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INTRINSIC VOLUMES OF RANDOM POLYTOPES WITH VERTICES ON THE BOUNDARY
OF A CONVEX BODY

KÁROLY J. BÖRÖCZKY, FERENC FODOR, AND DANIEL HUG

ABSTRACT. Let K be a convex body in Rd, let j ∈ {1, . . . , d − 1}, and let % be a positive and continuous
probability density function with respect to the (d−1)-dimensional Hausdorff measure on the boundary ∂K of
K. Denote by Kn the convex hull of n points chosen randomly and independently from ∂K according to the
probability distribution determined by %. For the case when ∂K is a C2 submanifold of Rd with everywhere
positive Gauss curvature, M. Reitzner proved an asymptotic formula for the expectation of the difference of the
jth intrinsic volumes of K and Kn, as n→∞. In this article, we extend this result to the case when the only
condition on K is that a ball rolls freely in K.

1. INTRODUCTION

Random polytopes in Euclidean space Rd can be defined in various ways. If x1, . . . , xn are n random
points sampled from a given convex body K ⊂ Rd, then the convex hull of these random points yields
a random polytope which has been studied extensively in the literature. The present focus is on a related
though different model of a random polytope which has not been explored to the same extent. Instead
of choosing the points from all of K, we sample random points from the boundary of K. The convex
hull of these points then provides a model of a random polytope which will be considered here. Our
main focus is on the convergence of the expectation of geometric functionals (intrinsic volumes) of such a
random polytope. The main result, stated in Theorem 1.2, extends previous work by relaxing the regularity
assumptions on K. This is a nontrivial task, since the speed of convergence depends in a crucial way on
the boundary structure, in particular on the (generalized) curvatures, of K. The present approach refines
arguments that have recently been developed in [4] to establish first order results for the aforementioned
model of a random polytope, and it combines geometric and probabilistic ideas.

Before stating our results explicitly, we provide the required background and notation. Our basic setting
is the d-dimensional Euclidean space Rd, d ≥ 2, with scalar product 〈·, ·〉 and norm ‖ · ‖. By Hj we
denote the j-dimensional Hausdorff measure, where Hd is simply called the volume Vd. Let Bj be the
unit ball of Rj with center at the origin, and let Sj−1 be its boundary. Then we write αj = Hj(Bj)
for the j-dimensional volume of Bj , and hence Hj−1(Sj−1) = jαj is the surface content of Bj . The
relative boundary of a compact convex set C ⊂ Rd is denoted by ∂C. Finally, the convex hull of subsets
X1, . . . , Xr and points z1, . . . , zs is denoted by [X1, . . . , Xr, z1, . . . , zs].

Throughout the following, K is a convex body (compact convex set) with interior points in Rd; for
notions of convexity we follow the monographs by Schneider [18] or Gruber [8]. The boundary of K is
denoted by ∂K. We say that ∂K is twice differentiable in the generalized sense at a boundary point x ∈ ∂K
if there exists a positive semi-definite quadratic form Q on Rd−1, the so called second fundamental form,
with the following property: If K is positioned in such a way that x = o and Rd−1 is a support hyperplane
of K, then in a neighborhood of the origin o, ∂K is the graph of a convex function f defined on a (d− 1)-
dimensional ball around o in Rd−1 satisfying

(1.1) f(z) = 1
2 Q(z) + o(‖z‖2),
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as z → o. According to a classical result of Alexandrov (see P.M. Gruber [8] or R. Schneider [18]), ∂K is
twice differentiable in the generalized sense at Hd−1 almost all points x ∈ ∂K. Such boundary points are
also called normal boundary points. We write k1(x), . . . , kd−1(x) for the (generalized) principal curvatures
of ∂K at x ∈ ∂K, which are just the eigenvalues of Q. Furthermore, Hj(x) denotes the normalized jth
elementary symmetric function of the principal curvatures of ∂K at the normal boundary point x. Here the
dependence of this function on K is not made explicit. Thus, for j ∈ {1, . . . , d− 1}, we have

Hj(x) =

(
d− 1

j

)−1 ∑
1≤i1<···<ij≤d−1

ki1(x) · · · kij (x),

and this definition is supplemented by H0(x) := 1. In particular, Hd−1(x) is the Gaussian curvature and
H1(x) is the mean curvature of ∂K at x. We say that ∂K isCk+, for some k ≥ 2, if ∂K is aCk submanifold
of Rd and its Gaussian curvature is positive everywhere.

The intrinsic volumes Vj(K), j = 0, . . . , d, of a convex body K ⊂ Rd can be introduced as coefficients
of the Steiner formula

Vd(K + λBd) =

d∑
j=0

λd−jαd−jVj(K),

where K + λBd is the Minkowski sum of K and the ball λBd of radius λ ≥ 0. In particular, Vd is
the volume functional, V0(K) = 1, V1 is proportional to the mean width and Vd−1 is a multiple of the
surface area. Alternately, intrinsic volumes can be obtained as mean projection volumes. Specifically, for
j = 1, . . . d− 1, it is well-known that

Vj(K) =

(
d
j

)
αd

αjαd−j

∫
Ldj
Vj(K|L) νj(dL),

where Ldj is the Grassmannian of all j-dimensional linear subspaces of Rd equipped with the (unique)
Haar probability measure νj and, for L ∈ Ldj , K|L denotes the orthogonal projection of K onto L. Here,
Vj(K|L) is just the j-dimensional volume (Lebesgue measure) of K|L.

We say that a ball rolls freely in a convex bodyK ⊂ Rd if there exists some r > 0 such that any x ∈ ∂K
lies on the boundary of some Euclidean ball B of radius r with B ⊂ K. The existence of a rolling ball is
equivalent to saying that the exterior unit normal is a Lipschitz map on ∂K (see D. Hug [14]). In particular,
W. Blaschke observed that if ∂K is C2, then K has a rolling ball (see D. Hug [14] or K. Leichtweiss [15]).
In turn, we say that K rolls freely in a ball of radius R > 0 if any x ∈ ∂K lies on the boundary of some
Euclidean ball B of radius R with K ⊂ B.

In this paper, we shall consider the following probability model. Let K be a convex body with a rolling
ball of radius r. Let % be a continuous, positive probability density function defined on ∂K; throughout
this paper this density is always considered with respect to the boundary measure on ∂K. Select the points
x1, . . . , xn randomly and independently from ∂K according to the probability distribution determined by
%. The convex hull Kn := [x1, . . . , xn] then is a random polytope inscribed in K. We are going to study
the expectation of intrinsic volumes of Kn. In order to indicate the dependence on the probability density
%, we write P% to denote the probability of an event in this probability space and E% to denote the expected
value. For a convex body K, the expected value E%(Vj(Kn)) of the j-th intrinsic volume of Kn tends to
Vj(K) as n tends to infinity. It is clear that the asymptotic behavior of Vj(K)−E%(Vj(Kn)) is determined
by the shape of the boundary of K. In the case when the boundary of K is a C2

+ submanifold of Rd, this
asymptotic behavior was described by M. Reitzner [16].

Theorem 1.1 (Reitzner, 2002). LetK be a convex body in Rd withC2
+ boundary, and let % be a continuous,

positive probability density function on ∂K. Denote by E%(Vj(Kn)), j = 1, . . . , d, the expected j-th
intrinsic volume of the convex hull of n random points on ∂K chosen independently and according to the
density function %. Then

(1.2) Vj(K)− E%(Vj(Kn)) ∼ c(j,d)

∫
∂K

%(x)−
2
d−1Hd−1(x)

1
d−1Hd−j(x)Hd−1(dx) · n−

2
d−1

as n→∞, where the constant c(j,d) only depends on j and the dimension d.
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For j = d, that is in the case of the volume functional, C. Schütt and E. Werner [21] extended (1.2) to
any convex body K such that a ball of radius r rolls freely in K and, in addition, K rolls freely in a ball of
radius R, for some R > r > 0. The latter assumption of K rolling freely inside a ball implies a uniform
lower bound for the principle curvatures of ∂K whenever they exist. They also calculated the constant
c(d,d) explicitly, that is

c(d,d) =
(d− 1)

d+1
d−1 Γ(d+ 1 + 2

d−1 )

2(d+ 1)![(d− 1)αd−1]
2
d−1

.

Moreover, C. Schütt and E. Werner [21] showed that for fixed K, the minimum of the integral expression
in (1.2) is attained for the probability density function

%0(x) =
Hd−1(x)

1
d+1∫

∂K
Hd−1(x)

1
d+1 Hd−1(dx)

.

Our main goal is to extend Theorem 1.1 to the case where K is only assumed to have a rolling ball,
for all j = 1, . . . , d. In particular, the Gauss curvature is allowed to be zero on a set of positive boundary
measure. More explicitly, we shall prove

Theorem 1.2. The asymptotic formula (1.2) holds if K is a convex body in Rd in which a ball rolls freely.

The present method of proof for Theorem 1.2 is different from the one used by Reitzner [16] or Schütt
and Werner [21]. It is inspired by the arguments from our previous paper [4] concerning random points
chosen from a convex body, however, the case of random points chosen from the boundary is more delicate.

Examples show that in general the condition that a ball rolls freely inside K cannot be dropped in
Theorem 1.2. For the mean width, general bounds are provided in the following theorem.

Theorem 1.3. LetK be a convex body in Rd, and let % be a continuous, positive probability density function
on ∂K. Then there exist positive constants c1, c2, depending on K and %, such that for any n ≥ d+ 1,

c1n
− 2
d−1 ≤ E%(V1(K)− V1(Kn)) ≤ c2n−

1
d−1 .

