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Abstract

A star body (with respect to the origin 0) in R? (d > 3) which has 0 as center of
symmetry is uniquely determined by the (d — 1)-dimensional volumes of its sections with
hyperplanes through 0. Without the symmetry assumption, we show that a star body is
uniquely determined by the volumes and centroids of its hyperplane sections throughO.
For convex bodies, we prove a stability version of this result.

1. Introduction

A star body K in Euclidean space R? is a nonempty compact set which is
starshaped with respect to the origin 0 and has a continuous positive radial
function, defined by

pr(v) :=max{A20: e K} for v € R\ {0}.

Ifue S :={zeR? :(x,2) =1} (where (-,-) is the scalar product) and
ut:={zeR?: (z,u) = 0}, then the (d — 1)-dimensional volume of the sec-
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tion of K by the (d — 1)-subspace orthogonal to u is given by

1 _
(1) va—1 (K Nut) = 1 pic ! doy.

Here s, := S 'Nut, and o, denotes the (d — 2)-dimensional spherical
Lebesgue measure on the great subsphere s,. It is well known that the
spherical Radon transform R, defined by

RA)w)= [ fdo,

Sy

for continuous functions f, is injective on the even functions (see, e.g., [4],
Proposition 3.4.12). It follows that two centrally symmetric star bodiesK, L
satisfying

Ud_l(K N ul) = vd_l(L N uL) for all u € S4°1

must be identical. This is a classical result of Geometric Tomography, and
we refer to the books of Gardner [1] and Groemer [4] for more information.

Without the symmetry assumption, the quoted result does not hold,
not even for convex bodies, and the unique determination of non-symmetric
star or convex bodies by section data requires more information. Groe-
mer [5] defined halfplanes H(u,w) := {z € ut: (z,w) =0} for u € S41,

w € ST Nut, and showed that the assumption
vg—1(K N H(u,w)) =vg—1(LNH(u,w))

for two star bodies K, L and all pairs (u,w) of orthogonal unit vectors implies
K = L. He also proved a more general stability result. Goodey and Weil |2]
remarked that a star body K seems to be overdetermined by the section
function (u,w) — vg—1 (K N H(u,w)), and they considered instead certain
mean values of such section functions, also for lower-dimensional sections.
They established a number of corresponding uniqueness and stability results.
Surprisingly, they also found cases where uniqueness fails.

In the present note, we first wish to point out that the classical result
mentioned above has a counterpart for non-symmetric star bodies if not only
the volumes of the hyperplane sections, but also their centroids are taken
into account. The centroid (center of gravity) of the section K Nu® of the
star body K can, if polar coordinates are used, be expressed by

1
ca—1(K Nut) = p /p?((v)v doy(v).
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If K, L are star bodies satisfying

(2) vd_l(K N uL) = vd_l(L N ul) for u € S9!
and
(3) cd_l(K N ul) = cd_l(L N uL) for u € S,

then K = L. In fact, since the spherical Radon transform of a continuous
function on S%! uniquely determines the even part of the function, the as-

sumption (2) implies that the even part of p?{l — pj-f_l vanishes, thus

(4) A ) = (0) = = o)+ (—e) forve §T

Similarly, the assumption (3) yields (if the result on the spherical Radon
transform is applied coordinate-wise) that the even part of the functionv —

[p% (v) — p%(v)] v vanishes, and this gives

(5) phe(v) = pf(v) = pe(—v) = pi(—v)  forve ST

Suppose now that there exists some v € ST with px(v) # pr(v),
say pr(v) < pr(v). Then p%t(v) < p¢t(v), hence (4) gives pf '(—v) <
P4t (—v). This yields p¢ (—v) < p&(—v), and now (5) gives p% (v) > p (v),
a contradiction.

The main purpose of this note is to prove a stability version of this new
uniqueness result. For that, however, we will have to restrict ourselves to the
case of convex bodies.

2. A stability result

We consider the space KZ of convex bodies in R containing 0 and, espe-
cially, the space K¢(r, R) of all convex bodies K satisfying rB¢ ¢ K ¢ RBY,

where B¢ denotes the unit ball and 0 < r < R are given numbers. On Kg we
use the radial Lo-metric, defined by

p2(K. L) == |lpx — pll ~ for K, L € K,

1/2
T :=< / |f|2d0>
gd—1

where
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is the Lo-norm of the square-integrable function f on S%!; here ¢ denotes
spherical Lebesgue measure. We use this notation also for R%-valued func-
tions f, denoting by |f| the Euclidean norm of f.

For convex bodies K, L € K%(r, R), the Hausdorff distance 6(kK, L) can
be estimated in terms of the radial Lo-metric, by

S(K, L) < cqR2r—(@+3)/(d+1) oy (¢, [)2/(d+D),

with an explicit constant ¢y depending only on the dimension d; see Groemer
[3], Lemma 3, or [4], Lemma 2.3.2. Thus, the result (8) below leads also to
an estimate of the Hausdorff distance, while the assumptions (6) and (7) are
weaker than the corresponding ones with the maximum norm.

For convenience, we write

vg_1(K,u) = vd,l(Kﬁul), cg—1(K,u) := cd,l(KﬂuL) foru e S

Now we can formulate our main result.
THEOREM. Let K, L € K%r,R). If, for somee >0,

(6) |va-1(K,-) —vg_1(L,)|| S e
and
(7) [ca—1(K, ") = car(L,-)|| S,
then
(8) PQ(K7 L) g C(dv r, R7 50)82/d7

with an explicit constantc(d,r, R,e0) depending only ond, r, R and an upper
bound g for €.

