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Abstract

Given r > 1, we search for the convex body of minimal volume in E
3

that contains a unit ball, and whose extreme points are of distance at least
r from the centre of the unit ball. It is known that the extremal body is the
regular octahedron and icosahedron for suitable values of r. In this paper
we prove that if r is close to one then the typical faces of the extremal body
are asymptotically regular triangles. In addition we prove the analogous
statement for the extremal bodies with respect to the surface area and the
mean width.

1 Notation and known results
Let us introduce the notation used throughout the paper. The implied constant in
O(·) is always some absolute constant. For any notions related to convexity in
this paper, consult R. Schneider [13] or P.M. Gruber [9]. We write o to denote the
origin in E

n, 〈·, ·〉 to denote the scalar product, and ‖·‖ to denote the corresponding
Euclidean norm. In addition for non–collinear points u,v,w, the angle of the half
lines vu and vw is ∠(u,v,w). Given a set X ⊂ E

n, the affine hull and the interior
of X are denoted by affX and intX , respectively. If X is compact convex then we
write ∂X to denote the relative boundary of X with respect to affX . Moreover let
[X1, . . . ,Xk] stand for the convex hull of the objects X1, . . . ,Xk.
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The unit ball centred at o in E
n is denoted by Bn, and the boundary of Bn is de-

noted by Sn−1. As usual we call a compact convex set C with non–empty interior
a convex body, and write V (C) to denote its volume, and S(C) to denote its surface
area. In addition a two-dimensional compact convex set is called a compact disc,
and we write A(·) to denote the two–dimensional Hausdorff measure.

Given a compact convex set C in E
n, its support function hC(u), u ∈ E

n, is
defined by

hC(u) = max
x∈C

〈x,u〉.

In particular for any u ∈ Sn−1, the width of C in the direction u is hC(u)+hC(−u).
Therefore the mean width of C is

M(C) =
2

S(Bn)

Z

Sn−1
hC(u)du. (1)

In particular M(Bn) = 2, and if C is a convex disc then M(C) = 1
π S(C) according

to the Cauchy formula.
The following statement is the starting point of our investigation:

Theorem 1.1 (Hajós lemma) Among convex polygons, which contain B2, and
whose vertices are of distance at least r from o for some r > 1, the ones with
minimal area are inscribed into rB2 in a way that all but at most one side touch
B2. In addition the analogous statement holds for the minimal perimeter.

Theorem 1.1 was proposed and proved by members of the seminar led by Gy.
Hajós around 1960. It was inspired by an earlier result of L. Fejes Tóth (see for
example [6]); namely, L. Fejes Tóth solved the case of minimal area for r = 2√

3
when the optimal polygon is a regular hexagon. Actually his approach yields the
similar characterization of any regular polygon.

Based on ideas of C.A. Rogers and J. Molnár, the following characterization
of any regular polytopes in higher dimensions appeared in K. Böröczky and K.
Máthéné Bognár [4]:

Theorem 1.2 (K. Böröczky) Let M be a regular polytope in E
n whose circum-

centre is o, and let ri denote the distance of an i–face of M from o. If P is any
polytope such that o ∈ intP, and the distance of any i–face of P from o is at least
ri for i = 0, . . . ,n then V (P) ≥ V (M). Moreover equality holds if and only if P is
congruent to M, and its circumcentre is o.

Recently Theorem 1.2 has been strengthened by K. Bezdek [1]:
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Theorem 1.3 (K. Bezdek) Let M be a regular polytope in E
n whose circumcentre

is o, and let ri denote the distance of an i–face of M from o. If P is any polytope
such that o ∈ intP, and the distance of any i–face of P from o is at least ri for i =
0, . . . ,n then S(P) ≥ S(M). Moreover equality holds if and only if P is congruent
to M, and its circumcentre is o.

Theorem 1.3 implies Theorem 1.2 because we have V (M) = rn−1
n S(M) and

V (P) ≥ rn−1
n S(P).

One feels that possibly there are too many conditions on the polytope in Theo-
rems 1.2 and 1.3 in higher dimensions. J. Molnár [10] asked the question whether
for certain platonic solids in E

3, the condition in Theorem 1.2 on the edges is su-
perfluous. K. Böröczky, K. Böröczky, Jr. [2] verified the conjecture of J. Molnár
in the case of the octahedron and the icosahedron.

Theorem 1.4 (K. Böröczky, K. Böröczky, Jr.) Given r =
√

3 or r =
√

15−6
√

5,
let Mr be the octahedron, or the icosahedron, respectively, circumscribed around
B3. If P is any polytope in E

3 containing B3, and each vertex of P is of distance at
least r from o then V (P) ≥V (Mr) and S(P) ≥ S(Mr). Moreover equality holds in
either inequalities if and only if P is congruent to Mr, and its circumcentre is o.

According to [2], cubes and dodecahedra are not optimal in their class, and
no at least eight dimensional regular polytope is optimal in its class in the sense
of Theorem 1.4. K. Böröczky, K. Böröczky, Jr. [2] conjecture that regular tetra-
hedra are optimal if r = 3. It is an open question whether the octahedron or the
icosahedron could be characterized with respect to the mean width in the sense of
Theorem 1.4.

In this paper our goal is to discuss optimal convex bodies with respect to thin
shells, and to prove a weak generalization of the Hajós Lemma to dimension three.
To define the corresponding class of convex bodies in E

3, we recall that x is an
extreme point of a convex compact set C if it does not lie in the relative interior of
any segment contained in C. Actually the extreme points form the minimal subset
of C whose convex hull is C. We write extC to denote the family of extreme points
of C.

Definition Given r > 1, we write Fr to denote the family of convex bodies in E
3,

which contain B3, and whose extreme points are of distance at least r from o.
Moreover let Pr ∈ Fr have minimal volume, let Qr ∈ Fr have minimal surface
area, and let Qr ∈ Fr have minimal mean width.