The lower bound is of optimal order if K has a rolling ball, and the upper bound is of optimal order, if K
is a polytope.

For comparison, let us review the main known results about the convex hull K(n) of n points chosen
randomly, independently and uniformly fromK. In the case where a ball rolls freely insideK, the analogue
of Theorem 1.2 is established in K. Böröczky Jr., L. M. Hoffmann and D. Hug [3]. For the case of the
volume functional and an arbitrary convex body K, C. Schütt [19] proved (see K.J. Böröczky, F. Fodor, D.
Hug [4] for some corrections and an extension) that

lim
n→∞

n
2
d+1 (Vd(K)− E(Vd(K(n))) = cdVd(K)

2
d+1

∫
∂K

Hd−1(x)
1
d+1 Hd−1(dx),

where the constant cd > 0 only depends on the dimension d and is explicitly known. Concerning the order
of approximation, we have

(1.3) γ1n
−2/(d+1) < V1(K)− EV1(K(n)) < γ2n

−1/d,

(1.4) γ3n
−1 lnd−1 n < Vd(K)− EVd(K(n)) < γ4n

−2/(d+1),

where γ1, . . . , γ4 > 0 are constants which may depend onK. The inequalities (1.3) are due to R. Schneider
[17], and (1.4) is due to I. Bárány and D. Larman [2]. The orders are best possible, being attained in
(1.3)(left) and (1.4)(right) by sufficiently smooth bodies, and in (1.3)(right) and (1.4)(left) by polytopes.

The proof of Theorem 1.2 is given in the following three sections. In Section 2, we rewrite the difference
Vj(K)− E%(Vj(Kn)) in an integral geometric way. The inner integral involved in this integral geometric
description is extended over the projection K|L of K to L, where L is a j-dimensional linear subspace.
Then we show that up to an error term of lower order the main contribution comes from a neighborhood of
the boundary ∂(K|L), where this neighborhood is shrinking at a well-defined speed t(n) := n−1/(d−1) as
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n→∞. Further application of an integral geometric decomposition then shows that the proof boils down
to determining the limit

lim
n→∞

∫ t(n)

0

n
2
d−1 〈y, u(y)〉P% (yt /∈ Kn|L) dt,

where y ∈ ∂(K|L) is a point for which there exists a normal boundary point x ofK such that the orthogonal
projection of x onto L is y, that is y = x|L. Moreover, u(y) ∈ L denotes the unique exterior unit normal
to ∂(K|L) at y ∈ ∂(K|L) with respect to L as ambient space and yt := (1− t)y.

In order to determine the limit, we distinguish two cases. The case where the Gauss curvature of K
at x is zero is treated directly. In Section 3, we deal with the case of positive Gauss curvature. In a first
step, we choose a reparametrization of the integral which relates the parameter t to the probability content
s of that part of the boundary of K near x that is cut off by a cap determined by the parameter t. This
reparametrization has the effect of extracting the relevant geometric information from K. What remains to
be shown is that the transformed integrals are essentially independent ofK and yield the same value for the
unit ball with the uniform probability density on its boundary. This latter step is divided into two lemmas in
Section 3. Whereas both lemmas have analogues in our previous work [4], the present arguments are more
delicate and the second lemma has to be established by a reasoning different from the one in [4]. The proof
is then completed in Section 4, where, in addition to the previous steps, a very special case of Theorem 1.1
is employed (K being the unit ball) as well as an integral geometric lemma from [3]. The final section is
devoted to a proof of Theorem 1.3.

2. GENERAL ESTIMATES

In order to prove Theorem 1.2, we start by rewriting Vj(K) − E%(Vj(Kn)) in an integral geometric
form. For this, we use Kubota’s formula and Fubini’s theorem to obtain

Vj(K)− E%(Vj(Kn))

=

∫
∂K

. . .

∫
∂K

(Vj(K)− Vj(Kn))

n∏
i=1

%(xi)Hd−1(dx1) . . .Hd−1(dxn)

=

(
d
j

)
αd

αjαd−j

∫
∂K

. . .

∫
∂K

∫
Ldj

(Vj(K|L)− Vj(Kn|L))

×
n∏
i=1

%(xi) νj(dL)Hd−1(dx1) . . .Hd−1(dxn)

=

(
d
j

)
αd

αjαd−j

∫
Ldj

∫
L

∫
∂K

. . .

∫
∂K

1 {y ∈ K|L and y 6∈ Kn|L}

×
n∏
i=1

%(xi)Hd−1(dx1) . . .Hd−1(dxn)Hj(dy) νj(dL)

=

(
d
j

)
αd

αjαd−j

∫
Ldj

∫
K|L

P%(y 6∈ Kn|L)Hj(dy) νj(dL).(2.1)

Now we introduce some geometric tools. If K has a rolling ball of radius r, then so does K|L for any
L ∈ Ldj . Furthermore, ∂K has a unique outer unit normal vector u(x) at each boundary point x ∈ ∂K. If
L ∈ Ldj , y ∈ ∂(K|L) and x ∈ K are such that y = x|L, then x ∈ ∂K and the outer unit normal of ∂(K|L)
at y is equal to u(x). Here x|L denotes the orthogonal projection of x onto L.

Since the statement of the theorem is translation invariant, we may assume that

(2.2) rBd ⊂ K ⊂ RBd

for some R > 0. For t ∈ (0, 1), let Kt := (1 − t)K, and for x ∈ ∂K, let xt := (1 − t)x. Similarly,
(K|L)t := (1− t)(K|L) and yt := (1− t)y for y ∈ ∂(K|L).

For x ∈ ∂K and t ∈ (0, 1), let
x∗t := x− 〈tx, u(x)〉u(x).
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If t ∈ (0, rR ), then (2.2) implies that

(2.3) tr ≤ 〈x− x∗t , u(x)〉 = 〈x− xt, u(x)〉 < r.

The existence of a rolling ball at x yields that if t ∈ (0, rR ), then

(2.4) x∗t + r
√
t(u(x)⊥ ∩Bd) ⊂ K.

On the other hand, we have

(2.5) ‖x∗t − xt‖ < Rt.

For real functions f and g defined on the same space, we write f � g or f = O(g) if there exists a
positive constant γ, depending only on K and %, such that |f | ≤ γ · g.

We shall use the notion of a “coordinate corner”. Given an orthonormal basis in a linear i-dimensional
subspace L, the corresponding (i − 1)-dimensional coordinate planes cut L into 2i convex cones, which
we call coordinate corners (with respect to L and the given basis). In the following, we write γ1, γ2, . . . for
positive constants which merely depend on K and %.

Let us estimate the probability that o 6∈ Kn. There exists a constant γ1 > 0 such that the probability
content of each of the parts of ∂K contained in one of the 2d coordinate corners of Rd is at least γ1. Now if
o 6∈ Kn, then o can be strictly separated from Kn by a hyperplane. It follows that {x1, . . . , xn} is disjoint
from one of these coordinate corners, and hence

(2.6) P(o /∈ Kn) ≤ 2d(1− γ1)n.

This fact will be used, for instance, in the proof of the subsequent lemma. In the following, for x ∈ Rd we
use the shorthand notation R+x := {λx : λ ≥ 0}.

Lemma 2.1. There exist constants δ, γ2 ∈ (0, 1), depending on K and %, such that if L ∈ Ldj , y ∈ ∂(K|L)
and t ∈ (0, δ), then

P% (yt 6∈ Kn|L)�
(

1− γ2t
d−1
2

)n
.

Proof. Let y ∈ ∂(K|L) and x ∈ ∂K be such that y = x|L. Let Θ′1, . . . ,Θ
′
2d−1 be the coordinate corners

with respect to some basis vectors in u(x)⊥. In addition, for i = 1, . . . , 2d−1 and t ∈ (0, 1), let

Θi,t = ∂K ∩ (xt + [Θ′i,R+x]) .

Since % is positive and continuous, we have∫
Θi,t

%(x)Hd−1(dx) ≥ γ3Hd−1(Θi,t).

If yt 6∈ Kn|L and o ∈ Kn, then there exists a (j−1)-dimensional affine planeHL inL through yt, bounding
the halfspacesH−L andH+

L in L, for whichKn|L ⊂ H−L . Now, if L⊥ is the orthogonal complement of L in
Rd, thenH := HL+L⊥ is a hyperplane in Rd with the property that xt ∈ H andKn ⊂ H− := H−L +L⊥.
Furthermore, Θi,t ⊂ H+ := H+

L + L⊥ for some i ∈ {1, . . . , 2d−1}, because o ∈ Kn ⊂ H−. Therefore

P% (yt 6∈ Kn|L, o ∈ Kn) ≤
2d−1∑
i=1

(
1− γ3Hd−1(Θi,t)

)n
.

Combining (2.4) and (2.5), we deduce the existence of a constant γ4 > 0 such that if t ≤ γ4, then the
orthogonal projection of Θi,t into u(x)⊥ contains a translate of Θ′i ∩ (r/2)

√
tBd, and therefore

Hd−1(Θi,t) ≥ γ5t
d−1
2

for i = 1, . . . , 2d−1. In turn, we obtain

(2.7) P% (yt 6∈ Kn|L, o ∈ Kn)�
(

1− γ6t
d−1
2

)n
.

