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How well a polytope of restricted complexity can approximate a smooth
convex body in R

d? This natural question has attracted the attention of math-
ematicians of various background since the middle of the 20th century. In this
extended abstract, polytopes are always inscribed, and restricted complexity
mostly means restricting the number of vertices of the polytope. In addition
distance from the smooth convex body is mostly measured by affine invariant
notions like the Banach-Mazur distance or the volume difference.

Concerning notation, we write Bd to denote the Euclidean unit ball of R
d.

We recall that the Banach-Mazur distance δBM(K,M) of the convex bodies K
and M in R

d is the minimal λ ≥ 1 such that K −x ⊂ Φ(M − y) ⊂ λ(K −x) for
some Φ ∈ GL(d) and x, y ∈ R

d. In the case if K and M are o-symmetric then
x = y = o can be assumed.

Let me start with A.M. Macbeath’s classical result in [29]. It says that
ellipsoids are worst approximable among convex bodies by inscribed polytopes
in terms of volume. For any convex body K in R

d and n ≥ d+1, let V (K,n) be
the maximal volume of polytopes with n vertices inscribed into K. According
to [29], if E is an ellipsoid in R

d with V (E) = V (K) then

V (K,n) ≤ V (E, n). (1)

From now on, problems of approximation by polytopes of “low complexity”
and of “high complexity” are discussed separately. In both cases I only present
very few results which I feel typical.

1 Polytopes of few vertices

Here the main question is whether an inscribed polytope can reasonably well
approximate the convex body at all. As (1) suggests, the convex body is the ball
(ellipsoid) in these problems. Few vertices means that the number of vertices
is at most exponential in the dimension d for Banach-Mazur distance, and at
most dd/2 for volume approximation.

Let Pn ⊂ Bd be a polytope of n vertices. In high dimensions Bárány, Füredi
[4], Gluskin [17] and Carl, Pajor [10] obtained independently the following result
(all the three papers appeared in 1988!): If n ≥ 2d then

d

√

V (Pn)

V (Bd)
≤
√

c ln n
d

d
(2)

for some absolute constant c > 0. We note that if n is at most exponential in d
then the estimate of (2) is optimal. Bárány, Füredi [4] also show that to get a
polytope Pn with V (Pn) > 1

2
V (Bd), one needs approximately dd/2 vertices.

If d+1 ≤ n ≤ 2d then the estimate d

√

V (Pn)/V (Bd) ≤
√

c/d resulting from
(2) is optimal, as it is shown by the example of the inscribed regular simplex. If
n = d + 1 then Steiner symmetrization (see Steiner [31]) shows that the regular
simplex is optimal.
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Turning to the Banach-Mazur distance, (2) yields that if n ≥ 2d then

δBM(Pn, Bd) ≥
√

d

c ln n
d

(3)

This estimate is optimal if n is at most exponential in d. In particular if
δBM(Pn, Bd) ≤ 2 then n is at least exponential in d, and on the other hand
this property can be achieved using exponentially many vertices.

Related Problems:

1. I conjecture that (3) also holds for any n with d + 1 ≤ n ≤ 2d. More
precisely if n = d + k for k = 1, . . . , d then

δBM(Pn, Bd) ≥ c̃d√
k

for some absolute constant c̃ > 0. This estimate would be optimal as
the following (conjecturally optimal) polytopes exhibit. Take the convex
hull of k pairwise orthogonal regular simplices of circumradius one and of
dimensions either d d

k e or b d
k c.

2. It is a long standing open problem whether the mean width of Pd+1 is
maximal for the inscribed regular simplex (see Gritzmann, Klee [18] for
history, especially for a list of wrong proofs that have been published).

The polytopes conjectured to be extremal in the first problem are known to
be extremal in the following cases. If k = 1 or k = 2 then Steiner symmetrization
(see Steiner [31]) yields the results in any dimension (see Böröczky, Jr., Wintsche
[9]). In addition the optimality the cross polytope (k = d) is known if d = 3
(see Fejes Tóth [14]) or d = 4 (see Dalla, Larman, Mani-Levitska, Zong [12]).