The minima do exist according to the Blaschke Selection Theorem, and all ex-
treme points of Pr, Qr and Wr lie on rS2 by the monotonicity of the volume, surface
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area and the mean width. Theorem 1.4 states that if r =
√

3 or r =
√

15−6
√

5
then Pr is an octahedron, or an icosahedron, respectively, circumscribed around
B3. Moreover the analogous statements hold for Qr. It is not known whether Pr,
Qr and Wr are polytopes for all r. Actually if r is large then possibly all of Pr, Qr
and Wr are circular cylinders.

If r is close to 1 then it seems to be out of reach to determine Pr, Qr or Wr.
However we prove that in this case most part of the boundaries of Pr, Qr and Wr
are the union of triangles that are almost regular. In order to phrase this statement,
in this paper we call F a face of a convex body C in E

3 if F is the intersection of
C and a supporting plane, moreover F is a convex disc. In addition we say that
the convex discs M and N are ε–close for ε > 0 if there exist congruent copies M ′

and N ′ of M and N, respectively, satisfying

1
1+ε N′ ⊂ M′ ⊂ (1+ ε)N ′

.

Theorem 1.5 If r > 1 is close to one then all but at most c(r−1)
1
9 percent of the

boundaries of all of Pr, Qr and Wr are the union of faces that are (r−1)
1
9 –close to

the regular triangle of circumradius
√

r2 −1 where c > 0 is an absolute constant.

The proof of Theorem 1.5 yields that if r > 1 tends to one then

V (Pr\B3) = π · (r−1)+O
(
(r−1)

4
3

)
; (2)

S(Qr)−S(B3) = 3π · (r−1)+O
(
(r−1)

4
3

)
; (3)

M(W 3
r )−M(B3) = 7

6 (r−1)+O
(
(r−1)

4
3

)
. (4)

What we still have in higher dimensions is the analogues of the asymptotic
formulae (2), (3) and (4). Since the method of proof is quite different from the
arguments below, these asymptotic results are proved in the accompanying paper
K. Böröczky, K. Böröczky, Jr., C. Schütt and G. Wintsche [3].

Some of the ideas in this paper come from the theory of polytopal approxima-
tion (see P.M. Gruber [7], [8] and [9] for general surveys).

Let us review the structure of this paper. Below always r > 1 and is close to
one. For a convex polytope L with B3 ⊂P and extP⊂ rS2, Section 2 presents some
estimates for the differences of volume, surface area and mean width between L
and B3. These estimates use integrals based on the second moment over the faces
of L. In turn certain extremal properties of the corresponding integral expressions
over convex discs are determined in Sections 3 and 4. Next an element of Fr that
is close to be optimal with respect to all of volume, surface area and mean width is
constructed in Section 5. Finally Theorem 1.5, and the asymptotic formulae (2),
(3) and (4) are proved in Section 6.
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We close this section by introducing some notions and notations used in the
arguments. We write T (ρ) to denote a fixed regular triangle with circumradius
ρ > 0. Next we write πS2 to denote the radial projection from E

3\o onto S2.
Finally we define F̃r to be the family of all elements of Fr whose extreme points
lie on rS2, r > 1.

2 Some formulae for volume, surface area and mean
width difference

In this section we provide formulae for the volume, surface area and mean width
difference of a polytope in F̃r and B3.

Let r ∈ (1,2). We start with some observations concerning a convex disc
F ⊂ rB3 with affF ∩ intB3 = /0. First if x,y ∈ F then

‖πS2(x)−πS2(y)‖ ≤ ‖x− y‖ ≤ r2 · ‖πS2(x)−πS2(y)‖. (5)

In addition if y ∈ S2 is normal to affF and (1+ν)y ∈ affF for ν ≥ 0 then

A(F) =
Z

πS2(F)

(1+ν)2

〈x,y〉3 dx; (6)

V ([o,F]) =
1
3

Z

πS2(F)

(1+ν)3

〈x,y〉3 dx. (7)

Given a polytope P ∈ F̃r, let F1, . . . ,Fk be the faces of P. For i = 1, . . . ,k, we
write xi ∈ S2 to denote the unit exterior normal to Fi, and νi to denote the distance
of affFi and B3, moreover we define zi = (1+νi)xi ∈ affFi. Since if x ∈ Fi then

〈πS2(x),xi〉 = 1− 1
2 ‖x− zi‖2 +O((r−1)2),

combining (5), (6) and (7) yields the formulae

S(P)−S(B3) =
k

∑
i=1

Z

Fi

(3
2 ‖x− zi‖2 +2νi

)
dx+O((r−1)2); (8)

V (P)−V (B3) =
k

∑
i=1

Z

Fi

(1
2 ‖x− zi‖2 +νi

)
dx+O((r−1)2). (9)

Concerning the mean width, let y1, . . . ,yl ∈ S2 be the points such that ry1, . . . ,ryl
are the vertices of P, hence

M(P)−M(B3) =
2

S(B3)

Z

S2

(
max

j=1,...,l

[
〈x,ry j〉−1

])
dx. (10)
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It may happen that x ∈ πS2Fi but there exists a y j such that 〈x,ry j〉 > 〈x,z〉 for all
z ∈ Fi. Therefore we cannot directly transfer the integral in (10) on S2 onto ∂P.
Instead we consider a related quantity over the individual faces of P.

Let Fi be a face of P, hence we deduce

A(Fi) = (1+O(r−1)) ·A(πS2Fi) (11)

by (5). If y ∈ Fi and ry j is a vertex of Fi then expanding 〈πS2y,y j〉 in terms of
‖y j −πS2y‖ and using (5) leads to

〈πS2y,ry j〉−1 = r−1+ 1
2‖y− ry j‖2 +O((r−1)2).

