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Abstract
Given r > 1, we search for the convex body of minimal volume or of

minimal surface area in E3 that contains a unit ball, and the extreme points
are of distance at least r from the centre of the unit ball. We show that the
optimal bodies are regular octahedron and icosahedron if r =

√
3 or r =√

15−6
√

5, respectively.

1 Notation and known results
Let us introduce the notation used throughout the paper. For any notions related
to convexity in this paper, consult R. Schneider [8]. We write o to denote the
origin in the Euclidean space En, and ‖ · ‖ to denote the corresponding Euclidean
norm. Given a set X ⊂ En, the affine hull and the convex hull of X are denoted
by affX and convX , respectively, moreover the interior of X is denoted by intX .
For a compact convex X , let ∂X denote the “relative boundary” of X ; namely, the
boundary of X with respect to the topology of affX . The unit ball centred at o
is denoted by Bn, and the boundary of Bn is denoted by Sn−1. As usual we call
a compact convex set C with non–empty interior a convex body, and write V (C)
to denote its volume, and S(C) to denote its surface area. The two–dimensional
Hausdorff measure of a measurable subset C of the boundary of some convex body
in E3 is called the area A(C) of C.

The following statement is the starting point of our investigation:
∗Supported by OTKA grants T 043556 and 033752
†Supported by OTKA grants T 042769, 043520 and 049301
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Theorem 1.1 (Hajós lemma) Let r > 1. Among convex polygons, which contain
B2, and whose vertices are of distance at least r from o, the ones with minimal
area are inscribed into rB2 in a way that all but at most one side touch B2. In
addition the analogous statement holds for the minimal perimeter.

Theorem 1.1 was proposed and proved by members of the seminar led by Gy.
Hajós around 1960. It was inspired by an earlier result of L. Fejes Tóth (see for
example [6]); namely, L. Fejes Tóth solved the case of minimal area for r = 2√

3
when the optimal polygon is a regular hexagon. Actually his approach yields the
similar characterization of any regular polygon.

Developing further some ideas of C.A. Rogers and J. Molnár, the following
characterization of regular polytopes in any dimensions appeared in K. Böröczky
and K. Máthéné Bognár [5]:

Theorem 1.2 (K. Böröczky) Let Q be a regular polytope in En whose circum-
centre is o, and let ri denote the distance of an i–face of Q from o. If P is any
polytope such that o ∈ intP, and the distance of any i–face of P from o is at least
ri for i = 0, . . . ,n then V (P) ≥ V (Q). Moreover equality holds if and only if P is
congruent to Q, and its circumcentre is o.

While our paper is concerned with the Euclidean space, let us quickly review
what is known in the spherical space Sn and in the hyperbolic space Hn. Theo-
rem 1.1 holds both in S2 and in H2 according to J. Molnár [7], and Theorem 1.2
holds both in S3 and in H3 according to K. Böröczky and K. Máthéné Bognár [5].
In higher dimensions one needs some additional restrictions (see K. Böröczky and
K. Máthéné Bognár [5]).

Recently Theorem 1.2 has been strengthened by K. Bezdek [1]:

Theorem 1.3 (K. Bezdek) Let Q be a regular polytope in En whose circumcentre
is o, and let ri denote the distance of an i–face of Q from o. If P is any polytope
such that o ∈ intP, and the distance of any i–face of P from o is at least ri for i =
0, . . . ,n then S(P) ≥ S(Q). Moreover equality holds if and only if P is congruent
to Q, and its circumcentre is o.

Theorem 1.3 implies Theorem 1.2 because we have V (Q) = rn−1
n S(Q) and

V (P)≥ rn−1
n S(P).

2 The main result of the paper
J. Molnár [7] asked the question whether for certain platonic solids in E3, the
condition in Theorem 1.2 on the edges is superfluous. In this paper we show that
this is really the case for the octahedron and the icosahedron.
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We consider a generalization of Theorem 1.1 where the optimal solution a pri-
ori may not be a polytope but a more general convex body. We recall that x is an
extreme point of a convex body C if it does not lie in the relative interior of any
segment contained in C. Actually the extreme points form the minimal subset of
C whose convex hull is C.

Definition Given r > 1, we write Fr to denote the family of convex bodies in E3,
which contain B3, and whose extreme points are of distance at least r from o.
Moreover let Pr ∈ Fr have minimal volume, and let Qr ∈ Fr have minimal surface
area.

