (92), we observe that C' C /e B4~ and (90) yield

Tpi-1(X), Tga-1(Y) C e B*1. (93)

We have [|l,]| <w - ||y||, and hence if |Jy|| < 24/e, then
(Cux(z)) 21— 50 |lyll* = 1-2w% forz=(y,q(y).  (94)
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Since ¢(z) < w||z||?, a ball of radius = rolls above X’. In other words, for
any r € X' there exists a ball of radius % that touches X’ at z and lies in
convX’.

For z € F, let © = mx(2) and y = mga-1(2). In particular ||z —z|| = O, (g)
by the condition (*) and the existence of the rolling ball. Tt follows from the
estimates on ||, ]| and the existence of the rolling ball that

rxy(z) = M q(y — yi) = Ou(e).

In addition (36) yields

(ux (z), uy (2)) ™ = (ux(z), ux: (z;)) " =1+ HO HOuE) oy — y;) = 14 O, (e).

Since the Jacobian of the map 7y : F; — X is 1 + O, (¢), we deduce

O
Y] - x| = 2 9eld) Z/fwl )z,

by (25) and (39), and hence we conclude (92).
Before continuing to prove (i) and (ii), we observe that if 2 € B! and
2! = mga-1mx:(2), then

lz = 2l = Ou(llI1"). (95)
It follows by (95) that if €y is small enough and (x) holds, then (90) yields
(1—¢)C C a1 (X),mga—1(Y) C (1 4+¢)C. (96)

Let us prove (i) first. We may assume that
2

V] — X < S (trg) - (det q)TT|C|TT - naT. (97)

To verify that (*) holds for large n, we assume only C' C B?! instead of
C C /eB%! for the time being. It follows by the condition (86) that there
exists some o > 0 depending only on d such that if y € C and p € (0,r),
then

|(z +oB™™)NC| > a;o™™*

Thus the existence of the rolling ball of radius % for X’ yields the existence
of to > 0 and as depending on d and w with the following property. If
xo € X satisfies rxy(zo) >t € (0,tp) then there exists some A C X with

|A|l > ast“T such that rxy(z) > t/2 for x € A. In particular (25) yields

that |Y| — | X| > ast™> for some a3 > 0 depending on d, w, and hence we
deduce by (97) that

5 (Y, X) = O, (n#1)|C|7. (98)
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Therefore the condition (*) holds for n > n; where n; depends on d, w and
£.

Let IT; = II; N (1 — €)C. Some of the II;’s might be the empty, therefore
we renumber Fi, ..., Fy in a way such that I} # () if and only ¢ < &’ for some
k' < k. In particular, if i = 1,..., k" then

I={ze(1—-e)C: qlz—y;) <q(z—y;) forj=1,...,k'}. (99)

It follows from (92) that

Y] - IXI> Z fy yi) dy.

Next let W, be the linear transformation of E4~! defined by

‘Iqu = (\/T_ltl, C ey /Td—ltd—l) for z = (tl, ce ,td_l), (100)

and hence
trq-q*(Wez) = trq-q(2) + ¢°(2) = f(2) and [|T,2]* = g(2). (101)

It follows that . .
w2rB™' C ¥,C C 16wirB* . (102)
Writing = = U {v1, ..., yw }, we have (compare (99)),

1—0,(e)
2

Y| —|X| > (detq)= - trq-QU,((1—)C),E, ¢°).

Here = has at most n elements. According to Corollary 2.3, if n > ny where
ng > ny depends on d, w and ¢, then

Vi-ix) 2 S0 g P g div(g ) (- )0
> (1= 0,(e) ™) . (trq) - (det q)TT|C|TT - naT,

completing the proof of (i).