Therefore simple argument yields
Z

πS2 Fi

(
max

z∈extFi
[〈x,z〉−1]

)
dx = A(πS2Fi)(r−1)− 1

2

Z

Fi

(
min

z∈extFi
‖y− z‖2

)
dy

+A(πS2Fi)O((r−1)2). (12)

3 Estimates for convex discs related to volume and
surface area

To prove the asymptotic formulae (2) and (3) about volume and surface area, an
essential tool is the following estimate (compare (8) and (9)).

Lemma 3.1 If ρ > 0 and C is a convex disc such that ‖x‖ ≥ ρ for any x ∈ extC
then

Z

C
‖x‖2dx ≥ ρ2

4
A(C),

with equality if and only if C is a regular triangle with circumradius ρ whose
centroid is o.

What we need to prove Theorem 1.5 in the cases of volume and surface area
is some stability version of Lemma 3.1.

Lemma 3.2 There exist absolute constants ε0,c1,c2 > 0 with the following prop-
erties: Let ε ∈ (0,ε0), ρ > 0 and let C be a convex disc with extC ⊂ ρS1.

(i) If C is ε-close to T (ρ) then
Z

C
‖x‖2dx ≤ (1

4 + c1ε)A(C) ·ρ2.

(ii) If C is not ε-close to T (ρ) then
Z

C
‖x‖2dx ≥ (1

4 + c2ε2)A(C) ·ρ2.
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We only prove Lemma 3.2 because it directly yields Lemma 3.1. In turn we
prepare the proof of Lemma 3.2 by a series of small observations, the last of which
is Proposition 3.5.

For an acute angle α, we define

γ(α) =
4sin2α+ sin4α

12sin2α
=

1
3

+
cos2α

6
.

This definition is motivated by the following observation. If M = [v,u,w] is a
triangle such that the angle at v is α and the angle at u is π

2 then

A(M) =
‖w− v‖2 sin2α

4
(13)

Z

M
‖x− v‖2dx =

‖w− v‖4(4sin2α+ sin4α)

48
(14)

= γ(α) · ‖w− v‖2A(K). (15)

We readily have

Proposition 3.3 The function γ(α) is decreasing on (0,
π
2 ), and satisfies γ(α) +

γ(π
2 −α) = 2

3 .

Next we average the second moment over two triangles with right angle.

Proposition 3.4 Let M and K be triangles with right angle that intersect in their
common longest sides whose length is ρ, and let v be an endpoint of this common
side. Writing α and β to denote the angle of M and K, respectively, at v, we have

R

M∪K ‖x− v‖2dx
A(M∪K)

{
≥ ρ2[2+cos(α+β)]

6 if α+β >
π
2 ;

≤ ρ2[2+cos(α+β)]
6 if α+β <

π
2

with equality in both inequalities if α = β.

Proof: It follows by (13) and (14), moreover by applying the addition formulae
for sine and cosine that

R

M∪K ‖x− v‖2dx
A(M∪K)

=
ρ2(4sin2α+4sin2β+ sin4α+ sin4β)

12(sin2α+ sin2β)

=
ρ2

6
·
[

2+ cos(α+β) · 2cos2(α−β)−1
cos(α−β)

]
.

Since 2cos2 t−1
cos t = 1− (1+2cos t)(1−cos t)

cos t holds if |t|< π
2 , we conclude Proposition 3.4.

Q.E.D.

The last preparatory statement gives an estimate for the second moment over
any triangle:
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Proposition 3.5 If M = [v,u,w] is a triangle such that the angle at v is ϕ then
Z

M
‖x− v‖2dx ≥ γ(ϕ

2 ) · ‖u− v‖ · ‖w− v‖ ·A(M).

Proof: We may assume that ‖u− v‖ · ‖w− v‖ = 1 and v = o. Writing ‖u‖ = λ,
we define ũ = 1

λ u and w̃ = λw, hence ‖ũ‖ = ‖w̃‖ = 1. Since A(M̃) = A(M) and
R

M̃ ‖x‖2dx = γ(ϕ
2 )A(M̃) for M̃ = [o, ũ, w̃], Proposition 3.5 is equivalent to

Z

M
‖x‖2dx ≥

Z

M̃
‖x‖2dx. (16)

We consider the linear transforms A and B defined by

Aũ = u = λ ũ and Aw̃ = w = 1
λ w̃;

Bũ = w̃ and Bw̃ = ũ.

We observe that M = AM̃ and detA = 1; moreover B is a reflection with BM̃ = M̃.
We define the norm ‖·‖∗ by ‖x‖∗ = ‖Ax‖ for x ∈R

2. Writing x = tũ+sw̃, t,s ∈R,
we have

‖x‖2
∗ +‖Bx‖2

∗ =
(

λ2 + 1
λ2

)
(t2 + s2)+4ts〈ũ, w̃〉

≥ 2(t2 + s2)+4ts〈ũ, w̃〉 = ‖x‖2 +‖Bx‖2
.

Using the substitution y = Ax, we deduce
Z

M
‖y‖2dy =

Z

M̃
‖x‖2

∗dx =
1
2

Z

M̃
‖x‖2

∗ +‖Bx‖2
∗dx

≥ 1
2

Z

M̃
‖x‖2 +‖Bx‖2dx =

Z

M
‖x‖2dx.

We conclude (16), and in turn Proposition 3.5. Q.E.D.

Proof of Lemma 3.2: Since
R

T (ρ) ‖x‖2dx = ρ2

4 A(T (ρ)), simple argument yields
(i).

Therefore we turn to the proof of (ii). We may assume ρ = 1. During the
argument ω1,ω2, . . . denote positive absolute constants.