The minima do exist according to the Blaschke Selection Theorem, and all
extreme points of Pr and Qr lie in rS2 by the monotonicity of the volume and
surface area. Our main result is

Theorem 2.1 If r =
√

3 or r =
√

15−6
√

5 then any Pr is an octahedron, or
an icosahedron, respectively, circumscribed around B3. Moreover the analogous
statements hold for Qr.

Remark In the high dimensional case no analogue of Theorem 2.1 can be ex-
pected. More precisely cylinders whose bases are unit (n− 1)–balls show that
n–simplices and n–dimensional cubes are not optimal in their class if n ≥ 4, and
the regular n–crosspolytope is not optimal in its class if n ≥ 8.

Returning to the three dimensional case, cylinders whose bases are unit discs
show that the analogues of Theorem 2.1 do not hold for the cube and for the
dodecahedron. However we suspect that the regular tetrahedron is optimal in its
class:

Conjecture 2.2 If r = 3 then all Pr and Qr are regular tetrahedra.

Concerning Conjecture 2.2, the proof of Theorem 2.1 breaks down because
“regular triangles are no longer optimal faces”; namely, Lemma 4.1 does not hold
for r = 3 (see Remark 4.2). It is a challenging problem to find the analogue of
Theorem 2.1 for the mean width in place of the volume and the surface area.

In subsequent papers, K. Böröczky and K.J. Böröczky [2] provide a stability
version of Theorem 2.1, and K. Böröczky, K.J. Böröczky and G. Wintsche [3]
describe asymptotic properties of Pr or Qr when r is close to 1. This last problem;
namely, the case if r is close to 1, is meaningful also in higher dimensions (see the
paper K. Böröczky, K.J. Böröczky, C. Schütt and G. Wintsche [4]).

The paper is structured in the following way: Section 3 recalls some known
facts about orthoschemes. Section 4 proves Lemma 4.1, which forms the core of
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the whole argument, and states that optimal faces are regular triangles. Finally
Theorem 2.1 is proved in Section 5.

3 Orthoschemes and the density of the surface area

Let us observe that if M ∈ Fr then S(B3)
S(M) is maximal for M = Qr. This approach

suggests the following definition: We write π(·) to denote the radial projection
onto S2. If F is a convex domain in E3 whose affine hull avoids intB3 then let

d(F) =
A(π(F))

A(F)
.

It affF touches B3 then d(F) is the density of the part of B3 contained in conv{o,F}
with respect to conv{o,F}.

Next we say that a tetrahedron S = conv{o,v1,v2,v3} is an orthoscheme if v1 is
orthogonal to aff{v1,v2,v3}, and v3− v2 is orthogonal to aff{o,v1,v2}. Naturally
the order of vertices is important. If ρi = ‖vi‖ for i = 1,2,3 then we call S a
(ρ1,ρ2,ρ3)–orthoscheme. K. Bezdek [1] proved the following result:

Lemma 3.1 (Bezdek) For i = 1,2, let Si = conv{o,vi1,vi2,vi3} be an orthoscheme
in E3, and let Ri = conv{vi1,vi2,vi3}. If 1 ≤ ‖v1 j‖ ≤ ‖v2 j‖ for j = 1,2,3 then

d(R1)≥ d(R2),

with equality if and only if S1 and S2 are congruent.

4 The optimal faces are regular triangles
We prove Theorems 2.1 by showing that the optimal faces are regular triangles.

Lemma 4.1 Given r ∈ (1,
√

3], let D be a circular disc of radius
√

r2−1 that
touches B3 in the centre of D. If T is any triangle whose vertices lie on ∂D then

d(T )≤
8arctan

√
3(r−1)
3+r√

3(r2−1)
,

with equality if and only if T is a regular triangle.

Remark 4.2 We note that the regular tetrahedron circumscribed around the unit
ball is of circumradius 3. Now if T is a narrow isosceles triangle then d(T ) is

close to 1
r (see Proposition 4.5 (ii)), which is larger than

8arctan
√

3(r−1)
3+r√

3(r2−1)
if r ≥ 3.
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The whole section is dedicated to proving Lemma 4.1, and to verifying two
corollaries. First we introduce some notation, and the notion of density of varia-
tion. Then we verify the auxiliary statements Propositions 4.3, 4.4, 4.5, 4.6 and
4.7, which will be used in the proof of Lemma 4.1.