To prove (ii), we take a reverse path. It follows by (102) that there exist
¥ > 0 depending on d and w, moreover ng > ns depending on d, w and ¢
with the following property. For n > n3, one finds a set = of cardinality at
most Jen such that

S0 C Uy((14 )N\, ((1 = 32)C) C Z + |W,C|7Tna1 B& .
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According to Corollary 2.3 and (10), if n > n4 where ny > n3 depends on d,
w and e, there exists Z' of cardinality at most (1 — J¢)n such that

d+1
d—

QT,((1+2)C),Z,q") < (14 O0u(e))div(g")| (1 +£)C)[T - nar, (103)

QT,((1+e)C)N\Ty((1 = 19we)C), E', q7) < Oule) - QT ((1+6)0),Z', %),
(104)
Iy, =, v,C) Cy+eY,C foryeZ. (105)

It follows from (103) and applying Corollary 2.3 to (1—3¢)C that Z'N(1—3¢)C
has at least (1 — O, (¢))n points, and hence

Z'\(1 — 3¢)C has O,(en) points. (106)

Let = = 2/ U Eo, and hence the cardinality of = is at most n. For any
r € U, ((14¢)C), let y be a closest point of = to z, and let z be a closest
point of Z' to . First we assume x € (1 — 19we)C. It follows by (102) and
(105) that

|z — || < |ly — 2| < & 16rw3,

and hence again (102) yields
zex+e-16wv,C C (1 —e3w)¥Y,C.

Since =y N (1 — e3w)¥,C = 0, we conclude that if € (1 — 6we)C, then
¢*(z —y) = ¢*(z — 2). On the other hand, if x ¢ (1 — 19we)C, then

¢ (z —y) <2z —yll <2[lz — 2| < 2¢°(z — 2).

Therefore (103) and (104) imply

QT,((L+e)C),Z,¢") < (1+0,(e)UT,((1+¢)C ),E/,q*3+l .
< (14 0,(2))div(q")[¥e((1+e)C) |1 - T,
(107)

Let =F = \D;lé, and let Y’ be the polytopal convex hypersurface whose
facets touch X’ in the points whose projection into E4~! is Z*. Finally, let
Y* C Y’ satisfy mx/(Y*) = X. It follows by (105) that Y* satisfies (*).
Therefore (92) and (107) yields

Y7 = [X] <

1 1 d+1 -2
%W(E) div(q*)(tr q) - (det q)m|c|d—f1 SnaT, (108)

In particular Y* satisfies (87); namely, the half of (ii).
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Next we aim at (88). We show that at least points near the relative
boundary of Y* satisfy (88). We define = = \P;lé\(l — 3¢)C, and write
m to denote the cardinality of Zj. It follows from (106) and the definition
of Zy that m = O,(en). The choice of =, also yields that for any = €
(14 ¢e)C\(1 — 3¢)C, there exists z € = satisfying

gz —2) <0, (\cy*n*) (109)

It follows from (109) that we only need to modify Y* in the “inner” part to
get (88).

We write T¢  to denote the family of all = C (1 — 3¢)C of cardinality
at most n —m. For = € T¢  let YZ be the polytopal convex hypersurface
whose facets touch X’ in the points whose projection into E¢~! is 2 U =,
and let Y= C YZ satisfy nx'Y= = X. It follows from (109) that if H is a

hyperplane that touches X in a point x with mga-1(z) € (1 — 3¢)C then
mre—1(H NYz) C (1 —2¢)C. (110)
Let Y,y = Yz, for Z(n) € TY_,, such that
Y| = |X| = min{|Yz| - [X|: E€ T, }.

Since Y* = Yz for some = € Y¢_ | Y, satisfies (87). It follows from (i) and
(87) that Y, has at least (1 — O, /(e))n facets, thus Z(n) > (1 — O,(e))n. It
particular the minimal distance between points of Z(n) is O, (|C ]ﬁnd%ll)
It follows from (110) that we may apply the the argument in Lemma 5.2 to
Y(n), and the extremality of Y{,) yields that for any x € (1—3¢)C there exists
ay € =(n)UE; with gz —y) = Ow(|C|dQTlnd_T21). Combining this estimate
with (109) completes the proof of (88). QED.

