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Abstract

A version of the celebrated Moment Theorem of Laszlo Fejes Toth is proved where
the integrand is based not on the second moment but on another quadratic form.

1. Introduction

For any notions related to convexity in this paper, consult P. M. Gru-
ber [21], R. Schneider [22] or T. Bonnesen and W. Fenchel [2]. We call a
compact convex set with non-empty interior in R? a convex disc. The area
(2-dimensional Lebesgue measure) of X C R? is denoted by |X|. We re-
call that X is Jordan measurable if it is bounded and [0X| = 0 holds for
the boundary 0X. When we speak about Jordan measurable sets in this
paper, we always assume that the interior is non-empty. We write|| - || to
denote the Euclidean norm, and B? to denote the Euclidean unit disc cen-
tred at o. Moreover, the convex hull of the objects X1, ..., Xi is denoted by
[X1,...,Xk], and the cardinality of the finite set = is denoted by #Z=.

A core notion for us is the notion of Dirichlet—Voronoi cell. Givenn points
Y1,-..,Yn € R? and a Jordan measurable C' C R?, we define the Dirichlet—
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Voronoi cell of y; associated to C and {y;} by

Li={yeC: ly—yl <ly—yml, m=1,...,n}

for j = 1,...,n. In addition, for any non-negative function f on R?, let

1) QL Colyneeovmad) =3 [ £ w)d.

=1 I,

The so called Moment Theorem was first proved on the sphere by L. Fejes
Toth [11], and he himself soon extended it to the plane in [13] for points
inside a hexagon as follows. If C' is any polygon of at most six sides, H
is an o-symmetric regular hexagon with |H| = |C|/n, and f is a monotone
increasing function of ||z|| then for any Z C C of cardinality at most n, we
have

/

Recently G. Fejes Toth [10] has extended the Moment Theorem to the case
when C' is any convex disc. The Moment Theorem and its analogues have
numerous applications in the theory of packing and covering, polytopal ap-
proximation, numerical integration, information theory, etc., (see L. Fejes
Toth [13], A. Florian [15] and P. M. Gruber [19], [20] and [21]). Knowing the
profound importance, it is not surprising that numerous additional proofs
are available (see G. Fejes Toth [8], A. Florian [14] and P. M. Gruber [17]).

If f is a strictly monotone increasing function of ||z, then G. Fejes Téth
[9] and P. M. Gruber [18] proved that the typical Dirichlet—Voronoi cell is
asymptotically a regular hexagon in any optimal configuration of at mostn
points for the Moment Theorem (2).

Recently the need in polytopal approximation arose for another version
of the Moment Theorem (2) where f is a positive definite quadratic form
(see K. J. Boroczky and B. Csikos [6]). Let g be a positive definite quadratic
form in two variables. First we search for the shape of the “optimal Dirichlet—
Voronoi cell” when ¢ is used in place of f in (1). This hexagon will play the
role of regular hexagons in an analogue of (2). We define X to be the family
of all o-symmetric hexagons and rectangles inscribed into B2. In addition let

. Jgalz)dx
M@= 3 e

We note that even if X is not compact, the minimum does exist. Accord-
ing to the Moment Theorem (2) withn = 1, if the eigenvalues of g coincide
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then I(q) = %\/g‘/ det g, and the optimal hexagons are the regular hexagons

inscribed into B2. One of such regular hexagons we denote by H, in this
case.

THEOREM 1.1. If k 2 7 > 0 are the eigenvalues of the quadratic formgq,
then

VT [4/’6 + (4/{2 — 67K + 37_2)1/2]
18[2” + (4k% — 67K + 372)1/2]1/2'

I(q)

In addition, if kK > 7, then the minimum is atlained al a unique Hy € X.

REMARK. For k > 7, we assume that ¢(s,t) = 75> + xt2. Then H, is
symmetric with respect to the coordinate axes, (1,0) is one of its vertices,
and two other vertices are (cos ¢, £ sin ), where ¢ € (0,7/2) is defined by
the equation

2k — V4K2 — 6KkT + 372
tan (p/2) = \/ P .

Let ¢ be a positive definitive quadratic from. According to Theorem 2.1
in K. J. Béréczky and B. Csikos [6], there existsdiv, > 0 such that if C C R?
is a Jordan measurable set with non-empty interior, andn tends to infinity,
then

min  Q(q,C,Z) = div,|C)? - n~ ' +o(n7Y),
__min__ 9(q.C.5) = div, [C] (n)

where # stands for the cardinality of a finite set. We note that it is not
clear whether the minimum on the left hand side is attained by a setZ of
cardinality n. The reason is that if the eigenvalues of ¢ are different then
there exist C, Z and y such that

Q(¢,C,2U{y}) > Q(q,C,E).