During the proof of Lemma 4.1, T always denotes some triangle whose ver-
tices lie in ∂D. Moreover the sides of T and their lengths are denoted by a,b,c,
and the distances of the midpoints of a, b and c from o are denoted by ma, mb and
mc, respectively. We plan to compare T to the regular triangle T∗ inscribed into D.
We write a∗ to denote the common length of the sides of T∗, and m∗ to denote the
common distance of the midpoints of the sides of T∗ from o.

In the course of the argument, we will consider T as part of certain family
T (s) where the vertices of T (s) are differentiable functions of the real parameter
s. Our main approach is to investigate the density of the variation; namely,

v(T (s)) =
∂

∂s A(π(T (s)))
∂

∂s A(T (s))
.

Readily reparametrization does not change the density of variation. When it is
clear from the context what the family T (s) is then we drop the reference to s.
Let us explain the role of v(T (s)): If A(T (s)) is a strictly monotone function of s
on an interval [s1,s2] then the Cauchy Mean Value theorem provides s ∈ (s1,s2)
satisfying

d(T (s2))−d(T (s1)) = [v(T (s))−d(T (s2))] ·
A(T (s2))−A(T (s1))

A(T (s1))
; (1)

= [v(T (s))−d(T (s1))] ·
A(T (s2))−A(T (s1))

A(T (s2))
. (2)

One of the reasons why the notion density of variation is so useful is that it satisfies
the simple formulae in Proposition 4.3 and Proposition 4.4.

Proposition 4.3 If a < b, and T is deformed in a way that the side c is kept fixed
and a is increased then A(T ) is strictly increasing, and

v(T ) =
r

m2
am2

b
.

Proof: The statement about A(T ) readily holds. Turning to the formula for v(T ),
we write the same symbol to denote a Euclidean segment and the length of it.
Moreover we write wa and wb to denote the common endpoint of a and c, and of
b and c, respectively.

Let T̃ be the new position of T . Then T̃ is obtained from T by attaching a
triangle Tb and removing a triangle Ta. We observe that wa and wb are vertices of
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Ta and Tb, respectively, and write δ to denote the common measure (in radian) of
the angles of Ta and Tb at wa and wb, respectively. In particular

A(Ta)∼ 1
2 a2 ·δ and A(Tb)∼ 1

2 b2 ·δ

where ∼ means that the ratio of the two sides tends to one as δ tends to zero.
Therefore

A(T̃ )−A(T )∼ 1
2(b2−a2) ·δ = 2(m2

a−m2
b) ·δ, (3)

where we used that m2
a +(a/2)2 = r2 = m2

b +(b/2)2.
It can be deduced say by repeated application of the cross–product that the

angle of π(Ta) at π(wa) is asymptotically r·δ
m2

a
as δ tends to zero, and it is easy to

see that the two corresponding spherical sides of π(Ta) are both asymptotically
2arcsin a

2r . We compare the area of Ta to the area of the spherical circular sector
Sa of radius ρ = 2arcsin a

2r and angle r·δ
m2

a
. Since

A(Sa) =
r δ

m2
a
(1− cosρ) =

2r δ

m2
a

sin2 ρ

2
=

2r δ

m2
a

( a
2r

)2
=
(

2r
m2

a
− 2

r

)
·δ,

we deduce that

A(π(Ta))∼ A(Sa) =
(

2r
m2

a
− 2

r

)
·δ.

Using the analogous formula for A(π(Tb)) leads to

A(π(T̃ ))−A(π(T ))∼ 2r
m2

am2
b
· (m2

a−m2
b) ·δ. (4)

Therefore dividing (4) by (3) proves Proposition 4.3. Q.E.D.

Proposition 4.4 Let b = c, and let T be deformed in a way that T stays isosceles,
and the side a is increased. If a < a∗ then A(T ) is strictly increasing, and if a > a∗
then A(T ) is strictly decreasing. Moreover

v(T ) =
r

m2
am2

b
.

Proof: We may parametrize T by a as the family T (a). Let us move first slightly
only one endpoint of a (hence T becomes a non–isosceles triangle), and after-
wards the other endpoint of a in a way that T becomes again isosceles. Now we
conclude Proposition 4.4 by Proposition 4.3. Q.E.D.