7 The proof of Theorem 1.1 if 9K is C?

Let K be a convex body in E¢ with C? boundary. In this section we prove
Theorem 7.1 about polytopal approximation of a compact Jordan measurable
subset X such that x(z) > 0 for z € X. In particular if K is C3, and hence
X = 0K can be assumed, then Theorem 7.1 proves Theorem 1.1. In addition,
Theorem 7.1 forms the core of approximating 0K also in the case when the
GauB3-Kronecker curvature is allowed to be zero.
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Theorem 7.1 Given a convez body K in E? with C? boundary, and a convex
hypersurface X C 0K such that the Gaufs-Kronecker curvature is positive at
any x € X, there exist €o,ﬂ~ > 0 depending on K and X with the following
properties: Let e € (0, ).

(1) If n is large and Py, is a circumscribed polytope with n facets that has
minimal surface area, and the Y C OF) with moxY = X has k facets
then

a+1

1 — _ 1 1 d—1 _
Y|—|X]| > %X@ (/ div(Q,) ™1 H (z) ™1 k(z) 71 dm) ka1,
X

(ii) If k is large then there exists a polytopal convex hypersurface Y cir-
cumscribed around OK with at most k facets such that Ty = X,

5p(Y,X) < B- ki1 and
1 _1 . a1
V|- |X| < %’X(E) (/ div(Q,) T H(z) i x(z) o da:) =3
X
Remark: How large n should be depends on ¢, X, K.

7.1 The common parameters for the proofs of (i) and
(ii)
There exists w > 3 such that the principal curvatures at each z € X lie

between % and §. We choose a convex hypersurface X’ C 0K such that

X C relintX’, and the principal curvatures at each z € X’ lie between %

and §. In particular X' = 0K if X = 0K. There exist gy > 0 and Ry > 1
depending on X and K such that if H is the tangent hyperplane at some
r € X', and ||y — maxy|| < o foray € H and p € (0, g), then

ly — ol < Noy/aB". (111)

Given d and the w of the previous paragraph, we choose the corresponding
g0 > 0in a way such that it is small enough for Lemmas 4.2 and 6.1, moreover

co < (2R - Ry - w?)!

where N comes from (38), and ¥, comes from (111). We choose 7y > 1
depending on w and d such that

vl < div(QF) T H (2) T k(z) T < v
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for x € X'. Let € € (0,¢¢), and let ny depending on w, d and € come from
Lemma 6.1. In addition let v € (0, ] be maximal with the properties

p=@= > g INd=L gy, (112)

p=@= > 9d|pd-l Tl g, (113)
These inequalities will ensure that when we apply Lemma 6.1, the number
of facets of the corresponding polytopal convex hypersurface is at least nqg.

We choose convex hypersurfaces 71, Zs C 0K such that Z; C relintX,
X CrelintZy and Zy C relintX’, and
li(:t)# dx

Iz, div(Q}) 1 H(a) <l+e¢ (114)
le diV(Q;)%H(ZE)ﬁH(ZL‘)# dx .

ISUI=H

d—1
+1

SY
[

We note that if X = 0K then we simply choose Z; = Z; = 0K.

It follows wia an compactness argument that there exists § € (0,+/2)
depending on K with the following properties: For z € Z,, let H be the
tangent hyperplane to K at x. After identifying x with o and H with E?!
in a way such that K lies above E?~!, there exists a convex C? function f
on § B¥! whose graph is part of X', and writing g, to denote the quadratic
form representing the second derivative of f at y € relint § B!, we have

Qu(2) — 518|121 < qy(2) < Qu(2) + 58+ ||2||* for z € E4~1. (115)

It follows from Remark 2.4 and (35) for div(Q%), and (39) and (40) for H(x)
and x(z) that if y € relint § B4~ and 2’ = (y, f(y)) then

div(Qy) = (1+Ogx(%) - div(Q}): (116)
HG) = H(z)+Oxx(e): (117)
k() = k(x)+ Ox.x(c?). (118)

In addition for the map 7o : relint 6 B! — 9K, we deduce from (26) that
the Jacobian is 1 + Ok(||y||?) at each y € relint § B4L. (119)

When we say that n or £ is large enough then we mean a threshold that
depends on £, X and K.