For the edge to edge tiling of the plane by translates of Hy, each tile is
the Dirichlet—Voronoi cell of its centre. Using suitable dilated copies of this
tiling, we deduce that

(3) div, < I(q).

Our main result is that if 7 < k < 2.47 hold for the eigenvalues of the
positive definite form ¢, then the typical Dirichlet—Voronoi cells are close
to be homothetic to H, for asymptotically optimal arrangements. Let us

define the corresponding notions. If =, C R? is a family of at most n points



A NEW VERSION OF L. FEJES TOTH’S MOMENT THEOREM 233

for n 2 1, then we say that a sequence {Z,} is asymptotically optimal with
respect to q and C if

Qq, C,Z,,) = div,-|C)* - n L + o(n_l) .

In particular lim,, ., #Z,/n = 1.
We say that the planar convex compact sets K and M are v-close for
some v > 0 if

1+v) (K —-z)cM—-yc(1+v)(K -z

hold where x and y are the circumcentres of K and M, respectively.

THEOREM 1.2. Let q be a positive definite quadratic form with eigen-
values 7 < k < 2.47, and let C C R? be Jordan measurable. Then for any
asymptotically optimal sequence {=,} of configurations of at most n points
in R? there exists a sequence {v,} of positive numbers tending to zero such
that n — o(n) Dirichlet-Voronoi cells with respect toZ,, and C are hexagons
that are vy-close to the hexagon homothetic to Hy with area |C|/n.

Our method does not allow to eliminate the conditionx < 2.47 in The-
orem 1.2, but we believe that the statement holds for any positive definite
quadratic form q. Now Theorem 1.2 readily yields

COROLLARY 1.3. For any positive definite quadratic form q with eigen-
values 7 < k < 2.47, we have

divy = I(q).

Naturally Corollary 1.3 is a consequence of the Moment Theorem (2)
if the eigenvalues of ¢ coincide. The elegance of the Moment Theorem is
partially due to the fact that it contains no error term if C' is a convex disc.
If the eigenvalues of ¢ are different, then we can achieve it only for very
special C’s.

COROLLARY 1.4. Let q be a positive definite quadratic form with eigen-
values 7 < k < 2.47, and let C be a rectangle whose sides are parallel to the

principal azes of q. If = C C has at most n points, and H is the dilate of
H, with area |C|/n, then

H
Let us present the simple argument how Corollary 1.3 leads to Corol-

lary 1.4. We may assume that = = {y1,...,y,} CintC, and o is a vertex
of C. Let I' be the group of congruencies generated by the four reflections
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through the lines containing the sides of C, hence the images gC for g € T’
form an edge to edge tiling of R?. The common symmetries of C' and ¢ yield
that

Q(q, 9C, g5) = Uq,C,E) forany g €T,

We write II; to denote the Dirichlet—Voronoi cell of y; with respect to =
and C. For any integer k = 2, let Z; be the union of all g=, g € T, that lie in
kC, hence #Z; = k?n. It is not hard to see that for any y; and g € I' with
9= C kC, the Dirichlet—Voronoi cell of gy; with respect to Zx and kC' is gll;,
therefore Q(q, kC,Zy) = k*Q(q, C, E). Since Corollary 1.3 yields

1
I(q)-|C]* £ likniggf k*n - Q <q,C, z Ek> =nf(q,C, E),

we conclude Corollary 1.4.
The paper K. J. Boroczky and B. Csikos [6] considers best approxima-

tion with respect to the surface area of a smooth convex body inR? by
circumscribed polytopes of n facets, and proves an asymptotic formula for
the surface area difference asn tends to infinity. To state this formula in R%,
[6] assigns a new quadratic form ¢* in d — 1 variables to any positive definite
quadratic form ¢ in d — 1 variables. If d =3 and k = 7 > 0 are the eigen-

values of ¢, then ¢* is the quadratic form with eigenvalues 2:% > ’fj—f:

particular the eigenvalues of ¢* lie in [1,2], and hence Corollary 1.3 yields
the following.

In

COROLLARY 1.5. If k 2 7 > 0 are the eigenvalues of the quadratic form
q n two variables, then

V2T TR AT+ 8k + (472 — 27k + Tr2)Y?