Let us determine some specific values of the density and the density of varia-
tion.
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Proposition 4.5 Assuming that b = c and T has no obtuse angle, let us parametrize
T as T (a) where 0 < a ≤ 2

√
r2−1. Then

(i) we have d(T (a∗)) = d(T∗) =
8arctan

√
3(r−1)
3+r√

3(r2−1)
at a = a∗;

(ii) and lim
a→0

d(T (a)) = lim
a→0

v(T (a)) =
1
r

as a tends to zero;

(iii) moreover v(T (2
√

r2−1)) =
2r

1+ r2 at a = 2
√

r2−1.

Proof: The statements about v(T (a)) readily follow from Proposition 4.4. Con-
cerning density, let q be the centre of D. Now if R is a triangle with right angle
such that the longest side connects q to a point of ∂D, and the angle of R at q is ω

then

A(R) =
(r2−1) tanω

2(1+ tan2 ω)
and A(π(R)) = arctan

(r−1) tanω

r + tan2 ω
. (5)

If a < 2
√

r2−1 and the angle of T (a) opposite to a is α then T (a) can be dissected
into six such triangles where ω = α for two of the triangles, and ω = π−α

2 for the
other four triangles. In turn simple calculations yield Proposition 4.5. Q.E.D.

Next we compare the quantities occurring in Proposition 4.5.

Proposition 4.6 We have the inequalities
1
r

< d(T∗) <
r

m4
∗

<
2r

1+ r2 .

Proof: The inequality r
m4
∗

< 2r
1+r2 follows by m∗ =

√
r2 +3/3. Since arctan t < t

for positive t, we deduce by 1 < r ≤
√

3 that

r
m4
∗
−d(T∗) >

16r
(3+ r2)2 −

8
(3+ r)(1+ r)

=
8(−r3 + r2 +3r +9) · (r−1)

(3+ r2)2(3+ r)(1+ r)
> 0.

Finally we observe that arctan t > t− 1
3 t3, and obtain by 1 < r ≤

√
3 that

d(T∗)−
1
r

>
8√

3(r2−1)
·

√3(r−1)
3+ r

− 1
3

(√
3(r−1)
3+ r

)3
− 1

r

=
(27−10r− r2) · (r−1)

r(r +3)3 > 0. Q.E.D.
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Proposition 4.7 There exists positive a0 < a∗ with the following property: As-
suming that b = c and T has no obtuse angle,

if a < a0 then
r

m2
am2

b
< d(T∗);

if a > a0 then
r

m2
am2

b
> d(T∗).

Proof: Let 2ω be the angle of T opposite to a, and let s = sin2
ω. In particular

s ∈ (0, 1
2 ] where s = 1

2 and s = 1
4 correspond to the cases when T has a right angle

and is regular, respectively, and if s tends to zero then T approaches a diameter of
D. Writing Ω = r2−1, we have

m2
am2

b = f (s) for f (s) =
[
1+Ω(1−2s)2] · (1+Ωs).

We deduce by Proposition 4.6 that

r
f (0)

< d(T∗) and
r

f (1
2)

>
r

f (1
4)

> d(T∗). (6)

Let us observe that

f ′(s) = 12Ω
2s2 +8(Ω−Ω

2)s+Ω
2−3Ω, (7)

hence 0 < Ω ≤ 2 implies that f ′(0) < 0 and f ′(1
2) = Ω > 0. Since f ′ is quadratic

in s with positive main coefficient, we deduce that f is first decreasing then in-
creasing on [0, 1

2 ], hence (6) yields Proposition 4.7. Q.E.D.

Let us start the actual proof of Lemma 4.1. We consider several cases. In each
case we prove that d(T ) < d(T∗) holds provided that T is not congruent to T∗.

Case 1 The angle of T opposite to a is obtuse, and c ≤ b ≤ a∗.
We write q to denote the centre of D. Moreover let Ta, Tb and Tc denote the

convex hulls of q on the one hand, and a, b and c, respectively, on the other hand.
We observe that conv{o,T∗} can be dissected into six (1,m∗,r)–orthoschemes.
In addition conv{o,Ta}, conv{o,Tb} and conv{o,Tc} can be dissected into two
(1,ma,r)–orthoschemes, (1,mb,r)–orthoschemes and (1,mc,r)–orthoschemes, re-
spectively. Now Lemma 3.1 and mb,mc ≥ m∗ yield that d(Tb),d(Tc) ≤ d(T∗).
Since ma < mb,mc, it follows by Lemma 3.1 that d(Ta) > d(Tb),d(Tc). Now T is
the difference of Tb∪Tc and Ta, thus

d(T ) < max{d(Tb),d(Tc)} ≤ d(T∗).
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Case 2 b = c, and the angle of T opposite to a is at most π

2 .
We may parametrize T by a as the family T (a), 0 < a ≤ 2

√
r2−1. If a > a∗

then we use that A(T (a)) is strictly decreasing, moreover d(T (a∗)) = d(T∗) and
v(T (a)) > d(T∗) for a > a∗ according to Propositions 4.4 and 4.7. Applying (2)
to [a∗,a] yields that d(T (a)) < d(T∗) when a > a∗.