On the other hand, if o 6∈ Kn|L, then (2.6) holds. Combining this with (2.7), we conclude the proof of the
lemma. �
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Subsequently, the estimate of Lemma 2.1 will be used, for instance, to restrict the domain of integration
(cf. Lemma 2.3) and to justify an application of Lebesgue’s dominated convergence theorem (see (2.12)).
For these applications, we also need that if x ∈ ∂K and c > 0 satisfies ω̄ := cδ

d−1
2 < 1, then

(2.8)
∫ δ

0

(
1− ct

d−1
2

)n
dt = c

−2
d−1

2

d− 1

∫ ω̄

0

s
2
d−1−1(1− s)n ds� c

−2
d−1 · n

−2
d−1 ,

where we use that (1− s)n ≤ e−ns for s ∈ [0, 1] and n ∈ N.
The next lemma will allow us to decompose integrals in a suitable way. We write u(y) ∈ L to denote

the unique exterior unit normal to ∂(K|L) at y ∈ ∂(K|L) with respect to L as ambient space. It will
always be clear from the context whether we mean the exterior unit normal at a point x ∈ ∂K or at a point
y ∈ ∂(K|L). In the next lemma, δ is chosen as in Lemma 2.1.

Lemma 2.2. If 0 ≤ t0 < t1 < δ and h : K|L→ [0,∞] is a measurable function, then∫
(K|L)t0\(K|L)t1

P% (x /∈ Kn|L)h(x)Hj(dx)

=

∫
∂(K|L)

∫ t1

t0

(1− t)j−1P% (yt /∈ Kn|L) 〈y, u(y)〉h(yt) dtHj−1(dy).

Proof. The set ∂(K|L) is a (j − 1)-dimensional submanifold of L of class C1, and the map

T : ∂(K|L)× (t0, t1)→ int(K|L)t0 \ (K|L)t1 , (y, t) 7→ yt,

is a C1 diffeomorphism with Jacobian JT (y, t) = (1 − t)j−1〈y, u(y)〉 ≥ 0. Thus the assertion follows
from Federer’s area/coarea theorem (see [7]). �

In the following, we use the abbreviation t(n) := n
−1
d−1 .

Lemma 2.3. Let 1 ≤ j ≤ d− 1. Then we have∫
Ldj

∫
(K|L)t(n)

P% (y 6∈ Kn|L) Hj(dy) νj(dL) = o
(
n

−2
d−1

)
.

Proof. Let δ, γ2 ∈ (0, 1) be chosen as in Lemma 2.1. We may assume that n is large enough to satisfy
t(n) < δ and n ≥ (γ2)2. First, we treat that part of the integral which extends over the subset (K|L)δ of
(K|L)t(n).

Let ω := δr. Then (2.3) yields

(2.9) 〈x− xδ, u(x)〉 ≥ ω for x ∈ ∂K.

There exists a constant γ7 > 0 such that the probability measure of (x+ ω
2 B

d) ∩ ∂K is at least γ7 for all
x ∈ ∂K. We choose a maximal set {z1, . . . , zm} ⊂ ∂K such that ‖zi − zl‖ ≥ ω

2 for i 6= l.
For L ∈ Ldj , let y ∈ (K|L)δ . If y 6∈ Kn|L, then there exist a hyperplane H in Rd and a half space

H− bounded by H such that y ∈ H , H is orthogonal to L, and Kn ⊂ int(H−). Choose x ∈ ∂K such
that u(x) is an exterior unit normal to H−. Since H intersects Kδ , we have 〈x − y, u(x)〉 ≥ ω by (2.9).
Now there exists some i ∈ {1, . . . , n} with ‖x− zi‖ ≤ ω

2 , and hence {x1, . . . , xn} ⊂ int(H−) yields that
{x1, . . . , xn} is disjoint from zi + ω

2 B
d. In particular, we have

(2.10) P% (y 6∈ Kn|L) ≤ m(1− γ7)n.

Next let y ∈ ∂(K|L). If t ∈ (t(n), δ), then Lemma 2.1 yields

(2.11) P% (yt 6∈ Kn|L)�
(

1− γ2n
− 1

2

)n
< e−γ2n

1
2 � n

−3
d+1 .
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In particular, writing I to denote the integral in Lemma 2.3, we obtain from Lemma 2.2, (2.10) and (2.11)
that

I �
∫
Ldj

∫
(K|L)δ

P% (y 6∈ Kn|L) Hj(dy) νj(dL) +

+

∫
Ldj

∫ δ

t(n)

∫
∂(K|L)

P% (yt 6∈ Kn|L) Hj−1(dy) dt νj(dL)

� m(1− γ7)n +

∫
Ldj

∫
∂(K|L)

n
−3
d−1 Hj−1(dy) νj(dL) = o

(
n

−2
d−1

)
,

which is the required estimate. �

It follows by applying (2.1), Lemma 2.3 and Lemma 2.2, in this order, that

lim
n→∞

n
2
d−1 (Vj(K)− E%(Vj(Kn)))

=

(
d
j

)
αd

αjαd−j
lim
n→∞

n
2
d−1

∫
Ldj

∫
K|L

P%(y /∈ Kn|L)Hj(dy) νj(dL)

=

(
d
j

)
αd

αjαd−j
lim
n→∞

n
2
d−1

∫
Ldj

∫
(K|L)\(K|L)t(n)

P%(y /∈ Kn|L)Hj(dy) νj(dL)

=

(
d
j

)
αd

αjαd−j
lim
n→∞

∫
Ldj

∫
∂(K|L)

∫ t(n)

0

n
2
d−1P%(yt /∈ Kn|L)(1− t)j−1〈y, u(y)〉 dtHj−1(dy) νj(dL).

We deduce from Lemma 2.1 and (2.8) that if n > n0, L ∈ Ldj and y ∈ ∂(K|L), then∫ t(n)

0

n
2
d−1P% (yt 6∈ Kn|L) 〈y, u(y)〉(1− t)j−1 dt� C,

where n0 andC depend onK and %. Therefore, we may apply Lebesgue’s dominated convergence theorem,
and thus we conclude

(2.12) lim
n→∞

n
2
d−1 (Vj(K)− E%(Vj(Kn))) =

(
d
j

)
αd

αjαd−j

∫
Ldj

∫
∂(K|L)

J%(y, L)Hj−1(dy) νj(dL),

where, for L ∈ Ldj and y ∈ ∂(K|L), we have

(2.13) J%(y, L) := lim
n→∞

∫ t(n)

0

n
2
d−1 〈y, u(y)〉P% (yt /∈ Kn|L) dt.

Subsequently, we shall inspect this limit more closely. In a first step, we shall consider those points y ∈
∂(K|L) for which there is a normal boundary point x ∈ ∂K with y = x|L and Hd−1(x) = 0.

Lemma 2.4. Let L ∈ Ldj , and let y ∈ ∂(K|L). If x ∈ ∂K is a normal boundary point of K with y = x|L
and Hd−1(x) = 0, then J%(y, L) = 0.

Proof. Let x ∈ ∂K be a normal boundary point with y = x|L and Hd−1(x) = 0. First, we show the
existence of a decreasing function ϕ on (0, rR ) with limt→0+ ϕ(t) =∞ satisfying

(2.14) P% (yt 6∈ Kn|L) ≤ 2d−1
(

1− ϕ(t)t
d−1
2

)n
.

In the following, we always assume that t > 0 is sufficiently small, that is n is sufficiently large, so that all
expressions that arise are well defined. Let v1, . . . , vd−1 be an orthonormal basis in u(x)⊥ such that these
vectors are principal directions of curvature of K at x and such that the curvature is zero in the direction
of v1. In addition, let Θ′1, . . . ,Θ

′
2d−1 be the coordinate corners in u(x)⊥, and, for i = 1, . . . , 2d−1 and

t ∈ (0, 1), let Θi,t = ∂K ∩ (xt + [Θ′i,R+x]) as before. The continuity of % yields that∫
Θi,t

%(x)Hd−1(dx)� Hd−1(Θi,t).
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Since the curvature is zero in the direction of v1, there exists a functionψ on (0, rR ) with limt→0+ ψ(t) =
∞ satisfying

x∗t − ψ(t)
√
tv1 ∈ K and x∗t + ψ(t)

√
tv1 ∈ K.

Combining (2.4) and (2.5), we deduce the existence of a decreasing function ϕ̃ on (0, rR ) with
limt→0+ ϕ̃(t) =∞ satisfying ∫

Θi,t

%(x)Hd−1(dx) ≥ ϕ̃(t)t
d−1
2 ,

for i = 1, . . . , 2d−1.
First, we assume that yt 6∈ Kn|L and o ∈ Kn. In particular, then we also have xt 6∈ Kn, and hence

there exists a hyperplane H through xt such that Kn lies on one side of H . Since o ∈ Kn, it follows that
H separates Kn from some Θi,t, and therefore

(2.15) P% (yt 6∈ Kn|L, o ∈ Kn) ≤ 2d−1
(

1− ϕ̃(t)t
d−1
2

)n
.

On the other hand, if o 6∈ Kn|L, then (2.6) holds. Combining this with (2.15), we conclude (2.14). In turn,
we deduce from (2.8) that

J%(y, L)� lim
n→∞

n
2
d−1

∫ t(n)

0

(1− ϕ(t(n))t
d−1
2 )n dt� lim

n→∞
ϕ(t(n))

−2
d−1 = 0.

�

In the next section, we study the more difficult case of boundary points with positive Gauss curvature.