Case 1. C is triangle whose angles are all acute
In this case the main idea is to deform C into an isosceles triangle. Let

C = [a1,a2,a3], and let αi denote the angle at ai, i = 1,2,3, in a way such that
α1 ≤ α2 ≤ α3. In addition we define M1 = [o,a2,a3], M2 = [o,a1,a3] and M3 =
[o,a1,a2]. Since the angle of Mi at o is 2αi, we have

R

Mi
‖x‖2dx = γ(αi)A(Mi) for
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i = 1,2,3. Next let a′1 ∈ ∂B2 be the point such that the triangle C′ = [a′1,a2,a3] con-
tains o and satisfies ‖a′1 −a2‖ = ‖a′1 −a3‖. In addition we define M′

2 = [o,a′1,a3]
and M′

3 = [o,a′1,a2]. Now the angle of the congruent triangles M ′
2 and M′

3 at o is
α2 +α3, hence

R

M′
i
‖x‖2dx = γ(α2+α3

2 )A(M′
i), i = 2,3. As we have α2 +α3 ≥ 2α1,

Proposition 3.3 yields

γ′ =

R

M′
2∪M′

3
‖x‖2dx

A(M′
2 ∪M′

3)
≤ γ(α1).

Moreover we deduce by Proposition 3.4 that

γ0 =

R

M2∪M3
‖x‖2dx

A(M2 ∪M3)
≥ γ′.

Since A(M′
2 ∪M′

3) ≥ A(M2 ∪M3), it follows that
R

C′ ‖x‖2dx
A(C′)

=
γ(α1)A(M1)+ γ′A(M′

2 ∪M′
3)

A(M1)+A(M′
2 ∪M′

3)
≤ γ(α1)A(M1)+ γ′A(M2 ∪M3)

A(M1)+A(M2 ∪M3)

≤ γ(α1)A(M1)+ γ0A(M2 ∪M3)

A(M1)+A(M2 ∪M3)
=

R

C ‖x‖2dx
A(C)

.

With the help of (13) and (14), we obtain
R

C ‖x‖2dx
A(C)

≥
R

C′ ‖x‖2dx
A(C′)

=

R

M1
‖x‖2dx+2

R

M′
2
‖x‖2dx

A(M1)+2A(M′
2)

=
1
4

+
1
3

(
cosα1 −

1
2

)2

.

Since C is not ε-close to T (1), we have α1 ≤ π
3 − ω1ε, which in turn yields

cosα1 − 1
2 ≥ ω2ε. In particular we deduce (ii) in this case.

Case 2. C is triangle that has an angle at least π
2

In this case we prove
R

C ‖x‖2dx
A(C)

≥ 47
168

=
1
4

+
5

168
, (17)

which estimate readily yields (ii). Let C = [a1,a2,a3] where the angle a1 is at least
π
2 . We define p = a2+a3

2 , hence 〈p,x− p〉 ≥ 0 for x ∈C. Writing ϕ = ∠(a1, p,a2),
Proposition 3.5 applied to the triangles [a1, p,a2] and [a1, p,a3] implies

Z

C
‖x‖2dx =

Z

C

[
p2 +2〈p,x− p〉+(x− p)2]dx

≥
(
‖p‖2 +‖a1 − p‖ · ‖a2 − p‖ · γ(ϕ

2 )+ γ(π
2 −

ϕ
2 )

2

)
·A(C)
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If ‖p‖ ≥ 2
3 then ‖p‖2 ≥ 4

9 directly yields (17). Therefore let ‖p‖ ≤ 2
3 , hence

‖a2− p‖=
√

1−‖p‖2 ≥ 1− ‖p‖
2 . Since ‖a1− p‖≥ 1−‖p‖ and γ(ϕ

2 )+γ(π
2 −

ϕ
2 )=

2
3 (see Proposition 3.3), we have

R

C ‖x‖2dx
A(C)

≥ ‖p‖2 +
1
3

(
1− ‖p‖

2

)
(1−‖p‖) =

47
168

+
7
6

(
‖p‖− 3

14

)2

≥ 47
168

.

In particular we have proved (17).

Case 3. C is a convex disc and is not a triangle
We may assume by approximation that the convex disc C is a polygon, and

has at least four sides. We triangulate C into the triangles T1, . . . ,Tk, k ≥ 2, such
that any vertex of some Ti is a vertex of C. If no Ti is ε

2 -close to T (1) then we
conclude (ii) by Cases 1 and 2 above. Thus we assume that T1 is ε

2 -close to T (1),
hence o ∈ relintT1. It follows that all Ti with i ≥ 2 has some obtuse angle. We have
∑k

i=2 A(Ti)≥ ω3εA(C) because C is not ε-close to T (1). Therefore (17) completes
the proof of Lemma 3.2 (ii). Q.E.D.

We have the following consequence of Lemma 3.2.

Corollary 3.6 There exist absolute constants ε∗,c∗1,c
∗
2 > 0 and r∗ > 1 with the

following properties: Let ε ∈ (0,ε∗) and r ∈ (1,r∗), moreover let C be a face of
some element of F̃r. In addition let z be the centre of the circular disc affC∩ rB3,
let ν = ‖z‖−1, and let λ ∈ [1,2].

(i) If C is ε-close to T (
√

r2 −1) then
Z

C
(‖x− z‖2 +λν)dx ≤ (1

2 + c∗1ε)A(πS2C) · (r−1)+O((r−1)2)A(πS2C).

(ii) If C is not ε-close to T (
√

r2 −1) then
Z

C
(‖x− z‖2 +λν)dx ≥ (1

2 + c∗2ε2)A(πS2C) · (r−1).

Remark In any case
Z

C
(‖x− z‖2 +λν)dx ≥ 1

2 A(πS2C) · (r−1).

Proof: During the argument, ω1,ω2,ω3 denote positive constants. We define ρ =√
r2 − (1+ν)2, hence extC lies in a circle of radius ρ. We note that

(1− 2ν
r−1)

√
r2 −1 ≤ ρ ≤ (1− ν

3(r−1))
√

r2 −1. (18)
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According to (5), we also have the useful estimates

2(r−1)A(πS2C)≤ (r2−1)A(C)≤ 2(r−1)A(πS2C)+O((r−1)2)A(πS2C). (19)

If C is ε-close to T (
√

r2 −1) then (18) yields ν ≤ ω1ε(r−1), hence (i) follows
by (19) and Lemma 3.2 (i).