If a0 ≤ a ≤ a∗ then we use that d(T (a∗)) = d(T∗) and v(T (a)) > d(T∗) for
a ∈ (a0,a∗) according to Propositions 4.4 and 4.7. Applying (1) to [a,a∗] shows
that d(T (a)) < d(T∗) when a0 ≤ a < a∗.

Finally assume that a < a0. Since lims→0 d(T (s)) = 1
r (see Proposition 4.5

(ii)) and d(T (s)) is continuous, Proposition 4.6 provides a1 ∈ (0,a) satisfying
d(T (a1)) < d(T∗). Therefore applying (1) to [a1,a] yields the existence of some
s ∈ (a1,a) satisfying

d(T (a) =
A(T (a1))
A(T (a))

·d(T (a1))+
(

1− A(T (a1))
A(T (a))

)
· v(T (s)). (8)

Since v(T (s)) < d(T∗) according to Proposition 4.7, we deduce d(T (a)) < d(T∗).
In summary d(T ) < d(T∗) holds in Case 2 provided that a 6= a∗.

Case 3 b > a ≥ a∗.
We fix c, and deform T = T (a) in a way that a increases until T becomes

isosceles at a = a2. In particular, A(T (a)) strictly increases. Now mb < ma ≤ m∗
holds at any position, hence Proposition 4.6 yields that

v(T (a)) >
r

m4
∗

> d(T∗)

for any a. Since d(T (a2)) < d(T∗) (see Case 2), we deduce by (1) that d(T ) <
d(T∗).

Case 4 c < b ≤ a∗.
If the angle of T opposite to a is obtuse then d(T ) < d(T∗) according to Case

1. Therefore we assume that the angle of T opposite to a is at most π

2 . In this case
a ≥ a∗, and we claim that

r
m2

am2
b

> d(T∗). (9)

If a is fixed and c ≤ b ≤ a∗ then mb attains its maximum exactly when b = c.
Therefore Proposition 4.7 yields (9).

Now we fix c, and deform T = T (b) in a way that b increases until b = a at
some b = b2, hence A(T (b)) strictly increases. Since v(T (b)) > d(T∗) for any b
according to (9), and d(T (b2)) < d(T ∗) according to Case 2, we conclude by (1)
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that d(T ) < d(T∗). Therefore d(T ) < d(T∗) holds in Case 4.

Since T has two sides whose lengths are either both at least a∗, or both at most
a∗, any T belongs to at least one of the Cases 1–4 above. Therefore the proof of
Lemma 4.1 is now complete. Q.E.D.

The following consequence of Lemma 3.1 and Lemma 4.1 will be actually
used in the proof of Theorem 2.1:

Corollary 4.8 Let r ∈ (1,
√

3]. If F is a polygon whose vertices lie on rS2 and
affF avoids the interior of B3 then

d(F)≤
8arctan

√
3(r−1)
3+r√

3(r2−1)
,

with equality if and only if F is a regular triangle of circumradius
√

r2−1.

Proof: Triangulating F by diagonals starting from a fixed vertex of F shows that
we may assume that F is a triangle T .

Writing D = affF ∩ rB3, let ρ be the distance of affD from o, and let T̃ be a
regular triangle inscribed into D. In addition let T∗ be some regular triangle whose

affine hull touches B3, and whose vertices lie on rS2, hence d(T∗) =
8arctan

√
3(r−1)
3+r√

3(r2−1)
.

Now the vertices of both 1
ρ

T and 1
ρ

T̃ lie on r
ρ

S2, therefore Lemma 4.1 yields that

d(T ) ≤ d(T̃ ). Since d(T̃ ) ≤ d(T∗) according to Lemma 3.1, we conclude Corol-
lary 4.8. Q.E.D.

In order to handle the equality case of Theorem 2.1, we need a week stability
version of Corollary 4.8. We say that the compact convex sets M and N are ε–
close for ε > 0 if there exist congruent copies M′ and N′ of M and N, respectively,
satisfying

1
1+ε

N′ ⊂ M′ ⊂ (1+ ε)N′.