3. NORMAL BOUNDARY POINTS AND CAPS

Let L ∈ Ldj , and let y ∈ ∂(K|L) be such that y = x|L for some (uniquely determined) normal boundary
point x ∈ ∂K with Hd−1(x) > 0. We keep x and y fixed throughout this section. First, we reparametrize
xt and yt in terms of the probability measure of the corresponding cap of ∂K. Using this reparametrization,
we show that J%(y, L) essentially depends only on the random points near x (see Lemma 3.1), and then in
a second step we pass from the case of a general convex body K to the case of a Euclidean ball.

For t ∈ (0, 1), we consider the hyperplane H(x, t) := {z ∈ Rd : 〈u(x), z〉 = 〈u(x), xt〉}, the half-
space H+(x, t) := {z ∈ Rd : 〈u(x), z〉 ≥ 〈u(x), xt〉}, and the cap C(x, t) := K ∩ H+(x, t) whose
bounding hyperplane is H(x, t). Next we reparametrize xt in terms of the induced probability measure of
the cap C(x, t); namely,

x̃s := xt and ỹs := yt,

where, for a given sufficiently small s ≥ 0, the parameter t ≥ 0 is uniquely determined by the equation

(3.1) s =

∫
C(x,t)∩∂K

%(w)Hd−1(dw).

Note that s is a strictly increasing and continuous function of t. We further define

(3.2) C̃(x, s) = C(x, t) and H̃(x, s) = H(x, t),

where again, for given s, the parameter t is determined by (3.1). Observe that ∂K ∩ H+(x, t) = ∂K ∩
C(x, t). Subsequently, we explore the relation between s and t. Let f : u(x)⊥ → [0,∞] be a convex
function such that the restriction of the map

F : u(x)⊥ → Rd, z 7→ x+ z − f(z)u(x),

to a neighborhood of o parametrizes ∂K in a neighborhood of x. Moreover, we consider the transforma-
tions

Π : Rd → u(x)⊥, y 7→ y − x− 〈y − x, u(x)〉u(x),

and
T : u(x)⊥ × R→ u(x)⊥ × R, (z1, . . . , zd−1, α) 7→ (

√
k1z1, . . . ,

√
kd−1zd−1, α),
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where u(x)⊥ is considered to be a subset of u(x)⊥×{0} and ki = ki(x), i = 1, . . . , d−1, are the principle
curvatures of ∂K at x. Then we obtain∫

∂K∩H+(x,t)

%(w)Hd−1(dw)

=

∫
Π(∂K∩H+(x,t))

%(F (z))
√

1 + ‖∇f(z)‖2Hd−1(dz)

=

∫
T (Π(∂K∩H+(x,t)))

%(F ◦ T−1(z))
√

1 + ‖∇f(T−1(z))‖2Hd−1(x)−1/2Hd−1(dz).

Let K := T (K − x) + x, and hence T (Π(∂K ∩H+(x, t))) = Π(∂K ∩H+(x, t)). If f is defined for K
as f is defined for K, and

%(w) := %(F ◦ T−1 ◦Π(w)), g(w) :=

√
1 + ‖∇f(T−1(Π(w)))‖2√

1 + ‖∇f(Π(w))‖2
,

for w ∈ ∂K ∩H+(x, t), then we obtain∫
∂K∩H+(x,t)

%(w)Hd−1(dw) = Hd−1(x)−1/2

∫
∂K∩H+(x,t)

%(w)g(w)Hd−1(dw).

Next we put H(r) := x− ru(x) + u(x)⊥ and denote by nK(w) the exterior unit normal of K at w ∈ ∂K.
Since (cf. the notes for Section 1.5 (2) in [18])

f(z) =
1

2
‖z‖2 + o(‖z‖2), ‖∇f(z)‖ = ‖z‖+ o(‖z‖), nK(w) =

∇f(w̄) + u(x)√
1 + ‖∇f(w̄)‖2

with w̄ := Π(w) and z ∈ u(x)⊥, we get√
1− 〈nK(w), u(x)〉2

−1

=

√
1 + (‖w̄‖+ o(‖w̄‖))2

‖w̄‖+ o(‖w̄‖)
.

Thus a simple application of the coarea formula yields that, for t > 0 sufficiently small and d ≥ 2,∫
∂K∩H+(x,t)

%(w)Hd−1(dw)

= Hd−1(x)−1/2

∫ t〈x,u(x)〉

0

∫
∂K∩H(r)

%(w)g(w)
√

1− 〈nK(w), u(x)〉2
−1

Hd−2(dw) dr.

Since also K has a rolling ball, the map w 7→ nK(w) is continuous, and therefore also

r 7→
∫
∂K∩H(r)

%(w)g(w)
√

1− 〈nK(w), u(x)〉2
−1

Hd−2(dw)

is continuous. This implies that

∂

∂ t

∫
∂K∩H+(x,t)

%(w)Hd−1(dw)

=
〈x, u(x)〉
Hd−1(x)1/2

∫
∂K∩H(t〈x,u(x)〉)

%(w)g(w)
√

1− 〈nK(w), u(x)〉2
−1

Hd−2(dw)

=
〈x, u(x)〉
Hd−1(x)1/2

∫
∂K∩H(t〈x,u(x)〉)

%(w)g(w)

√
1 + (

√
2t〈x, u(x)〉+ o(

√
t))2√

2t〈x, u(x)〉+ o(
√
t)

Hd−2(dw).

Clearly, we have %(w) → %(x) = %(x) and g(w) → 1, as t → 0+, uniformly with respect to w ∈
∂K ∩H(t〈x, u(x)〉). Moreover, since

Γ :=

{
x+ z − 1

2
‖z‖2u(x) : z ∈ u(x)⊥

}
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is the osculating paraboloid of K and Γ has rotational symmetry, we obtain for s = s(t) that

lim
t→0+

t−
d−3
2 · ∂ s

∂ t
(t) =

%(x)〈x, u(x)〉
Hd−1(x)1/2

lim
t→0+

(
t−

d−3
2 (d− 1)αd−1

√
2t〈x, u(x)〉

d−2√
2t〈x, u(x)〉

)
= (d− 1)αd−1Hd−1(x)−

1
2 %(x) (2〈x, u(x)〉)

d−3
2 〈x, u(x)〉

= (d− 1)αd−1%(x)2
d−3
2 〈x, u(x)〉

d−1
2 Hd−1(x)−

1
2 .

Thus we have shown that

(3.3) lim
t→0+

t−
d−3
2 · ∂ s

∂ t
(t) = (d− 1) · %(x)2

d−3
2 〈x, u(x)〉

d−1
2 Hd−1(x)−

1
2αd−1.

In the same way, we also obtain

(3.4) lim
t→0+

t−
d−1
2 · s(t) = %(x)2

d−1
2 〈x, u(x)〉

d−1
2 Hd−1(x)−

1
2αd−1.

Observe that (3.3) and (3.4) are valid also for d = 2. In particular, (3.3) and (3.4) imply that J%(y, L) can
be rewritten as (cf. (2.13))

(3.5) J%(y, L) = (d− 1)−1G(x)2 lim
n→∞

∫ ζ(y,n)

0

n
2
d−1P% (ỹs 6∈ Kn|L) s−

d−3
d−1 ds,

where
G(x) := (αd−1)

−1
d−1 %(x)

−1
d−1Hd−1(x)

1
2(d−1)

and
lim
n→∞

n
1
2 ζ(y, n) = αd−1%(x)(2〈u(x), x〉)

d−1
2 Hd−1(x)−

1
2 .

Now we show that in the domain of integration ζ(y, n) can be replaced by n−1/2, that is

(3.6) J%(y, L) = (d− 1)−1G(x)2 lim
n→∞

∫ n−1/2

0

n
2
d−1P% (ỹs 6∈ Kn|L) s−

d−3
d−1 ds.

It follows from Lemma 2.1 and (3.4) that there exist constants c0 > 0 and c2 > c1 > 0 depending on y, K,
L, % such that if s > 0 is small enough, then

P% (ỹs 6∈ Kn|L)� (1− c0s)n,
and if n is large and s is between ζ(n, y) and n−1/2, then c1n−1/2 < s < c2n

−1/2. In particular,

lim
n→∞

∫ c2n
−1/2

c1n−1/2

n
2
d−1P% (ỹs 6∈ Kn|L) s−

d−3
d−1 ds

� lim
n→∞

n
2
d−1

∫ c2n
−1/2

c1n−1/2

e−c0nss−
d−3
d−1 ds

≤ lim
n→∞

c2n
2
d−1−

1
2 e−c1c0n

1
2 c
− d−3
d−1

1 n
d−3

2(d−1) = 0,

and hence (3.5) yields (3.6).
Let π : Rd → u(x)⊥ denote the orthogonal projection to u(x)⊥. Using (2.5), (2.3) and (3.4), we obtain

lim
s→0+

s
−1
d−1 ‖π(x− x̃s)‖ = 0,(3.7)

lim
s→0+

s
−2
d−1 〈u(x), x− x̃s〉 =

1

2
G(x)2.

Let Q denote the second fundamental form of ∂K at x (cf. (1.1)), considered as a function on u(x)⊥. Then
there are an orthonormal basis v1, . . . , vd−1 of u(x)⊥ and positive numbers k1, . . . , kd−1 > 0 such that

Q

(
d−1∑
i=1

zivi

)
=

d−1∑
i=1

kiz
2
i .

Further, let π be the orthogonal projection to u(x)⊥, and define

E := {z ∈ u(x)⊥ : Q(z) ≤ 1},
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which is the Dupin indicatrix of K at x, whose half axes are ki(x)−1/2, i = 1, . . . , d − 1. In addition, let
Γ be the convex hull of the osculating paraboloid of K at x ∈ ∂K, that is

Γ = {x+ z − tu(x) : z ∈ u(x)⊥, t ≥ 1
2 Q(z)}.