7.2 The proof of Theorem 7.1 (i)

According to Lemma 5.2, 0 (P, K) < ﬁond%zl where 3y depends on K. For
large n, we define

0 =22, (120)

31



Readily o < 18, 0 < 0y and &;@ < § if n is large.

We choose a maximal family sq,...,s,, € 0K with the property that
l|lsi — sl > 2@ for i # j, and we write Cf,...,C?, to denote the facets of
the circumscribed polytope whose facets touch K at sq,...,s,,. Let X' =
moxC}, 1 =1,...,m', and let us reindex sy, ..., S, in a way such that

XN Zy # 0 if and only if i < m for some m < m'.

We write B; to denote the unit (d—1)-ball that is centred at s;, and contained
in the tangent hyperplane to K at s;. If n is large and ¢ = 1,...,m, then
X7 C X and

S; + ng C Cz* C s+ 3§Bz

Since 05 (P, K) < o, (111) yields that if myx F' intersects X for a facet F
of P, then diamF < 2Rg,/0. We define

C,L' :3z+(1—8N0V>(CZ* —Si), 1= 1,...,m.
In particular if n is large and + = 1,..., m, then
S; + ng CC;Cs;+ 3?31,

and if mo I intersects mor C; for a facet F' of P, then it is disjoint from
moxCj for j # 1. Fori=1,...,m, let myxC; = X;, and let Y; C OF,) satisfy
that o Y; = X;. Therefore writing k; to denote the number facets of Y;, we
have ki + ...+ k,, < k. Since the projections of the facets of Y; into C; cover
si+ g B;, (111) and (112) yield that k; > ng. According to Lemma 5.2, any

facet F' of P,y with mpxF' C X contains a (d — 1)-ball of radius ana1 where
« depends on K and X. Therefore

ng < kl < OK,)(<H|CZ|> (121)
Let moxC; = X fori=1,...,m.

Proposition 7.2 Ifn s large and i = 1,...,m then
d+1
d—1

1 — _ - 1
il x| L) ( | (@) ) F o) das> L
X

Proof: We may assume that s, = o, aff C; = E*! and K lies above E4 1.
According to (115), there exists a convex C? function f; on /v B! whose
graph is part of K, and writing ¢, to denote the quadratic form representing
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the second derivative of f; at y, we have that if y € and n is large

then

20/ npd-1
=B

Qu(2) = 1A 217 < 0(5) < Qule) + 28+ [2]? for = € B,
We define ¢ by
q(2) = Qs,(2) + % 8 z||* for z € E4L,
which satisfies that if y € % B! then
q(z) =% ||Iz|I* < q(2) < q(z) for z € ET°L. (122)

In addition all eigen values of ¢ lie between % and w.

We write X! C 0K to denote the convex hypersurface that is the graph
of a convex function above &;@ B%1 hence X; C X/. In addition let X! be
the graph of fo = % q above &;@ B4 and let )Z = W}?gci' We observe that
X! lies “above” X! according to (122), and if z € X! with ||mgeiz|| < %
then (122), o € (0,2%), and the Taylor formula (32) yield

d(z, X!) < 500°%. (123)

It follows from (38), o < ® and the conditions on g, that if y = mx:x and
z = wgx for x € 0C; then

\/q(a: — Tga—1Y) + \/q(:v — Tga-12) < V4/p. (124)

During the argument, we frequently apply that /q(-) is a norm.
In order to apply Lemma 4.2, we need to extend Y; to a suitable polytopal
convex hypersurface, whose facets touch X/, and that is the graph a convex

function h; on 222 B;. Let Z be the family of points z € % B; such that

q(z —y) > g/64yfor all y € mga1Y;. In addition let = be the family of
projections into E4~! of the points where the facets of Y; touch X/, and let
= be a maximal family of points in Z such that q(z —y) > v?p for different
z,y € Z. Let Y/ be the convex polytopal surface circumscribed around X/
that is the graph of the convex piecewise linear function h; on % B; such
that projections of the points of tangency into E*' is ZUZ'. For y € Y;,
Lemma 5.2 and the definition of ¢ yield that d(y, X;) < 272, and hence
there exists x € = with

q(x — Tpay) < 2780 (125)
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according to (46). Since q(z — mga1y) > 27 7p for any x € ' by (124), we
deduce that Y; C Y/ by (47). In addition for any z € 8—‘11/5 B;, there exists an
xo with q(z — zg) < /64 such that either xy € Z or zq € mga—1Y;. Therefore
there exists an x € ZU Z’ with ¢(z — x) < p/8, and hence (49) is satisfied.