Thus we assume that C is not ε-close to T (
√

r2 −1). We will use the constant
c2 occurring in Lemma 3.2 (ii). If ρ ≥ (1− c2

4 ε2)
√

r2 −1 then C is not ε
2 -close to

T (ρ) for small enough ε∗. We deduce by Lemma 3.2 (ii) that
Z

C
(‖x− z‖2 +λν)dx ≥ (1

4 + c2
ε2

4 )(1− c2
4 ε2)2(r2 −1)A(C)

≥ (1
4 + c2

9 ε2)(r2 −1)A(C) ≥ (1
2 + c2

5 ε2)(r−1)A(πS2C).

Finally if ρ ≤ (1− c2
4 ε2)

√
r2 −1 then ν ≥ ω2ε2(r − 1) according to (18). Thus

Lemma 3.1 and ρ2 ≥ r2 −1−3ν yield
Z

C
(‖x− z‖2 +λν)dx ≥ (1

4ρ2 +λν)A(C) ≥ (1
4(r2 −1)+ 1

4 ν) ·A(C)

≥ (1
2 +ω3ε2)(r−1)A(πS2C),

completing the proof of Corollary 3.6. Q.E.D.

4 Estimates for convex discs related to the mean width
For any y ∈ R

2 and compact X ⊂ R
2, we write d(y,X) to denote the minimal

distance of y from the points of X . In particular if X is fixed then d(y,X) is
continuous in y. The formulae (10) and (12) motivate the following definition. If
C is a convex disc then let

I(C) =
Z

C
d(x,extC)2 dx,

which expression is is well-defined because extC is compact. We recall that T (ρ)
is a fixed regular triangle with circumradius ρ. The proof of the asymptotic for-
mula (4) and Theorem 1.5 in the case of mean width is based on

Lemma 4.1 There exist absolute constants ε0,c1,c2 > 0 with the following prop-
erties: Let ε ∈ (0,ε0), ρ > 0 and let C be a convex disc with extC ⊂ ρS1. Then

(i) I(C) ≤ 5
12 A(C) ·ρ2 with equality if C = T (ρ);
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(ii) if C is not ε–close to T (ρ) then I(C) ≤ ( 5
12 − c1ε2)A(C) ·ρ2;

(iii) if C is ε–close to T (ρ) then I(C) ≥ ( 5
12 − c2ε)A(C) ·ρ2.

The proof of Lemma 4.1 borrows many ideas and observations from the proof
of Lemma 3.2. In particular we start by verifying two auxiliary statements. We
note that I(C) is not a continuous function of convex discs. Still we have

Proposition 4.2 Given a convex disc M, I(C) is a continuous function of convex
discs C with extC ⊂ ∂M.

Proposition 4.3 If K = [v1,v2,v3] be a triangle that has a right angle at v3, and
an angle α ≤ π

4 at v1. If the perpendicular bisector of the side [v1,v2] intersect the
side [v1,v3] in w then ‖w− v1‖ = ‖w− v2‖ = ‖v1−v2‖

2cosα , and

Z

K
min
i=1,2

‖x− vi‖2 dx = ‖w− v1‖2

[
5
12

− 1
3

(
1
2
− cos2α

)2
]
·A(K).

Proof: Writing m to denote the midpoint of [v1,v2], and K1, K2 and M to denote
[w,m,v1], [w,m,v2] and [w,v2,v3], respectively, direct calculations based on (14)
yield

R

K mini=1,2 ‖x− vi‖2 dx
A(K)

=

R

K1
‖x− v1‖2dx+

R

K2
‖x− v2‖2dx+

R

M ‖x− v2‖2dx
A(K)

=
‖w− v1‖2[1+ cos2α− cos2 2α]

3
.

Therefore we are done by the identity 1+ t − t2 = 5
4 − (1

2 − t)2. Q.E.D.

Proof of Lemma 4.1: During the argument ω1,ω2, . . . denote positive absolute
constants. We may assume ρ = 1.

First we assume that C is ε-close to T (1). In particular we may also assume
that for any extremal point of C, there exists a vertex of T (1) of distance at most
ω1ε, and reverse. Since I(T (1)) = 5

12 A(T (1)), we conclude (iii).
Since (i) readily follows from (ii) and (iii), we verify (ii) in the rest of the proof.

Case 1. C is triangle whose angles are all acute
In this case the main idea is to deform C into an isosceles triangle. Let C =

[a1,a2,a3], and let αi denote the angle at ai, i = 1,2,3, in a way such that α1 ≤
α2 ≤α3. To shorten formulae, we write βi =

π
2 −αi, i = 1,2,3 where β1 ≥ β2 ≥ β3.

Moreover let m1 = a2+a3
2 , m2 = a1+a3

2 and m3 = a1+a2
2 , and let K1 = [o,a2,m1],

12



K2 = [o,a1,m2] and K3 = [o,a1,m3]. These triangles satisfy that the angles of K1,
K2, K3 at a2, a1 and a1 are β1, β2 and β3, respectively, and

I(C)

A(C)
=

R

K1
‖x−a2‖2dx+

R

K2∪K3
‖x−a1‖2dx

A(K1)+A(K2 ∪K3)
.

Next let a′1 ∈ ∂B2 be the point such that the triangle C′ = [a′1,a2,a3] contains o

and satisfies ‖a′1 − a2‖ = ‖a′1 − a3‖. In addition let m′
2 =

a1+a′3
2 and m′

3 =
a1+a′2

2 ,
moreover let K ′

2 = [o,a′1,m
′
2] and K3 = [o,a′1,m

′
3]. Now the angle of the congruent

triangles K′
2 and K′

3 at v′1 is α1
2 ≤ β1, hence Proposition 3.3 yields

γ(α1
2 ) =

R

K′
2∪K′

3
(x− v′1)

2dx

A(K′
2 ∪K′

3)
≥ γ(β1).