Hence, we have
Γ ∩H(x, t) = x∗t +

√
2t〈x, u(x)〉E,

and there exists an increasing function µ̃(s) with lims→0+ µ̃(s) = 1 such that

(3.8) x̃∗s + µ̃(s)−1G(x) · s
1
d−1E ⊂ K ∩ H̃(x, s) ⊂ x̃∗s + µ̃(s)G(x) · s

1
d−1E,

where x̃∗s := x∗t ∈ (x−R+u(x))∩H̃(x, s), and s and t are related by equation (3.1). From (3.7) it follows
that also

(3.9) x̃s + µ̃(s)−1G(x) · s
1
d−1E ⊂ K ∩ H̃(x, s) ⊂ x̃s + µ̃(s)G(x) · s

1
d−1E,

The rest of the proof is devoted to identifying the asymptotic behavior of the integral (3.6). First,
we adjust the domain of integration and the integrand in a suitable way. In a second step, the resulting
expression is compared to the case where K is the unit ball. We recall that x1, . . . , xn are random points
in ∂K, and we put Ξn := {x1, . . . , xn}, hence Kn = [Ξn]. For a finite set X ⊂ Rd, let #X denote the
cardinality of X .

Lemma 3.1. For ε ∈ (0, 1), there exist α, β > 1 and an integer k > d, depending only on ε and d, with the
following property. If L ∈ Ldj , y ∈ ∂(K|L), x ∈ ∂K is a normal boundary point of K such that y = x|L
and Hd−1(x) > 0, and if n > n0, where n0 depends on ε, x,K, %, L, then∫ n−1/2

0

P% (ỹs 6∈ Kn|L) s−
d−3
d−1 ds =

∫ α
n

ε(d−1)/2

n

ϕ(K,L, y, %, ε, s)s−
d−3
d−1 ds+O

(
ε

n
2
d−1

)
,

where

ϕ(K,L, y, %, ε, s) = P%
((
ỹs 6∈ ([C̃(x, βs) ∩ Ξn]|L)

)
and

(
#(C̃(x, βs) ∩ Ξn) ≤ k

))
.

Proof. Let ε ∈ (0, 1) be given. Then α > 1 is chosen such that

(3.10) 2d−1+ 2d
d−1

∫ ∞
2−dα

e−rr
2
d−1−1 dr < ε.

Further, we choose β ≥ (162(d− 1))d−1 such that

(3.11) 2d−1e−2−3d+2√β·ε
d−1
2 < ε · α

−2
d−1 ,

and then we fix an integer k > d such that

(3.12)
(αβ)k

k!
<

ε

α
2
d−1

.

Lemma 3.1 follows from the following three statements, which we will prove assuming that n is sufficiently
large.

(i)
∫ n−1/2

0

P% (ỹs 6∈ Kn|L) s−
d−3
d−1 ds =

∫ α
n

ε(d−1)/2

n

P% (ỹs 6∈ Kn|L) s−
d−3
d−1 ds+O

(
ε

n
2
d−1

)
.

(ii) If ε(d−1)/2/n < s < α/n, then

P%
(

#
(
C̃(x, βs) ∩ Ξn

)
≥ k

)
≤ ε

α
2
d−1

.

(iii) If ε(d−1)/2/n < s < α/n, then

P% (ỹs 6∈ Kn|L) = P%
(
ỹs 6∈

[
(C̃(x, βs) ∩ Ξn)|L

])
+O

(
ε

α
2
d−1

)
.
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Before proving (i), (ii) and (iii), we note that they imply∫ n−1/2

0

P% (ỹs 6∈ Kn|L) s−
d−3
d−1 ds =

∫ α
n

ε(d−1)/2

n

ϕ(K,L, y, %, ε, s)s−
d−3
d−1 ds+

+O

(
ε

α
2
d−1

)∫ α
n

ε(d−1)/2

n

s−
d−3
d−1 ds+O

(
ε

n
2
d−1

)
,

which in turn yields Lemma 3.1.
First, we introduce some notation. As before, let Q be the second fundamental form at x ∈ ∂K, and

let v1, . . . , vd−1 be an orthonormal basis of u(x)⊥ representing the principal directions. In addition, let
Θ′1, . . . ,Θ

′
2d−1 be the corresponding coordinate corners, and for i = 1, . . . , 2d−1 and s ∈ (0, n−1/2), let

Θ̃i,s = C̃(x, s) ∩ (x̃s + [Θ′i,R+x]) .

Subsequently, we show that

(3.13) lim
s→0+

s−1

∫
Θ̃i,s∩∂K

%(z)Hd−1(dz) = 2−(d−1).

In fact, since a ball rolls freely inside K, % is continuous and positive at x, and by (3.7) we deduce that

lim
s→0+

s−1

∫
Θ̃i,s∩∂K

%(z)Hd−1(dz)

= %(x) lim
s→0+

s−1Hd−1
(

Θ̃i,s ∩ ∂K
)

= %(x) lim
s→0+

s−1Hd−1
(
∂K ∩ C̃(x, s) ∩ (x̃∗s + [Θ′i,R+u(x)])

)
.

Let Ψ : ∂Γ ∩ C(x, r/R) → ∂K ∩ C(x, r/R) be the diffeomorphism which assigns to a point z ∈
∂Γ∩ H̃(x, s) the unique point Ψ(z) ∈ ∂K ∩ (x̃∗s + R+(z − x̃∗s)). It follows from (3.8) that there exists an
increasing function µ : R+ → R+ with lims→0+ µ(s) = 1 such that

µ(s)−1 ≤ Lip(ψ|(∂Γ ∩ C̃(x, s))) ≤ µ(s).

Thus we get

lim
s→0+

s−1Hd−1
(
∂K ∩ C̃(x, s) ∩ (x̃∗s + [Θ′i,R+u(x)])

)
= lim
s→0+

s−1Hd−1
(

Ψ
(
∂Γ ∩ C̃(x, s) ∩ (x̃∗s + [Θ′i,R+u(x)])

))
= lim
s→0+

s−1Hd−1
(
∂Γ ∩ C̃(x, s) ∩ (x̃∗s + [Θ′i,R+u(x)])

)
= 2−(d−1) lim

s→0+
s−1Hd−1

(
∂Γ ∩ C̃(x, s)

)
.

Now we can repeat the preceding argument in reverse order and finally use (3.1) to arrive at the assertion
(3.13).

To prove (i), we observe that∫ ε(d−1)/2

n

0

P% (ỹs 6∈ Kn|L) s−
d−3
d−1 ds ≤

∫ ε(d−1)/2

n

0

s−
d−3
d−1 ds� ε

n
2
d−1

.

Let α/n < s < n−1/2, and let n be sufficiently large. First, (2.6) yields that

P% (o 6∈ Kn, ỹs 6∈ Kn|L) ≤ εn−
2
d−1 .

On the other hand, if o ∈ Kn, then ỹs 6∈ Kn|L implies that Θ̃i,s ∩Kn = ∅ for some i ∈ {1, . . . , 2d−1},
and hence (3.13) yields

(3.14) P% (o ∈ Kn, ỹs 6∈ Kn|L) ≤ 2d−1(1− 2−ds)n < 2d−1e−2−dns.
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Therefore, by (3.10) we get∫ n−1/2

α/n

P% (ỹs 6∈ Kn|L) s−
d−3
d−1 ds � 2d−1

∫ ∞
α/n

e−2−dnss
2
d−1−1 ds+

ε

n
2
d−1

=
2d−1+ 2d

d−1

n
2
d−1

∫ ∞
2−dα

e−rr
2
d−1−1 dr +

ε

n
2
d−1

≤ 2ε

n
2
d−1

,

which verifies (i).
Next (ii) simply follows from (3.1) and (3.12). In fact, if 0 < s < α/n, then

P%
(

#
(
C̃(x, βs) ∩ Ξn

)
≥ k

)
≤
(
n

k

)
(βs)k ≤

(
n

k

)(
αβ

n

)k
<

(αβ)k

k!
≤ ε

α
2
d−1

.

Finally, we prove (iii). To this end, if ε(d−1)/2/n < s < α/n and i ∈ {1, . . . , 2d−1}, then we define
wi ∈ Θ′i by

(3.15) wi :=
(√

βs
) 1
d−1

d−1∑
m=1

ηmG(x)

4
√

(d− 1)km(x)
vm,

where ηm = ηim ∈ {−1, 1} for m = 1, . . . , 2d−1. Now let

Ω̃i,s := ∂K ∩ [x̃s + Θ′i, x̃
√
β s + wi + Θ′i].

We claim that for large n, if ỹs ∈ Kn|L but ỹs 6∈
[
(C̃(x, βs) ∩ Ξn)|L

]
, then there exists i ∈ {1, . . . , 2d−1}

such that

(3.16) Ξn ∩ Ω̃i,s = ∅.

Moreover, for all i = 1, . . . , 2d−1, we have

(3.17)
∫

Ω̃i,s

%(z)Hd−1(dz) ≥ 2−3d+2
√
βs.

To justify (3.17), let i ∈ {1, . . . , 2d−1} be fixed. It follows from the definition of wi that

wi ∈
(√

βs
) 1
d−1 G(x)

4
· ∂E.