18(7 + k) [27' + 4k + (472 — 27K + 7/42)1/2]

divgs = 3

2. Proof of Theorem 1.1

For the proof, we used the computer algebra software MuPAD to handle
large trigonometric polynomials and rational functions, to simplify and fac-
tor them, and to compute their integrals and derivatives. We shall always
explain the idea which led us to a formula, but the details of the computation
will be omitted when a formula was obtained by the computer.

We may assume that 7 = 1 and q(s,t) = s2 + xt2. We write P; to denote

the point (cos(t),sin(t)). For a < b < a+m, the triangle Ay = [0, Py, P]
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can be parameterized by the map

a+b . a+bd . a+b a+b
(u,v) — u | cos 5 S — +v | —sin 5 1 C0S ,

where (u, v) is running over the domain 0 < u < cos (b_T“), |v| £ utan (b_Ta)
Thus, the integral of the quadratic form ¢ over the triangle [0, P,, P;] can be
written as follows

cosb*T“ tanb*Ta
2
/ / / < a-+b . a+b>
q= U COS — vsin
2 2
Agp 0 7tanb*T“
b b2
—l—#c(usimchL +vcosa—2F> dv du.

This integral can be computed explicitly and after some simplification it
turns out to be

1
(4) / q:ﬁsin(b—a)(cos2a+0082b+cosacosb
Aap

+ k(sin® @ + sin® b + sinasin b)) .

Observe, that equation (4) is valid also in the casea = b, when the triangle
degenerates to a segment.

Let © be the triangle {(81,82) |0 51,0= 59,81 +52 S 7r}. The set of
the vertices of ® is V = {(0,0), (0,7), (7,0)}. For a € R and (s1,s2) € D, let
H(a, s, s2) denote the convex hull of the vertices Py—s,, Pa, Patsy; Patr—ss,
Piir, Potrts,- The map Rx (D\V)— X, (a,s1,s2) — H(a,s1,s2) is a
(not injective) parametrization of the set X', so every function on X can be
written as a function of the parameters a and (si,s2) running over R and
D \ V respectively. The shape of H(a, s1, s2) is uniquely determined by the
parameters s; and s, as for any a,a € R, H(a, s1, s2) is a rotated image of
H(a, s1, s2) about the origin. In particular, the area A(s1, s2) of H(a, s1, $2)
depends only on s; and sa:

A(s1,52) = sin (s1) + sin (s2) + sin (s1 + s2).
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According to (4), the integral of the quadratic form g over H(a, sy, s2) is
equal to

q= %[sin (s1)(cos® a + cos®(a + s1) + cosacos(a + s1))
H(a,s1,s2)
+ sin (s2) (cos® a + cos?(a — s2) + cosacos(a — $3))
+ sin (s1 + s2) (cos®(a + s1) + cos?(a — s2)
—cos (a + s1) cos (a — 52))]
+ g[sin (s1)( sin? a + sin?(a + s1) + sinasin (a + 51))
+ sin (s2) ('sin” a + sin®(a — s2) + sinasin (a — s2))
+ sin (s1 + s2) (sin®(a + s1) + sin®(a — s2)
—sin (a + s1) sin (a — 52))].

This equation can be transformed into the form

6) [ a=Plois) +cos(20)Q(en,sa) +sin (20)R(s1.50)
H(a,s1,52)
where
14+k, . . . .
P(s1,s2) = T(lem (s1) +4sin (s2) + 4sin (s1 + s2) + sin (2s7)

+ sin (2s2) — sin (251 + 2s3)) > 0,

1—
Q(s1,52) = 24’*( sin (s1) -+ sin (s2) -+ sin (3s1) =+ sin (3s2)
+ sin (3s1 + s2) + sin (s1 + 3s2))
1—
R(s1,82) = K( — cos (s1) + cos (s2) + cos (3s1) — cos (3s2)

24
+ cos (3s1 + s2) — cos (51 + 3s2)) .

Below we frequently drop the reference to the variables to simplify the for-
mulas.
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Our goal is to determine the minimum of

a,s1,8 q

F(CL, 81752) = fH( — 2)2

A(Sl, 52)

for (a,s1,s2) € Rx (®\V). By the Cauchy-Schwarz inequality applied
in (5), if we fix the shape of the hexagon, i.e., we keep s; and sg fixed,
then the value of F(a,s1,s2) as a function of a oscillates between (Pi

VQ?+ R? )/AQ. If R(s1,s2) = Q(s1,s2) =0, then F' is constant in a, oth-

erwise the minimum G, := (P —/Q?+ R? )/AZ, s = (s1, 82), is attained
when

B and sin(2a) = _7]%
N SO

This means that to find the infimum or minimum of F'(a, s1, $2), we have to
determine the infimum or minimum of the functionGs: (D \ V) — R.