Moreover we deduce by Proposition 3.4 that

γ0 =

R

K2∪K3
(x− v1)

2dx

A(K2 ∪K3)
≤ γ(α1

2 ).

Since A(K′
2 ∪K′

3) ≥ A(K2 ∪K3), it follows that

I(C′)
A(C′)

=
γ(β1)A(K1)+ γ(α1

2 )A(K′
2 ∪K′

3)

A(K1)+A(K′
2 ∪K′

3)
≥ γ(β1)A(M1)+ γ(α1

2 )A(K2 ∪K3)

A(K1)+A(K2 ∪K3)

≥ γ(β1)A(K1)+ γ0A(K2 ∪K3)

A(K1)+A(K2 ∪K3)
=

I(C)

A(C)
.

Now Proposition 4.3 implies

I(C)

A(C)
≤ I(C′)

A(C′)
=

5
12

− 1
3

(
cosα1 −

1
2

)2

.

Since C is not ε-close to T (1), we have α1 ≤ π
3 − ω2ε, which in turn yields

cosα1 − 1
2 ≥ ω3ε. Therefore we conclude (ii) in this case.

Case 2. C is triangle that has an angle at least π
2

In this case we prove

I(C) ≤ ( 5
12 −ω4)A(C), (20)

which estimate readily yields (ii). Let C = [a1,a2,a3] where the angle a3 is at least
π
2 , and the smallest angle α′ of C lies at a1. Let p be the point on the side [a1,a2]
such that a3 − p is perpendicular to a1 − a2. The segment [a3, p] cuts C into the
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triangles K′ = [a3, p,a1] and K′′ = [a3, p,a2] with right angles, and the smallest
angle of K′ is α′. We write α′′ to denote the smallest angle of K ′′, which angle
might be either at a2 or at a3. In addition we define ρ′ = ‖v1−v3‖

2cosα′ and ρ′′ = ‖v2−v3‖
2cosα′′ ,

moreover λ′ = A(K′)
A(K′)+A(K′′) and λ′′ = A(K′′)

A(K′)+A(K′′) , which satisfy λ′ + λ′′ = 1 and
ρ′,ρ′′ ≤ 1. We deduce by Proposition 4.3 that

I(C)

A(C)
≤

R

K′ mini=1,3 ‖x−ai‖2 dx+
R

K′′ mini=2,3 ‖x− vi‖2 dx
A(K′)+A(K′′)

= λ′ρ′2[ 5
12 − 1

3(1
2 − cos2α′)2]+λ′′ρ′′2[ 5

12 − 1
3(1

2 − cos2α”)2]

≤ 5
12

− λ′

3

(
1
2
− cos2α′

)2

− 5λ′′

12
(1−ρ′′2).

Writing β = ∠(a3,a2,a1), we have λ′
λ′′ = A(K′)

A(K′′) = tanβ
tanα′ ≥ 1, thus λ′ ≥ 1

2 follows

by λ′ + λ′′ = 1. If |α′− π
6 | ≥ π

24 then (1
2 − cos2α′)2 ≥ ω5, hence we deduce (20)

in this case. Therefore let |α′− π
6 | ≤ π

24 . On the one hand we have β ≤ 3π
8 , hence

λ′′ ≥ ω6. On the other hand α′′ ≤ π
4 yields

ρ′′ =
‖a2 −a3‖
2cosα′′ =

sinα′

cosα′′ ≤
sin 5π

24
cos π

4
= 1−ω7.

In turn we conclude (20).

Case 3. C is a convex disc and is not a triangle
According to Proposition 4.2, we may assume that the convex disc C is a

polygon, and has at least four sides. We triangulate C into the triangles T1, . . . ,Tk,
k ≥ 2, such that any vertex of some Ti is a vertex of C. If no Ti is ε

2 -close to T (1)
then we conclude (ii) by Cases 1 and 2 above. Thus we assume that T1 is ε

2 -close
to T (1), hence o ∈ relintT1. It follows that all Ti with i ≥ 2 has some obtuse angle.
In addition ∑k

i=2 A(Ti) ≥ ω8εA(C) because C is not ε-close to T (1). Therefore
(20) completes the proof of Lemma 4.1 (ii). Q.E.D.

Lemma 4.1 leads to

Corollary 4.4 There exist absolute constants ε∗,c∗1,c
∗
2 > 0 and r∗ > 1 with the

following properties: Let ε ∈ (0,ε∗) and r ∈ (1,r∗), moreover let C be a face of
some element of F̃r.

(i) If C is ε-close to T (
√

r2 −1) then

I(C) ≥ (5
6 − c∗1ε)A(πS2C) · (r−1).

14



(ii) If C is not ε-close to T (
√

r2 −1) then

I(C) ≤ (5
6 − c∗2ε2)A(πS2C) · (r−1)+O((r−1)2)A(πS2C).

Remark In any case I(C) ≤ 5
6 A(πS2C) · (r−1)+O((r−1)2)A(πS2C).

Proof: During the argument, ω1,ω2, . . . denote positive constants. We write ρ to
denote the radius of rS2 ∩ affC. According to (5), we have

2(r−1)A(πS2C)≤ (r2−1)A(C)≤ 2(r−1)A(πS2C)+O((r−1)2)A(πS2C). (21)

If C is ε-close to T (
√

r2 −1) then ρ ≥ (1−ω1ε)
√

r2 −1 and C is ω2ε-close to
T (ρ). Therefore using the constant c2 of Lemma 4.1 (iii), we have

I(C) ≥ ( 5
12 − c2ω2ε)(1−ω1ε)2(r2 −1)A(C) ≥ (5

6 −ω3ε)A(πS2C) · (r−1).

Thus we assume that C is not ε-close to T (
√

r2 −1). If ρ ≤ (1− ε2)
√

r2 −1
then Lemma 4.1 (i) and (21) yield

I(C)≤ 5
12(1−ε)2(r2−1)A(C)≤ (5

6 −ω4ε2)A(πS2C)·(r−1)+O((r−1)2)A(πS2C).