Recall that π : Rd → u(x)⊥ denotes the orthogonal projection to u(x)⊥. If n is large enough, and hence
0 < s < α/n is sufficiently small, then (3.7), (3.9) and (3.15) yield that wi ∈ π(Ω̃i,s), since by assumption
√
β

1/(d−1)
/4 > 2, and therefore

(wi + Θ′i) ∩
(
wi +

(√
βs
) 1
d−1 G(x)

4
· E
)
⊂ π(Ω̃i,s).

In particular, (3.17) now follows from∫
Ω̃i,s

%(z)Hd−1(dz) ≥ %(x)

2
· Hd−1(Ω̃i,s)

≥ %(x)

2
· Hd−1(π(Ω̃i,s))

≥ %(x)

2
· 1

2d−1

√
βs
G(x)d−1

4d−1
αd−1Hd−1(x)−1/2

= 2−d41−d
√
βs.

Next we verify (3.16). We assume that ỹs ∈ Kn|L but ỹs 6∈
[
(C̃(x, βs) ∩ Ξn)|L

]
. Then there exist a ∈[

(C̃(x, βs) ∩ Ξn)|L
]

and b ∈
(
Kn \ C̃(x, βs)

)
|L such that ỹs ∈ (a, b). Thus there exists a hyperplane
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H in Rd containing ỹs+L⊥ and bounding the halfspacesH+ andH− such that C̃(x, βs)∩Ξn ⊂ int(H+)
and b ∈ int(H−). In addition, there exists i ∈ {1, . . . , 2d−1} such that

(3.18) x̃s + Θ′i ⊂ H−.
Now we define points q and q′ by

{q} = [ỹs, b] ∩ H̃(x,
√
βs), {q′} = [ỹs, b] ∩ H̃(x, βs).

Relation (3.8) implies that
H̃(x, βs) ∩K ⊂ x̃∗βs + 2G(x)(βs)

1
d−1E

if s > 0 is sufficiently small. Arguing as in [4], we obtain that

〈u(x), ỹs − ỹβs〉 <
β1/(d−1)

β1/(d−1) − 1
〈u(x), ỹ√βs − ỹβs〉

and
‖q − ỹ√βs‖
‖q′ − ỹβs‖

=
〈u(x), ỹs − ỹ√βs〉
〈u(x), ỹs − ỹβs〉

,

which yields (cf. [4])
q ∈ ỹ√βs + 2s

1
d−1G(x)E.

Since β ≥ [82(d− 1)]d−1, we thus arrive at

(3.19) q ∈ ỹ√βs +
1

4
√
d− 1

(
√
βs)

1
d−1G(x)E.

Now (3.18) implies that q+ Θ′i ⊂ H−. Hence it follows from (3.19) that ỹ√βs +wi ⊂ q+ Θ′i ⊂ H−, and
therefore also ỹ√βs + wi + Θ′i ⊂ H−. Thus Ω̃i,s ⊂ H−, which yields Ξn ∩ Ω̃i,s = ∅.

Assertion (iii) follows from (3.16) and (3.17). In fact, if ε(d−1)/2/n < s < α/n, then

P%
(
ỹs 6∈

[
(C̃(y, βs) ∩ Ξn)|L

])
− P% (ỹs 6∈ (Kn|L))

≤
2d−1∑
i=1

(
1−

∫
Ω̃i,s

%(z)Hd−1(dz)

)n
≤ 2d−1e−2−3d+2√β·sn

≤ ε α−
2
d+1 ,

by the choice of β. �

To actually compare the situation near the normal boundary point x of K with Hd−1(x) > 0 to the case
of the unit ball, let σ = (dαd)

−1 be the constant density of the corresponding probability distribution on
Sd−1. Let w ∈ Sd−1 be the d-th coordinate vector in Rd, and hence Rd−1 = w⊥. We write Bn to denote
the convex hull of n random points distributed uniformly and independently on Sd−1 according to σ. For
s ∈ (0, 1

2 ), we fix a linear subspace L0 ∈ Ldj with w ∈ L0, and let w̃s be of the form λw for λ ∈ (0, 1)
such that

(dαd)
−1 · Hd−1({z ∈ Sd−1 : 〈z, w〉 ≥ 〈w̃s, w〉}) = s.

In particular, w̃s|L0 = w̃s.

Lemma 3.2. If L ∈ Ldj , y ∈ ∂(K|L) and x ∈ ∂K is a normal boundary point such that y = x|L and
Hd−1(x) > 0, then

lim
n→∞

∫ n−1/2

0

n
2
d−1P% (ỹs 6∈ Kn|L) s−

d−3
d−1 ds = lim

n→∞

∫ n−1/2

0

n
2
d−1Pσ (w̃s 6∈ Bn|L0) s−

d−3
d−1 ds.

Proof. First, we assume d ≥ 3. It is sufficient to prove that for any ε ∈ (0, 1) there exists n0 > 0,
depending on ε, x,K, %, L, such that if n > n0, then

(3.20)
∫ n−1/2

0

P% (ỹs 6∈ Kn|L) s−
d−3
d−1 ds =

∫ n−1/2

0

Pσ (w̃s 6∈ Bn|L0) s−
d−3
d−1 ds+O

(
ε

n
2
d−1

)
.
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Let α, β and k be the quantities associated with ε, x,K, %, L in Lemma 3.1, let C̃(x, s) denote the cap of
K defined in (3.2), and let C̃(w, s) denote the corresponding cap of Bd at w. We define the densities %s on
∂C̃(x, βs) and σs on ∂C̃(w, βs) of probability distributions by

%s(z) =

{
%(z)/(βs), if z ∈ ∂K ∩ C̃(x, βs),

0, if z ∈ ∂C̃(x, βs)\∂K,

σs(z) =

{
σ(z)/(βs), if z ∈ Sd−1 ∩ C̃(w, βs),

0, if z ∈ ∂C̃(w, βs)\Sd−1.

For i = 0, . . . , k, we write C̃(x, βs)i and C̃(w, βs)i to denote the convex hulls of i random points dis-
tributed uniformly and independently on ∂C̃(x, βs) and ∂C̃(w, βs) according to %s and σs, respectively.

If n is large, then Lemma 3.1 yields that the left-hand and the right-hand side of (3.20) are

O

(
ε

n
2
d−1

)
+

k∑
i=0

(
n

i

)∫ α
n

ε(d−1)/2

n

(βs)i(1− βs)n−i × P%s
(
ỹs 6∈ C̃(x, βs)i|L

)
s−

d−3
d−1 ds,

O

(
ε

n
2
d−1

)
+

k∑
i=0

(
n

i

)∫ α
n

ε(d−1)/2

n

(βs)i(1− βs)n−i × Pσs
(
w̃s 6∈ C̃(w, βs)i|L0

)
s−

d−3
d−1 ds.

For each i ≤ k, the representation of the beta function by the gamma function and the Stirling formula (see
E. Artin [1]) imply

(3.21) lim
n→∞

n
2
d−1

(
n

i

)∫ 1/β

0

(βs)i(1− βs)n−is−
d−3
d−1 ds =

β
−2
d−1 Γ

(
i+ 2

d−1

)
i!

< 1.

Therefore to prove (3.20), it is sufficient to verify that for each i = 0, . . . , k, if s > 0 is small, then

(3.22)
∣∣∣P%s (ỹs 6∈ C̃(x, βs)i|L

)
− Pσs

(
w̃s 6∈ C̃(w, βs)i|L0

)∣∣∣� ε

k
.

If i ≤ j, then (3.22) readily holds as its left-hand side is zero.
To prove (3.22) if i ∈ {j + 1, . . . , k}, we transform both K and Bd in such a way that their osculat-

ing paraboloid is Ω = {z − ‖z‖2 w : z ∈ Rd−1}, and the images of the caps C̃(x, βs) and C̃(w, βs)

are very close. Using these caps, we construct equivalent representations of P%s
(
ỹs 6∈ C̃(x, βs)i|L

)
and

Pσs
(
w̃s 6∈ C̃(w, βs)i|L0

)
, based on the same space Ξs and on comparable probability measures and ran-

dom variables.
We may assume that u(x) = w. Let v1, . . . , vd−1 be an orthonormal basis of w⊥ in the principal

directions of the fundamental form Q of K at x ∈ ∂K. We define the linear transform As of Rd by

As(w) = 2(βs)
−2
d−1G(x)−2w,

As(vi) = (βs)
−1
d−1

√
ki(x)G(x)−1vi, i = 1, . . . , d− 1,

and choose an orthonormal linear transform Ps such that Psw = w, and Ps ◦ As(L⊥) = L⊥0 . Based on
these linear transforms, let Φs be the affine transformation

Φs(z) = Ps ◦As(z − x).

In addition, we define the linear transform Rs of Rd by

Rs(w) = 2(βs)
−2
d−1

(
αd−1

dαd

) 2
d−1

w,

Rs(vi) = (βs)
−1
d−1

(
αd−1

dαd

) 1
d−1

vi, i = 1, . . . , d− 1,

and let Ψs be the affine transformation

Ψs(z) = Rs(z − x).
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Subsequently, we also write Φsz for Φs(z) or Φsz|L0 for Φs(z)|L0, and similarly for Ψs. We observe that
Ω is the osculating paraboloid of both ΦsK and ΨsB

d at o, and

lim
s→0+

Φsx̃s = lim
s→0+

Ψsw̃s = −β
−2
d−1w =: w∗,

lim
s→0+

ΦsC̃(x, βs) = lim
s→0+

ΨsC̃(w, βs) = {z − τ w : z ∈ Bd−1 and ‖z‖2 ≤ τ ≤ 1}.