For any y € L;/E B;, let y € % B; be the point such that the exterior
unit normals to X! at z = (y, f1(y)) and to X! at (g, f2(§)) coincide. Inas-
much as (123) yields that (g, f2(7)) is contained in the cap of K bounded by
the hyperplane parallel to the tangent at x and of distance 5009 from z, it
follows from the Taylor formula (32) and (46) that

q(y — ) < 2000°%. (126)

m

Next let 2= {§: y € Z}, and let = = {§ : y € Z'}. If Y/ is the convex
polytopal hypersurface circumscribed around )Zz’ whose facets are in bijective
correspondence with the facets of Y; in a way such that the corresponding
facets are parallel, and 571/ is the graph of the convex function hsy over %‘@ B;,
then the projections of the points of tangency into E4~! is SUZ. Let Y; C 17{
satisfy 75};}7,- — X,. If y € Y; then combining (124), (125) and (126) shows

that there exists 7 € Z with q(z—7Tga1y) < 2770, while ¢(z—mpa-1y) > 27580
for any z € Z'. It follows by (47) that the projections of the points where the
facets 12 touch )?Z’ into E?~! all land in é, therefore }71 has at most k; facets.

Next we apply Lemma 4.2, where C;, X;, Y;, )?i, Y; play the role of C,
)Nfl, }N/l, )N(Q, Y,. We deduce using (121) that

Xil = [Yi] > |X)| =Y = Oxx(v-nTT) - |Gyl

- ~ —2

> X = Vil = Oxx (v K - |G 5.
Since k; > ngy, we may apply Lemma 6.1 (i) to |17;| — |X;|, and conclude
div(g*) 1 dtl d;—21
Vil 1X] 2 (1 Oxx(e) - 0 (ing)(det ) 2| O -,

> (1= Ox()) - TG54 H(sm(s) 77 |CF 75 - 7
Since |Y;*| — | X7 > |Yi| — | Xi|, the estimates (116), (117), (118) and (119)
complete the proof of Proposition 7.2. Q.E.D.

We have X7 C X fori=1,...,m, and the union of X7, ..., X covers Z;.
It follows from Proposition 7.2, the Holder inequality (8) and ki1 +. . .+k,, < k
that
V=X = > - |X

=1
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Therefore (114) completes the proof of Theorem 7.1 (i).

7.3 The proof of Theorem 7.1 (ii)

For large k, we define
0 = 22\Nya T | X |TT kL, (127)

where the X > 1 depending on w and d comes from Lemma 6.1. Readily
0<% 0< oo and%‘/@<5iflzislarge.

We choose a maximal family sq,...,s,, € 0K with the property that
l|si—s;]| > 2@ for i # j, and we write C, ..., Cp to denote the facets of the
circumscribed polytope whose facets touch K at sq,..., s,s. Let X; = moxC;,
i=1,...,m, and let us reindex sy, ..., s, in a way such that

X; N X # 0 if and only if i < m for some m < m/.

We write B; to denote the unit (d—1)-ball that is centred at s;, and contained
in the tangent hyperplane to K at s;. If k is large and ¢ = 1,..., m, then
X, C Zy and

Fori=1,...,m, let
. [ div(Q )Z—H@)‘%im)# dr
UL div(Qn)# H () i k() 7 d

It follows from (127) that

X\ X = [y ™
_ gy ()T ey > 228 S (12
( k 2k; k; (129)
We also deduce using (129), (128), and (113) in this order that

ki >0 ~(@-1g=d|pd-1| >

In summary,
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Proposition 7.3 If k is large and © = 1,...,m then then there exists a
convezx polytopal hypersurface Y; circumscribed around OK such that moiY; =
X, Yi has at most k; facets, dp(Y;, X;) < 0, and