Similarly as in [6], where an analogous result for mean widths and Steiner
points of projections was obtained, the proof rests on a stability result for
the spherical Radon transform on even functions. In the following lemma
(see Theorem 3.4.14 in Groemer [4]), F* and F'~ denote the even and the

odd part of a function F on S%!, thus

F(u) = %(F(u) L F(—w)), F(u) = %(F(u) CF(w), we St

The constant Gy is defined by 83 = 273/4 and, for d > 4, by
(d—1)"42/1.3...(d - 3) if dis even,

Ba=14 1

E(d — 1)@/ 4. (d—3) if dis odd.
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By Vo we denote the gradient operator on the sphere S¥~1. The constant
o4 is given by o(S471).

LEMMA. If Fi and F5 are twice continuously differentiable functions on
S4=1 (d > 3), then

|F = B || < ha(F1, Fo)|RFy — R/

with
hd(Fla FQ)
1 4 d—2
Cd- 2d
=25541(20§716dd Q(HV%fHH2+-HVhIEH2)—+H7€Fﬁ-—7€f§”2> _

PRrROOF OF THE THEOREM. We assume that the assumptions are satisfied
and, moreover, that K and L have twice continuously differentiable radial
functions. If the theorem is proved under this assumption, then the general
case follows by approximation.

Putting F = p?{l, = defl, we have
RFl - RFQ = (d - 1) [Udfl(K, ) - 'Ud,1<L, )] ,

hence the Lemma together with (6) gives

(9) (P = (871 || < ha(Fr, Eo)((d—1)e) ¥ =2 .

Next, we choose e € S¥1 and put G1(v):= p%(v){v,e) and Ga(v) :=
pd (v){v,e) for v € S, Then

HRG1RGﬂ2:l/|RG1RGﬂ%m
gd—1

2

/ (o — p1)(0) (v, €) doy(v)| do(u),

Su

gd—1
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where we can estimate

/ (o — p)(0) (v, €) do (v)

Su

= </(p?< _P%)(U)Udau(v>7€>‘

Su

A

/ (o — p) (0)v do (v)

Su

This yields

IRG1 — RGy|]® < / do (1)

Sd—1

/ (o — ) (v)v o (v)

Su

Sy / |caor (K, ) — car(Lyw)|* do(u)
Sd—1

= d2H Cdfl(K, ) — Cdfl(L, )H 2.
The lemma together with (7) gives

IGT — G3 || £ ha(G1, Ga)(de)*“.

Since G1(v) = p&(v){v,e), we have G (v) = (p%) (v){v,e), and a similar
relation holds for G2. Thus, we get

[ 168 = () Poxte. e doto)
Sd—1

= |Gf = GF|I* £ [ha(Gh, Ga)(de)?/ Y] .

We insert for e the vectors of an orthonormal basis, then summation gives
(10) 1of)™ = (1) || < Vdha(G1, Ga)(de) " = 1.

Explicitly, the inequalities (9) and (10) can be written as

(1) I*:= / | P57 (0) = P71 () + P (o) — P (—0) | P do(v) £ dn,
gd—1



STABLE DETERMINATION OF CONVEX BODIES FROM SECTIONS

2

(12) I~ = / | (0) — p ) — pk () + p (—0)|* do(v) < i
gd—1

We make use of the identity

(13) PR —pT = (px —p) Y PPl

373

valid for m € N. Since K, L € K%(r, R), we have px(v), pr(v) = r > 0 for

v € 891 hence
m—1
Vm 1= Z PPy Zmr™ on $471.
=0

Using (13) in (11), we obtain

n
1 [ )= pu) + o) do) < <d_1§<d>
Sd—1
with
d—1 d—1

_ P (=v)—pp (=v)
(15) a(v) = P .
Similarly, (12) yields
(16) / | pic(v) = pr(v) = B()|* dor(v) d2[;2d

Sd—1
with
_ Pi(=v) = pi(-v)

(17) Bv) := o) :
Let
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Then we get
[ 1ok = o0 do@ = [ o) = pr(o) + a(w)]*dotv)
S+t St

I+
(d —1)%r20d-1)’

that

(18) [ 1ok = pu()]” o)

< [ 1pice) = pu0)|*do() + [ [pice) = pule)|* doto)
J

dn? L Ay
(d - 1)27,2((1_1) d2742d :

A

It remains to estimate the constants hq(Fi, Fa) and hy(G1,G2). A special
case of the estimate on p. 243 of Groemer [4] gives

Rm+1
(19) Vol = my/(d —1)og
for m > 0. This yields
(d—1)7 AN
(20) ha(Fi, F2) = o <4(d - 1)Uc2l—10'dﬂd - T2 + 5(2J> )
d—1

where ¢ is an upper bound for €.
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We write G1(v) = p(v)n(v) with p(v) := p%(v) and n(v) := (v,e). Then

IVoG1l? = 0>V onl* + 20m1(Vop, Von) + n*[Vopl?
< R*|\Vonl* + 2RV op| [Von| + Ve[,
hence
VoG < R Sonl*+ 2 [ [Fopl [Vl do + [Vopl®.
Sd—1

Here
IVon* £ (d = 1oy,

as proved in [6], and

/ Vopl [Von| do < [Vopll [Vonl.
Sd—l

Using (19) for m = d, we get

(21)  ha(Gi,G2)

d—2

1

0d—1

4 R2d+1 R2d+2
< (4(d —1)o3 1048, [RZd +2d +d? } - d253>

r r2

Now an explicit value of the constant c(d, r, R, €p) in the theorem can be read
off from (18), (9), (10), (20), (21). O
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