For p ∈ C̃(x, βs) ∩ ∂K and z = π ◦ Φs(p), let D(p) be the Jacobian of π ◦ Φs at p as a map π ◦ Φs :

C̃(x, βs) ∩ ∂K → Rd−1, and let
%̃s(z) = %s(p) ·D(p)−1.

In addition, for p ∈ C̃(w, βs)∩ Sd−1 and z = π ◦Ψs(p), let D̃(p) be the Jacobian of π ◦Ψs at p as a map
π ◦Ψs : C̃(w, βs) ∩ Sd−1 → Rd−1, and let

σ̃s(z) = σs(p) · D̃(p)−1.

We define
Ξs =

[
π ◦ ΦsC̃(x, βs)

]
∪
[
π ◦ΨsC̃(w, βs)

]
,

and extend %̃s and σ̃s to Ξs by

%̃s(z) = 0, if z ∈
[
π ◦ΨsC̃(w, βs)

]
\
[
π ◦ ΦsC̃(x, βs)

]
,

σ̃s(z) = 0, if
[
π ◦ ΦsC̃(x, βs)

]
\
[
π ◦ΨsC̃(w, βs)

]
.

Therefore %̃s and σ̃s are densities of probability distributions on Ξs. For z ∈ Ξs, let ϕs(z) ∈ Φs∂K and
ψs(z) ∈ ΨsS

d−1 be the points near z whose orthogonal projection into Rd−1 is z. For random variables
z1, . . . , zi ∈ Ξs either with respect to %̃s or σ̃s, the quantities above were defined so as to satisfy

P%s
(
ỹs 6∈ C̃(x, βs)i|L

)
= P%̃s (Φsx̃s|L0 6∈ [ϕs(z1), . . . , ϕs(zi)]|L0) ,(3.23)

Pσs
(
w̃s 6∈ C̃(w, βs)i|L

)
= Pσ̃s (Ψsw̃s 6∈ [ψs(z1), . . . , ψs(zi)]|L0) .(3.24)

Now there exists an increasing function s 7→ µ∗(s) with lims→0+ µ∗(s) = 1 such that

µ∗(s)−1Bd−1 ⊂
[
π ◦ ΦsC̃(x, βs)

]
∩
[
π ◦ΨsC̃(w, βs)

]
⊂ Ξs ⊂ µ∗(s)Bd−1,

we have µ∗(s)−1ϕs(z) ≤ ψs(z) ≤ µ∗(s)ϕs(z) for all z ∈ Ξs, and

µ∗(s)−1α−1
d−1 ≤ %̃s(z) ≤ µ∗(s)α−1

d−1, if z ∈ π ◦ ΦsC̃(x, βs),

µ∗(s)−1α−1
d−1 ≤ σ̃s(z) ≤ µ∗(s)α−1

d−1, if z ∈ π ◦ΨsC̃(w, βs).

Therefore

(3.25) lim
s→0+

∫
Ξs

|%̃s(z)− σ̃s(z)|Hd−1(dz) = 0.

From (3.25) we deduce that if s > 0 is small, then

|P%̃s (Φsx̃s|L0 6∈ [ϕs(z1), . . . , ϕs(zi)]|L0 and Ψsw̃s 6∈ [ψs(z1), . . . , ψs(zi)]|L0)−(3.26)

Pσ̃s (Φsx̃s|L0 6∈ [ϕs(z1), . . . , ϕs(zi)]|L0 and Ψsw̃s 6∈ [ψs(z1), . . . , ψs(zi)]|L0)| ≤ ε

k
.

Next, if s > 0 is small, then

‖w∗ − Φsx̃s‖ ≤
ε

kj+1
and ‖w∗ −Ψsw̃s‖ ≤

ε

kj+1
,

and in addition
‖ϕs(z)− ψs(z)‖ ≤

ε

kj+1
for all z ∈ Ξs.

Let us assume that Φsx̃s|L0 6∈ [ϕs(z1), . . . , ϕs(zi)]|L0 but Ψsw̃s ∈ [ψs(z1), . . . , ψs(zi)]|L0 for some
z1, . . . , zi ∈ Ξs. In this case, the point a of [ϕs(z1), . . . , ϕs(zi)]|L0 closest to Φsx̃s|L0 is contained in
some (j − 1)-simplex [ϕs(zm1), . . . , ϕs(zmj )]|L0, i.e. there are λ1, . . . , λj ≥ 0, λ1 + . . . + λj = 1,
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such that a =
∑j
r=1 λrϕ(zmr )|L0. Moreover, there are µ1, . . . , µi ≥ 0, µ1 + . . . + µi = 1, so that

Ψsw̃s =
∑i
r=1 µrψs(zr)|L0. Then we have

‖Φsx̃s|L0 − a‖ ≤

∥∥∥∥∥Φsx̃s|L0 −
i∑

r=1

µrϕs(zr)|L0

∥∥∥∥∥
≤ ‖Φsx̃s|L0 − w∗‖+ ‖w∗ −Ψsw̃s‖+

∥∥∥∥∥
i∑

r=1

µr(ψs(zr)− ϕs(zr))|L0

∥∥∥∥∥
≤ ε

kj+1
+

ε

kj+1
+

ε

kj+1
=

3ε

kj+1
,

and hence

‖w∗ − a‖ ≤ 4ε

kj+1
.

Choose a maximal set v1, . . . , vl ∈ Sd−1 ∩ L0 such that the distance between any two points is at least
εk−(j+1), in particular

l� ε−(j−1)k(j−1)(j+1).

Since a, ϕs(zm1)|L0, . . . , ϕs(zmj )|L0 lie in a (j − 1)-dimensional affine subspace of L0, there is a unit
vector v ∈ Sd−1 ∩ L0 such that |〈ϕs(zmr )− w∗, v〉| ≤ 4εk−(j+1) for r = 1, . . . , j, and thus

|〈ϕs(zmr )− w∗, vm〉| ≤
6ε

kj+1

for r = 1, . . . , j and a suitably chosen m ∈ {1, . . . , l}. In fact, for the given vector v ∈ Sd−1 ∩ L0, there
is some m ∈ {1, . . . , l} such that ‖v − vm‖ ≤ εk−(j+1). Since ΦsC̃(x, βs) ⊂ w∗ + 2Bd, we deduce that

|〈ϕs(zmr )− w∗, vm〉| ≤ |〈ϕs(zmr )− w∗, v〉|+ ‖ϕs(zmr )− w∗‖ · ‖vm − v‖

≤ 4ε

kj+1
+ 2 · ε

kj+1
=

6ε

kj+1
.

Therefore, if we define, for m = 1, . . . , l,

Πm :=
{
p ∈ ∂ΦsC̃(x, βs) : |〈p− w∗, vm〉| ≤ 6εk−(j+1)

}
,

we get the following: if Φsx̃s|L0 6∈ [ϕs(z1), . . . , ϕs(zi)]|L0 but Ψsw̃s ∈ [ψs(z1), . . . , ψs(zi)]|L0 for
some z1, . . . , zi ∈ Ξs, then there exists m ∈ {1, . . . , l} such that Πm contains some j of the points
ϕs(z1), . . . , ϕs(zi). SinceHd−1(Πm)� εk−(j+1), we have

P%̃s (Φsx̃s|L0 6∈ [ϕs(z1), . . . , ϕs(zi)]|L0 and Ψsw̃s ∈ [ψs(z1), . . . , ψs(zi)]|L0)

≤
(
i

j

) l∑
m=1

P%̃s (ϕs(z1), . . . , ϕs(zj) ∈ Πm)

�
(
i

j

)
· l · (εk−(j+1))j � ε

k
.(3.27)

Similarly, we have

(3.28) Pσ̃s (Ψsw̃s 6∈ [ψs(z1), . . . , ψs(zi)]|L0 and Φsx̃s|L0 ∈ [ϕs(z1), . . . , ϕs(zi)]|L0)� ε

k
.

Combining (3.23), (3.24) as well as (3.26), (3.27) and (3.28) yields (3.22), and in turn Lemma 3.2 if d ≥ 3.
If d = 2, then a similar argument works, only some of the constrains should be modified as follows. In

(3.21), we only have β
−2
d−1 Γ

(
i+ 2

d−1

)
/i! < k + 1, and hence in (3.22), we should verify an upper bound

of order ε
k2 , not of order ε

k . Therefore the upper bound in (3.26) should be ε
k2 . �
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4. COMPLETING THE PROOF OF THEOREM 1.2

In order to transfer an integral over an average of projections of a convex body to a boundary integral,
we are going to use the following lemma from K. Böröczky Jr., L. M. Hoffmann, D. Hug [3].

For L ∈ Ldj and y ∈ ∂(K|L), we choose a point x(y) ∈ ∂K such that y = x(y)|L. In general, x(y) is
not uniquely determined, but we can fix a measurable choice (cf. [3, p. 152]). Recall, however, that x(y) is
uniquely determined for νj a.e. L ∈ Ldj andHj−1 a.e. y ∈ ∂(K|L).

Lemma 4.1. LetK ⊂ Rd be a convex body in which a ball rolls freely, let f : ∂K → [0,∞) be nonnegative
and measurable, and let j ∈ {1, . . . , d− 1}. Then

jαj
dαd

∫
∂K

f(x)Hd−j(x)Hd−1(dx) =

∫
Ldj

∫
∂(K|L)

f(x(y))Hj−1(dy) νj(dL).

By the very special case K = Bd of (1.2), due to M. Reitzner [16], we have

lim
n→∞

n
2
d−1

[
Vj(B

d)− EσVj(Bn)
]

= c(j,d)(dαd)
d+1
d−1 .