Naturally in this case the dimensions of M and N coincide.

Corollary 4.9 Let r =
√

3 or r =
√

15−6
√

5. For any ε ∈ (0,1) there exists
µ > 0 with the following property: If F is a polygon whose vertices lie on rS2,
affF avoids the interior of B3, and

d(F)≥ (1+µ)−1 8arctan
√

3(r−1)
3+r√

3(r2−1)
(10)

then F is ε–close to a regular triangle of circumradius
√

r2−1.
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Proof: Again we may assume that F is a triangle T . Let T ′ be a regular triangle
in affT whose vertices lie on rS2, and let T∗ be a regular triangle that touches B3,

and whose vertices lie on rS2. In particular d(T∗) =
8arctan

√
3(r−1)
3+r√

3(r2−1)
.

Let us assume that (10) holds for a suitable positive µ. Since d(T )≤ d(T ′)≤
d(T∗) according to Lemma 4.1 and Lemma 3.1, the equality case of Lemma 3.1
shows that if µ is small enough then T ′ is ε

3–close to T∗. The proof of Lemma 4.1
shows first that T cannot be close to a segment, and secondly that if µ is small
enough then T has to be ε

3–close to T ′. In turn we conclude Corollary 4.9. Q.E.D.

5 Proof of Theorem 2.1
Let r =

√
3 or r =

√
15−6

√
5, and let C ∈ Fr. It is sufficient to consider the case

of surface area because V (C) ≥ 3S(C), and V (C) = 3S(C) if C is the octahedron
when r =

√
3, or the icosahedron when r =

√
15−6

√
5. We may assume that the

extreme points of C lie on rS2. We define T∗ to be a regular triangle that touches
B3, and whose vertices lie on rS2.

Let us construct a sequence of polytopal elements of Fr tending to C. For any
integer n≥ 1, let Σn be a finite 1

n–net in rS2; namely, Σn ⊂ rS2 and rS2 ⊂ Σn + 1
n B3.

We define Mn to be the convex hull of all points x of Σn such that ‖x− y‖ ≤ 2
n for

some y ∈ extC. Then Mn tends to C, and it is easy to see that Mn ∈ Fr.
Applying Corollary 4.8 to each face of Mn yields that

S(Mn)≥
4π

d(T∗)
, (11)

hence (11) holds for C in place of Mn. Since we have equality in (11) if all faces
are regular triangles touching B3, we conclude Theorem 2.1 without the case of
equality.

In order to characterize the equality case in Theorem 2.1, we assume that
C is not a regular octahedron if r =

√
3, and not a regular icosahedron if r =√

15−6
√

5. We call the intersection of C with a supporting plane a generalized
face of C (that might be a single point). Now there exist positive ε0 and ν0 with
following properties: Writing Ψ0 to denote the union of generalized faces of C
that are ε0–close to T∗, and setting Ω0 = ∂C\Ψ0, we have A(π(Ω0)) > 2ν0. We
may also assume that if a polygon F is ε0–close to T∗, and x is the circumcentre
of F then F contains a circular disc centred at x of radius 0.1.

For any Mn, we write Ψn to denote the union of faces of Mn that are ε0–close
to T∗, and set Ωn = ∂Mn\Ψn. We observe that if {Mn′} is a subsequence of {Mn},
and Fn′ is a face of Mn′ that is ε0–close to T∗, and Fn′ tends to a compact convex
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set F then F is a generalized face of C that is ε0–close to T∗. Therefore we have
A(π(Ωn)) > ν0 for large n. Let µ0 be the value of µ provided by Corollary 4.9 for
ε = ε0. We deduce for large n that

S(Mn)≥
4π−ν0

d(T∗)
+(1+µ0)

ν0

d(T∗)
≥
(

1+
µ0ν0

4π

) 4π

d(T∗)
. (12)

Since (12) holds also for C in place of Mn, it follows that S(C) > S(Qr), which in
turn completes the proof of Theorem 2.1. Q.E.D.

Acknowledgement: We would like to thank Peter M. Gruber for helpful discus-
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[4] K. Böröczky, K.J. Böröczky, C. Schütt, G. Wintsche: Convex bodies of min-
imal volume, surface area and mean width with respect to thin shells. Canad.
J. Math., accepted. www.renyi.hu/˜carlos/radiusasymp.pdf
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Department of Geometry, Roland Eötvös University, Budapest,
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