1 -1 1 1 d—1 =2
wi— ) < P20 (] aviop @ ds)
X

Proof: We may assume that s; = o, aff C; = E*! and K lies above E4-1.
According to (115), there exists a convex C? function f on /v B4~! whose

graph is part of K, and writing ¢, to denote the quadratic form representing

the second derivative of f at y, we have that if y € %*/E B4 and k is large

then
Qs,(2) — %VS 7 < qy(2) < Qs (2) + % V8- ||2]|? for z € EZ°L,
We define ¢ by
q(2) = Qs,(2) — 5 v° - ||z|* for z € BT,
which satisfies that if y € %ﬁ B! then
q(2) - ||Iz|I? < q,(2) < q(2) +v* for z € E4 L, (131)

In addition all eigen values of ¢ lie between < and w.
We write X! C 0K to denote the convex hypersurface that is the graph

of a convex function above ;/_ B! hence X; C X/. In addition let X{ be
the graph of fy = % q above &;@ B! and let X, = 75.C;. We observe that
X/ lies “above” )?Z’ according to (131), and if x € )~(Z' with ||mga—1z| < %
then (131), o € (0,2%), and the Taylor formula (32) yield

d(z, X;j) < 500%. (132)

;2
Since k; > ng, and (129) yields ¢ > 2*°R|C; |7k, Lemma 6.1 (ii) yields
the existence of a convex polytopal surface Y circumscribed around X ! such
that X; = WX,Y;, Y; has at most facets, 5H(Y1,X) <2729 and

2

Vil = |Xi] < (14 Osex(e) - T4 (twq) (det q) 77| G 47 - k]
It follows from (116), (117), (118) and (119) that

7l - 1% < 220 ([ av@n B o anar) kT

i
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Finally, the same way how based on Lemma 4.2, the )7, was constructed
knowing Y; in the proof of Proposition 7.2, one can construct the Y; for
Proposition 7.3 knowing the Y; above. QE.D

It follows from Proposition 7.3 and the definition of k; that if

Y

-2

—1 —1 d—1
A= (/ div(Q?) 1 H (z) #1 k(z) 71 dx) kT
X
and ¢ =1,...,m, then
1 _ _
- x < ZE2E) [ i) ) e e A, 03
X

Let Y be the polytopal hypersurface circumscribed around 0K such that the
set of affine hulls of its facets is the union of the affine hulls of the facets of
Yi,...,Y,, and oY = X. It follows that Y has at most k facets, and

2

oY, X) < o= Og x(ki1). (134)
Forv=1,...,m,let Y° C Y such that mpx Y, = X;. We claim that
140 1 =
el -l < RO i@ ) R ) a8, (13)
Xi
To show (135), we define
Oz* = S; + (1 — 8NOV)(Ol — Si),

X! = mprC}, and Y;* C Y such that mpxY;* = X7. If F'is a facet of Y,

then diamF" < 2R,,/0 by (111) and (134). If in addition aff ' is the affine
hull of some facet of a Y; with j # ¢, then (128) yields that
778[(01‘* N o = 0.

Therefore Y;* C Y;, and we deduce by (133) that

el - i) < SO i@ ) )7 o

X

On the other hand (26) and (134) imply

YY" — [ X\X]| = Oxx(o)|Xi\X]| = Oxrx(0) - |C:\C;]|
= O}gx(&@) . |Cz| = O}gx(é?A) . |Xl|
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In turn we conclude (135).
Adding (135) for i = 1,...,m leads to

1 - - 1
Y| —|X| < %X(g)/ div(Q*)# 1 H(z) 1 k(z)# dz - A
X;
1+ Ok x(e) el d-1 1 T,
= # div(Q%) e H(x) a1 k() 77 dx kT,
X
With this, the proof of Theorem 7.1 is complete. Q.E.D.