Finally if ρ ≥ (1− ε2)
√

r2 −1 then C is not ε
2 -close to T (ρ) for small enough ε∗.

We deduce using the constant c1 of Lemma 4.1 (ii) that

I(C)≤ ( 5
12 − c1

ε2

4 )(r2−1)A(C)≤ (5
6 −ω5ε2)A(πS2C)·(r−1)+O((r−1)2)A(πS2C),

completing the proof of Corollary 4.4. Q.E.D.

5 Constructing a close to be optimal element of F̃r

In this section we prove the upper bounds related to the asymptotic formulae (2),
(3) and (4).

Lemma 5.1 If 1 < r < r0 then there exists a Kr ∈ F̃r satisfying

V (Kr)−V (B3) ≤ π · (r−1)+O
(
(r−1)

4
3

)
; (22)

S(Kr)−S(B3) ≤ 3π · (r−1)+O
(
(r−1)

4
3

)
; (23)

M(Kr)−M(B3) ≤ 7
6 (r−1)+O

(
(r−1)

4
3

)
(24)

where r0 > 1 is an absolute constant.
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Proof: We observe that if H is a tangent plane to B3 then the radius of H ∩ rB3 is√
r2 −1. We choose the maximal number of points x1, . . . ,xk ∈ S2 in a way that

the distance between any two is at least 6
√

r−1. Let Hi be the tangent plane to B3

at xi for i = 1, . . . ,k. Then H1, . . . ,Hk bound the auxiliary polytope P, and let Fi
be the face of P contained in Hi for i = 1, . . . ,k. Next we consider an edge to edge
tiling of Hi by congruent copies of 1

r T (
√

r2 −1), and write Σi to denote the family
of the tiles that intersect Fi. We define Σ = ∪i=1,...,kΣi. If T ∈ Σ then let T ′ be the
triangle whose vertices are the radial projections into rS2 of the vertices of T , let
z(T ′) be the centre of the circular disc affT ′ ∩ rB3, and let ν(T ′) = ‖z(T ′)‖− 1.
We define Kr to be polytope whose vertices are the family of vertices of all T ′ as
T runs through the elements of Σ.

Since πS2 decreases distance, if T is a triangle of some Σi then T ′ is of circum-
radius at most

√
r2 −1. Thus B3 ⊂ Kr, hence Kr ∈ F̃r.

Next we observe that Fi contains a circular disc of centre xi and of radius
1
2

6
√

r−1, and if r0 is close to one then any element of Σi is contained in a circular
disc of centre xi and of radius 2 6

√
r−1. Let T ∈ Σi. It follows that T ′ is ω 3

√
r−1–

close to T (
√

r2 −1) for some positive absolute constant ω.
We call a face G of Kr a proper face if any face of Kr intersecting G is of the

form T ′ for some T ∈ Σ. In particular any proper face G of Kr is ω 3
√

r−1–close
to T (

√
r2 −1), if x ∈ πS2G then

max
v∈extKr

〈x,v〉 = max
v∈extG

〈x,v〉. (25)

We want to show that the typical faces of Kr are proper, thus let

F ′
i = xi +(1−32 3

√
r−1)(Fi − xi), i = 1, . . . ,k.

Writing X = ∪k
i=1πS2Fi, we have

A(S2\X) ≤ O
(
(r−1)

1
3

)
. (26)

In addition if T ∈ Σ then T ′ is of diameter at most 2
√

r2 −1, hence any face G of
Kr with πS2G∩X 6= /0 is proper.

Next we present some crude estimate for any face G of Kr. Let z(G) denote
the centre of the circular disc affG∩ rB3, and let ν(G) = ‖z(G)‖−1. We deduce
using (5) the inequalities

Z

G
‖x− z(G)‖2dx ≤ (r2 −1)A(G) ≤ 3(r−1) ·A(πS2G) (27)

ν(G)A(G) ≤ 2(r−1)A(πS2G). (28)

In addition if x ∈ πS2G then
max

v∈extKr
〈x,v〉 ≤ r. (29)
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We have everything to prove the estimates of Lemma 5.1. In the rest of the
proof, G always denotes some face of Kr. We start with the case of the mean
width, where (10) yields

A(S2)

2
[M(Kr)−M(B3)] =


 ∑

πS2 G∩X 6= /0

Z

πS2 G

(
max

v∈extKr
[〈x,v〉−1]

)
dx


+(30)


 ∑

πS2 G∩X= /0

Z

πS2 G

(
max

v∈extKr
[〈x,v〉−1]

)
dx


 . (31)

We may apply (12) to the sum in (30) according to (25). Applying (26) and (29)
to the sum in (31), and later Corollary 4.4 (i) to proper faces, we deduce

A(S2)

2
[M(Kr)−M(B3)] ≤ A(S2)(r−1)− 1

2


 ∑

πS2 G∩X 6= /0
I(G)


+O

(
(r−1)

4
3

)

≤ A(S2)(r−1)− 5
12 A(S2)(r−1)+O

(
(r−1)

4
3

)
,

which in turn yields (24).
For the case of the volume, we use first (9), and afterwards Corollary 3.6 (i) to

proper faces and the crude estimates above. We have

V (Kr)−V (B3) =


 ∑

πS2 G∩X 6= /0

Z

G

(1
2 ‖x− z(G)‖2 +ν(G)

)
dx


+


 ∑

πS2 G∩X= /0

Z

G

(1
2 ‖x− z(G)‖2 +ν(G)

)
dx


+O((r−1)2)

≤ 1
4 A(S2)(r−1)+O

(
(r−1)

4
3

)
= π(r−1)+O

(
(r−1)

4
3

)
,

which in turn yields (22). Finally (23) follows from (22) as S(Kr) ≤ 3V (Kr).

Q.E.D.