The central angles corresponding to the consecutive sides of the possibly
degenerated hexagon H(a, s, s2) are s1, sy and s3 =7 — $1 — $2. The per-
mutation group S3 of these three angles acts on the triangle ® as the group
of all affine symmetries of ®. It is clear from the geometrical meaning of the
function G that it is invariant under this action.

Let us introduce two new parameterst; = tan (s1/2) and to = tan (s3/2).
If (s1, s2) is running over ©, then (¢;,t2) is changing in the set

(6) cos (2a) =

D' ={(t1,t2) | 0= t1, 0=ty t1ta 1} U {(00,0),(0,00)}.

Denote by G : ©"\ {(0,0)} — R the function which expresses G in terms of
the new parameters. G is related to G5 by the identity

G(tan (s1/2,),tan (s2/2)) = Gs, s = (s1,52).

The advantage of this reparametrization is that any trigonometric polyno-

mial of the variables s; and s9 can be written as a rational function of #;
2tan (z/2) 1—tan?(x/2)

1+tan?(z/2) 1+tan2(x/2) In

and t9 due to the identities sin () = and cos (x) =

particular, we have

(2/3)(1 + K)(t1 + t2) (2t1ta + 13 + 13 — t}3 + 1)
B+ 1B +1)° ’
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Q= (2/3)(1 = k)(t1 + t2)
y (2t1ty — 263 — 23 — 106343 + t1 + t3 + 265ty + 20443 + 26363 + 3t{td + 1)
(B +1°(B+1)°

)

(4/3)(1 — k) (— 2t1ta — ¢ — 13 — 3t§t3 + 2t5t3 + 1) (ta — t1)(t2 + 1)
B+ B +1)°

Y

4(751 —i—tg)
ICERICESN

Substituting these expressions into the formula defining G, we obtain

1+k 11—k
(7) G = o S+ 51 VT,

(2t1ty +t7 + 3 — 313+ 1)

(8) S= :

t1 + 1o

1
T = ———— [ 4dtrto — 23 — 263 + t] + 3 + 4183 + 4tty
(t1 +t2)

+ 126715 — 205t5 — 20633 — 24145 + 9t ity + 1.

The following lemma describes those (possibly degenerated) hexagons for
which fH( q does not depend on a.

a,s1,52)
LEmMMA 2.1. For a point (s1,52) € D, Q(s1,52) = R(s1,52) =0 if and
only if one of the following cases are fulfilled
1. k=1;
2. H(a,s1,s2) is a segment, i.e., s1 = s2 =0 or {s1,s2} = {0,7};
3. H(a,s1,s2) is a square, i.e., s1 = so = w/2 or {s1,s2} = {0,7/2};

4. H(a,s1,s2) is a reqular hexagon, i.e., s = so = 7/3.

PROOF. We shall solve the system of equations P = @ = 0 for the un-
known parameters ¢; and ty. Since (1 — k)(t1 + t2) is a common factor of
P and @, the system is solved by any t;, t2 when [k = 1] and it is also
solved by any (t1,t2) € D' satisfying ¢1 4+ to = 0. The straight line t; +t2 =0
cuts the domain ©’ at the origin so the second case gives only one solution,
[81282:t1:t2:0].
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Suppose now that K # 1 and t; + to # 0. Then we are to find the inter-
section points of the algebraic curves

(9) 0 = 21ty — 263 — 262 — 106243 + t] + t3 + 263ty + 24143
+ 26545 + 3t1ts + 1,
0= (—2tts — ] — 13 — 3633 + 26343 + 1) (t2 — t1).

If t; = to9, then the second equation is fulfilled, and the first equation can be
factored as

0=(ty — 1)(t1 +1)(3t] — 1) (£] +1).

Thus, the geometrically relevant solutions obtained in this case are[t; =ty =
1, 51 = s9 :7T/2] and [tl =19 = 1/\/5, S1 = 82 :7T/3].

If t; # to, then the second equation of (9) can be divided by (to —¢1). The
degree of the remaining equations can be reduced if we rewrite the equations

in terms of the elementary symmetric polynomialso; = t1 +ts and oo = t1to.
The obtained equations are the following:

(10) 0 = 609 — 20% — 1205 + 01 + 205 + 303 — 0209 + 1,
0=—07 — 305 + 2035 + 1.