8 The proof of Theorem 1.1

In this section, K is a convex body with C? boundary. For x € K, we define

d 1

o(z) = div(Q,) ™ H(z) &1 k(z)a. (136)

The proof of Theorem 1.1 is along the line set up in K. Bordezky, Jr.
[3]. Tt is equivalent to proving that for certain £y > 0 depending on K, if
e € (0,e9), then there exists ny depending on K and e with the following
properties: If n > ng and P is a polytope circumscribed around K with at
most n facets, then

d+1

S(P) — S(K) > - (/M o(z) da:) o, (137)

and in addition there exists a polytope P(’n) circumscribed around K with at
most n facets, such that

S(PLy) — S(K) < 15 ( | et czx) =] (138)

To prove the lower bound (137), let X C 0K be a convex hypersurface
such that the GauB-Kronecker curvature is positive at any x € X, and

[ewar>(1-5) [ ow)as

Let P be a polytope circumscribed around K with at most n facets, and let
Y C OP satisfy mprY = X. In particular Y has at most n facets. According
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to Theorem 7.1 (i), there exists ng depending on K and ¢ such that if n > ny
then

da+1

1—-£ d—1 _2
- > wplx)dx - nd-1
V1= 1¥1> 52 ([ ela)a

Since S(P) — S(K) > |Y| — | X]|, we conclude (137).

Turning to (138), if the Gauf-Kronecker curvature is positive at any x €
OK then (138) is a direct consequence of Theorem 7.1 (ii), hence we assume
that there exists some point of K such that at least one principal curvature
is zero. For p > 0, let () denote the set of points on JK such that the
minimal principal curvature is less than p. We observe that ¥ (u) is Jordan
measurable, and hence a convex hypersurface for all but countably many .
It follows by Lemma 1 in K. Boroczky, Jr. [3] that there exist p > 0 and
mg depending on ¢ and K with the following properties: ¥(u) is a convex
hypersurface, and if m > mg, then there exists a polytopal convex surface Y,
circumscribed around 0K with at most m facets such that moxY,, = ()
and

1Yo, S(p1)) < €0 - 1 - ma-t, (139)
It follows form (26) that choosing ¢ depending on K small enough then

da+1

—2

1831 d—1 _

Vol = 19001 < S5 ([ pterae) T E w1
0K

We define X to be the closure of 0K\ (p). According to Theorem 7.1
(i), choosing € depending K small enough, we have the following properties.
For ¢ € (0,ep), there exist 7,n; > 1 depending on K and e such that if
n > ny then [5n] > me, and there exists a polytopal convex hypersurface

Y(n) circumscribed around 0K with at most [(1 — f5)n] facets such that
WBK)/in) = X, and

ou(Vim, X) < y-ni (141)

d+1
~ 1_|_£ d—1
Tl =161 < 52 ([ ptoya)
0K
d+1

1 4 d—1 9
< 5 (/ () d:zc) Sna-T, (142)
2 oK

Next let Y, =Y, for m = |[{5n]. In particular (139) and (140) yield that
choosing ¢y depending K small enough, we have

—2

0 (Y, 2(p)) < 7y -nt (143)

/avK o(x) dx) SmaT, (144)
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We consider all supporting halfspaces to K determined by the affine hulls
of the facets of either Y(’n) or }7(”), and define P(’n) to be the intersection of all
these halfspaces. Then P(’n) is a polytope with at most n facets, and (141)
and (143) yield

Sn(Ply, K) <~ -nir. (145)

Let Z C OK be a convex hypersurface whose relative interior contains

0X = 0%(p), the GauB-Kronecker is positive at each z € Z, and

a+1

& (/aK #l) dx) T

where £ comes from (26). Let Y, C F(, such that 7Y, = Z. We
deduce by (26) that

1Z] <

U
[un

o £ d—1 -2
Vool =121 < 5 ([ etwras) ™ nh (146)
oK

It follows from (111) that there exists ng > n; (depending on K and €) such
that if n > ngy then B

OP()\Yin) € Yiny U Y-
Therefore combining (142), (144) and (146) implies (138). In turn we con-
clude Theorem 1.1. Q.E.D.