The second problem has been solved by Linhart [26] if d = 3. His argument
is based on the spherical Moment Theorem of Fejes Tóth [14]. Actually the
spherical Moment Theorem of Fejes Tóth also yields the following results in
the three dimensional case. If n = 6 or n = 12 then the optimal Pn with
respect to volume approximation and the Banach-Mazur distance is the regular
octahedron and icosahedron, respectively.

It follows by (2) that the volume of a convex body cannot be well approx-
imated by polytopes of polynomial many vertices in d. However there exists
algorithm polynomial in d that estimates well the volume with high probabil-
ity according to Dyer, Frieze, Kannan [13]. The high degree in [13] has been
brought down in a series of papers, culminating in an essentially degree four
bound of Lovász, Vempala [27]. In addition A.R. Barron [2] and G. Cheang,
A.R. Barron [11] (see also Artstein-Avidan, Friedland, Milman [1]) construct a
non-convex body X with linear complexity in d such that 1

2
Bd ⊂ X ⊂ Bd.

2 Best approximation with many vertices

Let K be a convex body in R
d. We discuss approximation of K by polytopes

of say n vertices where n tends to infinity. For much broader surveys on the
subject, consult P.M. Gruber [22] and [25].
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We note that the Gauss-Kronecker curvature κ(x) can be defined at most
points x ∈ ∂K, hence the affine surface area

A(K) =

∫

∂K

κ(x)
1

d+1 dx

is well-defined (see Schütt, Werner [32]). In addition a flag of a polytope P in
R

d is a sequence F0 ⊂ . . . ⊂ Fd−1 where Fi is an i-face of P . Using random
polytopes, if A(K) > 0 and n is large then Bárány [3] proved the existence of a
polytope P ⊂ K with at most n flags such that

V (K\P ) ≤ γ(d)A(K)
d+1

d−1 n
−2

d−1

where γ(d) > 0 depends only on d. This estimate is optimal up to the value of
γ(d) according to Böröczky, Jr. [6]. If ∂K is C2 and Pn ⊂ K is a polytope with
n vertices that has maximal volume then we even have the asymptotic formula

V (K\P ) ∼ deld−1

2
A(K)

d+1

d−1 n
−2

d−1 (4)

as n tends to infinity. Here del2 = 1

2
√

3
(see Gruber [19]), and deld ∼ d

2πe as

d tends to infinity (see P. Mankiewicz, C. Schütt [30]). The formula (4) was
conjectured by Fejes Tóth [15] if d = 3, and proved by Gruber [21] if κ(x) is
positive for any d. The restriction κ(x) > 0 was removed by Böröczky, Jr. [5].
Generalizing results in Glasauer, Gruber [16], [5] also showed that the vertices of

Pn are uniformly distributed on ∂K with respect to the density function κ(x)
1

d+1 .
In the three dimensional case, following Gruber [23], Böröczky, Tick, Wintsche
[8] proved that the typical faces of Pn are asymptotically regular triangles in a
suitable sense. Now if ∂C is C3 with positive curvature then Böröczky, Jr. [7]
even estimated the error term in (4), which estimate was substantially improved
by Gruber [24].

Next let ∂K be C2, and let Pn be a polytope with n vertices such that
δBM(K,Pn) is minimal. Combining ideas in Gruber [20] and Böröczky, Jr. [5],
one can prove the following. Writing ux to denote the exterior unit normal at
x ∈ ∂K, K can be translated in a way such that o ∈ intK, and

δBM(K,Pn) − 1 ∼ 1

2

(

ϑd−1

κd−1

)
2

d−1

(

∫

∂K

κ(x)
1
2

〈x, ux〉
d−1

2

dx

)
2

d−1

n
−2

d−1 (5)

as n tends to infinity where κm is the volume of the unit m-ball, and ϑm is
the minimal density of coverings of R

m by unit balls. Here the integral in the
parentheses is the so called centro-affine surface area.

Related Problems:

1. Prove (4) or (5) if d ≥ 3 and ∂K is not C2 but still A(K) > 0.

2. Prove the analogue of (4) or (5) if not the number of vertices is restricted
but the number of k-faces where 1 ≤ k ≤ d − 2 and d ≥ 4.

The first problem was solved in the plane by Ludwig [28]. For the second
problem, if the number of facets is restricted (k = d − 1) or d = 3 and k = 1
then the analoguous results are known.
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