Therefore the rotational symmetry of Bd, (2.12) and (3.6) yield

c(j,d)(dαd)
d+1
d−1 =

(
d
j

)
αd

αd−jαj
· jαj(dαd)

2
d−1

d− 1
(αd−1)−

2
d−1

× lim
n→∞

∫ n−1/2

0

n
2
d−1Pσ (w̃s 6∈ Bn|L0) s−

d−3
d−1 ds.(4.1)

We can now transform the asymptotic formulas to K. Let L ∈ Ldj and let y ∈ ∂(K|L) be such that
y = x|L for some normal boundary point x = x(y) ∈ ∂K. If Hd−1(x) = 0, then J%(y, L) = 0 by
Lemma 2.4. If Hd−1(x) > 0, then it follows from (3.6), Lemma 3.2 and (4.1) that

J%(y, L) = (d− 1)−1(αd−1)−
2
d−1 %(x)

−2
d−1Hd−1(x)

1
d−1

× lim
n→∞

∫ n−1/2

0

n
2
d−1Pσ (w̃s 6∈ Bn|L0) s−

d−3
d−1 ds

= c(j,d)%(x)
−2
d−1Hd−1(x)

1
d−1

( (
d
j

)
αd

αd−jαj
· jαj
dαd

)−1

,

where x = x(y). Finally, we apply first (2.12), and afterwards Lemma 4.1, to deduce

lim
n→∞

n
2
d−1 [Vj(K)− E%(Vj(Kn))]

= c(j,d) dαd
jαj

∫
Ldj

∫
∂(K|L)

%(x(y))
−2
d−1Hd−1(x(y))

1
d−1 Hj−1(dy) νj(dL)

= c(j,d)

∫
∂K

%(x)
−2
d−1Hd−1(x)

1
d−1 Hd−j(x)Hd−1(dx),

which concludes the proof of Theorem 1.2.

5. PROOF OF THEOREM 1.3

Using the Stirling formula Γ(n + 1) ∼ (ne )n
√

2πn, as n → ∞ (see E. Artin [1]), for any α > 0 and
γ ∈ (0, 1], we deduce

lim
n→∞

nα
∫ γ

0

sα−1(1− s)n ds = lim
n→∞

nα
∫ 1

0

sα−1(1− s)n ds

= lim
n→∞

nα
Γ(α)Γ(n+ 1)

Γ(n+ 1 + α)
= Γ(α).(5.1)
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In the following argument, γ1, γ2, . . . again denote positive constants that may depend on K and %. We
can assume that o ∈ int(K). Further, let (∂K)n∗ denote the set of all x1, . . . , xn ∈ ∂K such that o ∈
[x1, . . . , xn]. For u ∈ Sd−1 and t ≥ 0, let

C(u, t) := {x ∈ K : 〈x, u〉 ≥ hK(u)− t},

where hK denotes the support function of K. To deduce the upper bound, we start with the estimates

E%(V1(K)− V1(Kn))

=
1

αd−1

∫
(∂K)n

∫
Sd−1

(hK(u)− hKn(u))Hd−1(du)%(x1) · · · %(xn)Hd−1(dx1) . . .Hd−1(dxn)

≤ 1

αd−1

∫
(∂K)n∗

∫
Sd−1

(hK(u)− hKn(u))Hd−1(du)%(x1) · · · %(xn)Hd−1(dx1) . . .Hd−1(dxn)

+ 2d(1− γ1)n

≤ 1

αd−1

∫
Sd−1

∫ hK(u)

0

∫
(∂K)n

1{x1, . . . , xn ∈ ∂K \ C(u, s)}%(x1) · · · %(xn)

Hd−1(dx1) . . .Hd−1(dxn) dsHd−1(du) + 2d(1− γ1)n

≤ 1

αd−1

∫
Sd−1

∫ hK(u)

0

(
1−

∫
∂K∩C(u,t)

%(x)Hd−1(dx)

)n
dtHd−1(du) + 2d(1− γ1)n.(5.2)

For suitable positive constants γ2, γ3, γ4 we get, for u ∈ Sd−1 and t ∈ (0, γ2),

(5.3)
∫
∂K∩C(u,t)

%(x)Hd−1(dx)

{
> γ3t

d−1, if t ∈ (0, γ2),

> γ4, if t ≥ γ2.

In particular, γ4, γ3(γ2)d−1 ∈ (0, 1). We deduce from (5.2), (5.3) and (5.1) that, for suitable γ5, . . . , γ9

with γ7, γ9 ∈ (0, 1),

E%(V1(K)− V1(Kn)) ≤ γ5

∫ γ2

0

(1− γ3t
d−1)n dt+ γ6γ

n
7

= γ8

∫ γ9

0

s
1
d−1−1 · (1− s)n ds+ γ6γ

n
7 ≤ γ10n

−1
d−1 .

To prove the lower bound for E%(V1(K)− V1(Kn)), we need the following observation.

Lemma 5.1. Let K ⊂ Rd be a convex body, and let hK be twice differentiable at u0 ∈ Sd−1. Then there
is some R > 0 such that K ⊂ x0 − Ru0 + RBd, where x0 = ∇hK(u0) ∈ ∂K. In particular, there exist
a measurable set Σ ⊂ Sd−1 with Hd−1(Σ) > 0 and some R > 0, all depending on K, such that for any
u ∈ Σ there is some x ∈ ∂Ksuch that K ⊂ x−Ru+RBd.

Proof. For the proof of the first assertion, we may assume that x0 = o, hence also hK(u0) = 0. We put
h := hK . By assumption, there is a function R : R+ → [0,∞) with limt→0+ R(t) = 0 and∣∣∣∣h(u)− 1

2
· d2h(u− u0, u− u0)

∣∣∣∣ ≤ R(‖u− u0‖)‖u− u0‖2.

Thus there is a constant R1 > 0 and δ > 0 such that h(u) ≤ R1‖u − u0‖2 for all u ∈ Sd−1 with
〈u, u0〉 ≥ 1 − δ. But then for R2 := max{2R1,max{h(u) : u ∈ Sd−1}/(2δ)} and all u ∈ Sd−1, we
obtain

h(u) ≤ R2 (1− 〈u0, u〉) = h(−R2u0 +R2B
d, u),

that is K ⊂ −R2u0 +R2B
d.

The second assertion follows immediately from the first assertion. �

Let t0 be the inradius of K. Now Lemma 5.1 yields, for u ∈ Σ and t ∈ (0, t0), that∫
∂K∩C(u,t)

%(x)Hd−1(dx) < γ11 · t
d−1
2 .



20 K. BÖRÖCZKY, F. FODOR, AND D. HUG

Choosing a constant γ12 ∈ (0, t0) satisfying γ11(γ12)
d−1
2 < 1, it follows as in the derivation of (5.2) that,

with a suitable constant γ13 ∈ (0, 1), we have

E%(V1(K)− V1(Kn)) ≥ 1

αd−1

∫
Σ

∫ γ12

0

(
1− γ11t

d−1
2

)n
dtHd−1(dx)

=

∫ γ13

0

s
2
d−1−1 · (1− s)n ds > γ14 · n

−2
d−1 .

Theorem 1.2 shows that the lower bound of Lemma 1.3 is of optimal order if K has a rolling ball. In
fact, the assumption of a rolling ball ensures that the integral on the right side of (1.2) is positive. This
follows, for instance, from the absolute continuity of the Gauss curvature measure of a convex body which
has a rolling ball (cf. [12]).

On the other hand, the upper bound for E%(V1(K)−V1(Kn)) is of optimal order if K is a polytope. To
explain this, let Σ0 ⊂ Sn−1 be contained in the interior of the exterior normal cone of one of the vertices
of K and such thatHd−1(Σ0) > 0. In this case∫

∂K∩C(u,t)

%(x)Hd−1(dx) < γ15 · td−1,

for u ∈ Σ0 and t ∈ (0, γ16), and hence E%(V1(K)− V1(Kn)) ≥ γ17 · n
−1
d−1 .
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6. K. Böröczky Jr., R. Schneider: The mean width of circumscribed random polytopes. Canadian Math. Bull. 53 (2010), 614-628.
7. H. Federer: Geometric Measure Theory. Springer, Berlin, 1969.
8. P.M. Gruber: Convex and Discrete Geometry. Springer, Berlin 2007.
9. D. Hug: Contributions to affine surface area. Manuscripta Math. 91 (1996), 283-301.

10. D. Hug: Curvature relations and affine surface area of convex sets. Results Math. 29 (1996), 233-248.
11. D. Hug: Absolute continuity for curvature measures of convex sets I. Math. Nachr. 195 (1998), 139158.
12. D. Hug: Absolute continuity for curvature measures of convex sets II. Math. Z. 232 (1999), 437485.
13. D. Hug: Absolute continuity for curvature measures of convex sets, III. Advances Math. 169 (2002), 92-117.
14. D. Hug: Measures, Curvatures and Currents in Convex Geometry. Habilitationsschrift, Universität Freiburg, 2000.
15. K. Leichtweiss: Affine geometry of convex bodies. Johann Ambrosius Barth Verlag, 1998.
16. M. Reitzner: Random points on the boundary of smooth convex bodies. Trans. Amer. Math. Soc. 354 no. 6 (2002), 2243-2278.
17. R. Schneider: Approximation of convex bodies by random polytopes. Aequationes Math. 32 (1987), 304-310.
18. R. Schneider: Convex Bodies: the Brunn-Minkowski Theory. Cambridge University Press, Cambridge, 1993.
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