9 The proof of Theorem 1.2 (i)

Let K be convex a body in E¢ with C? boundary. In order to prove Theo-
rem 1.2 (i), we use again the desity function ¢ from (136). For each facet of
Py, we choose a point where the facet touches K, and we write =, C 0K
to denote the set of these points. In particular =,, has n elements.

For a Jordan measurable X C 0K, we should prove that

. H#(XNE,) [y p(z) dx
M n B f;; o(z)dr’

(147)

We wite m(n) = #(X NZ,), and distinguish three cases.

Case 1 [, o(x)dx = [,, p(z)dx
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In this case it is equivalent to prove that for any ¢ € (0, 1), if n > ng
where n, depends on K, X and ¢, then

m(n) > (1 —¢)n. (148)

Choose a convex hypersurface Z C relint X such that the Gaufl-Kronecker
curvature is positive on Z, and

/Zso(w) dz > (1 - %) /M o(z) d.

Let Y(,,) C 0P, satisfy that myr Y,y = Z. Since 6y (P, K) tends to zero,
there exists n; such that if n > n; then all facets of Y(,,) touch at some point
of X, and hence Y, has at most m(n) facets. It follows by Theorem 1.1,
Yy | = 12| < S(Prny) —S(K), and Theorem 7.1 (i) that if n > ng for suitable
ng > nq then

2 d+1
(145)*1 =T s
Vol =12 < = ([ elwpae)” (a9

2 d+1

vl -1zl > S ([ ewar) om0

In particular we conclude (148) as

d+1

1-_¢ =
mn) 3(1— 25) > 11—

n 1+ 2 3(d+1)

Case 2 [, p(x)dz =0
#(OK\X)NEn)

n

#(XNEp) _

=1 by Case 1, we conclude lim,, o,

Since lim,,_,

Case 3 0 < [, p(z)dx < [, o(x)dx

In this case it is equivalent to prove that for any ¢ € (0, %), it n > ng
where n, depends on K, X and ¢, then
d d
(g Jxe@de  m) g a Sye@dr
Jorx p(@)dz ~ n—m(n) Jorox (@) dz

Let w > 2 be maximal with the property that

[ e(z) d

2w < faK\X () dx

<w/2
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It follows from the equality case of the Holder inequality (8), that there exists
v € (0,¢) such that if a1, as, ny,ny > 0 satisfies w™! < a1 /ay < w and

d+1 -2 d+1 -2

af i 0l g < (L)@ +a) P )T, (152)
then 1
(1_§>.ﬂ<ﬂ<(1_§> &
2 a2~ Ng 2 a;

We choose a convex hypersurfaces Z; C relintX and Z, C relint(0K\X)
such that the Gauf-Kronecker curvature is positive on Z; and Z,, and

le o(z) dx v f22 o(x) dx U

> — el ) ey
Jx o(z)dz 27 Jorx #(@) dz 27

For i = 1,2, let Y(Zn) C 0Py, satisfy that WaKY(Z;l) = Z;. Since 0y (P, K)
tends to zero, there exists nq such that if n > n; then all facets of Y(;) and

(153)

Y(i) touch at some point of X or at OK\X, respectively, and hence Y(}@)
has at most m(n) facets, and Y(i) has at most n — m(n) facets. It follows

by Theorem 1.1, %1 < 3 and Theorem 7.1 (i) that if n > ng for suitable
ng > ny then

i 1+
S (¥l -1Z) < =

i=1,2

ol
VR
Q\
=
A
—~
o
oY
=
~_
j=¥
L
3
it

<

.—

o |+
[SUIAN

VR

ISa

C

N

(V)

5
8
S~—
QL
8

|
3
=¥
ot

w(R

1 d—1 —2
Vol-1zl > 55 ([ ewar) T me
Al

Wil -1z > gt ([ etede) - mo)

In particular the choice of v (see (152)) yields that

Wl

(1 5) f2190(33)d$< m(nn) < (1_%)—1 M

_9. ) .
2/ [, p(x)de = n—m( [z, () dx

Therefore we conclude (151) by (153). Q.ED.
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