6 Proof of Theorem 1.5 and the asymptotic formu-
lae

Since the optimal convex bodies in F̃r may not be polytopes, we will need Lemma 6.1.
We note that the inradius of T (ρ) is 1

2 ρ.
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Lemma 6.1 There exist absolute constants r0 and c0 with the following property.
For L ∈ F̃r, r ∈ (1,2), let F1, . . . ,Fk be the faces of L whose inradius is at least
1
4

√
r2 −1. For each Fi, let zi be the centre of the circular disc affFi ∩ rB3, and let

νi = ‖zi‖−1. Writing X = S2\(∪k
i=1πS2Fi), we have

V (L)−V (B3) ≥ (1
4 + c0)A(X)(r−1)+O((r−1)2)+

k

∑
i=1

Z

Fi

(1
2 ‖x− zi‖2 +νi)dx;

S(L)−S(B3) ≥ (3
4 + c0)A(X)(r−1)+O((r−1)2)+

k

∑
i=1

Z

Fi

(3
2 ‖x− zi‖2 +2νi)dx;

M(L)−M(B3) ≥ (7
6 + c0)

A(X)
A(S2)

(r−1)+O((r−1)2)+

2
A(S2)

k

∑
i=1

[A(πS2Fi)(r−1)− 1
2 I(Fi)].

Remark If the inradius of all faces of L are less than 1
4

√
r2 −1 then X = S2,

and no sums occur in the estimates above. Moreover if ∂L = ∪k
i=1Fi then we set

A(X) = 0 above.
Proof: Let ω be a positive absolute constant such that if F is a convex disc that is
ω-close to some T (ρ) then the inradius of F is at least 1

4 ρ. We may assume that
ω is less than the ε∗ of Corollaries 3.6 and 4.4.

Next we define a suitable sequence L(m), m ≥ 1, of polytopes in F̃r that tends
to L. First for each Fi, we choose a sequence F (m)

i of polygons that tend to Fi in a
way such that extF (m)

i ⊂ (rS2∩affFi). Next let H+
i be the open half space bounded

by affFi and containing L, i = 1, . . . ,k, moreover let Y = extL∩H+
1 ∩ . . .∩H+

k . For
each m ≥ 1, we choose a finite Y (m) ⊂ Y in a way such that for any x ∈ Y there
exists y ∈ Y (m) satisfying ‖x− y‖ ≤ 1

m . We define

L(m) = [Y (m)
,F(m)

1 , . . . ,F(m)
k ],

which readily tends to L. In addition X (m) = S2\(∪k
i=1πS2F(m)

i ) satisfies limm→∞ A(X (m))=
A(X).

We write L (m) to denote the family of faces of L(m). For any G ∈ L (m), we
write z(G) to denote the centre of rB3 ∩ aff, and define ν(G) = z(G)− 1. It is
easy to see that there exists m0 such that if m ≥ m0 and G ∈ L (m) is ω-close to
T (

√
r2 −1) then G is one of F (m)

1 , . . . ,F(m)
k . In particular let G ∈ L (m) be different

from F(m)
1 , . . . ,F(m)

k . It follows by Corollary 4.4 (ii) that

I(G) ≤ (5
6 −ω0)A(πS2G) · (r−1)+O((r−1)2)A(πS2G), (32)
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and if λ ∈ [1,2] then Corollary 3.6 (ii) yields
Z

G
(‖x− z(G)‖2 +λν)dx ≥ (1

2 +ω0)A(πS2C) · (r−1) (33)

where ω0 is a positive absolute constant.
To prove the formulae of Lemma 6.1, we start with the case of volume and

surface area. It follows by (8), (9) and (33) that the corresponding formulae of
Lemma 6.1 hold for L(m) and F(m)

i in place of L and Fi, i = 1, . . . ,k, m ≥ m0,
therefore we deduce Lemma 6.1 by approximation in these cases.

For the mean width, we deduce by (10) and (12) that

M(L(m))−M(B3) ≥ O((r−1)2)+ 2
A(S2) ∑

G∈L(m)

[A(πS2G)(r−1)− 1
2 I(G)].

Therefore Lemma 6.1 follows by (32) and approximation. Q.E.D.

Proof of the asymptotic formulae: We observe that Pr, Qr and Wr are all elements
of F̃r. Combining Lemma 6.1 with Corollary 3.6 in the cases of volume and
surface area, and with Corollary 4.4 in the case of mean width leads to

V (Pr)−V (B3) ≥ π · (r−1)+O((r−1)2);
S(Qr)−S(B3) ≥ 3π · (r−1)+O((r−1)2);

M(Wr)−M(B3) ≥ 7
6 · (r−1)+O((r−1)2).

These lower bounds together with the upper bounds of Lemma 5.1 yield (2), (3)
and (4). Q.E.D.

Proof of Theorem 1.5: Let ε = 9
√

r−1. We start with the case of mean width.
Let F1, . . . ,Fl be the faces of Wr that are ε–close to T (

√
r2 −1), and let Zr =

∂Wr\(∪l
i=1Fi). If Zr = /0 then we are done, therefore we assume that Zr 6= /0.

Since Wr ∈ F̃r, Lemma 6.1 and Corollary 4.4 yield the lower bound

M(Wr)−M(B3) ≥ 7
6 · (r−1)+ωA(πS2Zr) · ε2 · (r−1)+O((r−1)2)

for some absolute constant ω > 0. On the other hand we have the upper bound

M(Wr)−M(B3) ≤ 7
6 · (r−1)+O

(
(r−1)

4
3

)

according to Lemma 5.1. Comparing these two bounds leads to A(Zr)≤ 2A(πS2Zr)=
O( 9

√
r−1), as it is required by Theorem 1.5.

We omit the argument in the case of the volume and surface area because it
runs as above. The only alterations are the obvious change of constants, and to
replace Corollary 4.4 by Corollary 3.6 in the argument. Q.E.D.

Acknowledgement: We would like to thank Peter M. Gruber for helpful discus-
sions, and for suggesting the problem.
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Károly Böröczky
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