Expressing 0% from the second equation and substituting the result into the

first equation we obtain a polynomial equation foros which has the following

factorization:
0= 0‘2(0‘2 + 1)(0‘2 — 1)4.

Solutions for which [o3 = 0, 01 = £1] correspond to cases when H (a, s1, s2)
is a square. The cases [0 = t1to = —1] and [02 = 1, 01 = 0] give no geomet-
rically relevant solution. ([l

LEMMA 2.2. We have

4k + V4K? — 6Kk + 3
18v/2k + VAKZ — 6K + 3

Proor. It is enough to show that the right hand side is in the range

I(q

[IA

of G. However, if we evaluate G at t; = to = 4/ 2i=VAr"_Ort3 W we get exactly
the right hand side. g

LeEMMA 2.3. The following function is strictly monotone increasing in

K= 1.
4k + VAK2 — 6K+ 3 1
182k + V4R2 — 6k + 3 VE
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PROOF. We write h to denote the function above, and define B = 2k

and C = 2k + V4k?% — 6k + 3. In particular C > B, and h is proportional to

3% = IJ\F/(CCT/?, which is a strictly monotone increasing function of C/B if

C > B. SinceC/B=1+ %\/3(1 — k1) + 1 is a strictly increasing function
of k 2 1, we conclude the lemma. O

LEMMA 2.4. The infimum I(q) of Gs is a minimum, attained at an inner
point of the triangle ®.

PROOF. Since ® is compact and Gy is continuously defined on © \ V|
to prove that the infimum is attained somewhere, it is enough to show that
limGs = 0o as s = (s1,52) € D\ V tends to one of the vertices of ©. By the
S3 invariance of GG, it is enough to check this for the vertex (0,0). However,
equations (7) and (8) imply immediately that G = G(t1,t2) is asymptoti-
cally equal to 1/(12(t1 + t2)) as (t1,t2) € D’ tends to the origin.

To prove that the minimum is attained inside the triangle®, we have to
show that the minimum of the restriction of G onto any of the sides of © is
larger than the global minimum of G,. Referring again to the Ss-invariance
of G it is enough to consider one of the sides, say the side0 < s1 < 7, s9 =0,
which side is characterized also by ¢t; > 0 = t5. However if t5 = 0 then

1+ K 1\ 1-=x
G= 4 — )+ ——
24 <1+t1)+ 24

y 1
1t1

This function is symmetric in ¢; and 1/t1, so we may assume without loss of
generality that t; = 1. In that case G = (1/12)(¢; + k/t1), from which we can
see, that the minimum of the restriction of G5 onto the sides of the triangle
D is v/k/6. Lemma 2.3 and letting x tend to oo yield

Ak +VAr2 — 6K + 3 NG

< =,
18V2k +V4rZ —65+3 O

therefore Lemma 2.2 completes the proof. O

The following statement is a direct consequence of L. Fejes Téth’s Mo-
ment Theorem (2), but we include the simple argument for the sake of com-
pleteness.

LEMMA 2.5. For k =1, I(q) = 5v/3/54 and the minimum is attained by
reqular hexagons.
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PROOF. The peculiarity of the case kK =1 is that in this case the coef-

ficient of VT in G is 0, therefore G is smooth. By Lemma 2.4, the point
(t1,t2) € @' at which G = (1 4 k)S/24 attains its minimum must satisfy

oS (2t1ta +12 — 1) (L + t2)(1 — t2)

o (1, t2) = 5 =0,
oty 12(t1 +t2)

oS (2t1ta +13 — 1) (L +t1)(1 — 1)
2ty ty) = 5 = 0.
Oto 12(t1 +t2)

It is easy to list all the solutions of this system of equations:
[{t1, 2} = {£1,0}], [ti=toe {1, £1/V3}]|, [t1=—ty€ {£i+1}].

The only solution which belongs to the interior of the domain®’ is t; = to =
1/+/3, and these parameters correspond to the regular hexagons. U

LEMMA 2.6. If k > 1, then the reqular hexagon does not minimize G.

ProoOF. Computations in the proof of the previous lemma show that the
derivative of S vanishes at t; = to = 1/4/3. At this point, the derivative of T

vanishes as well, since T' > 0 everywhere and 7' =0 at t; = t, = 1/v/3. On
the other hand,

5V/3 82T<1 1>_8
=3

G(1/V3,1/V3) = (1+r) {5 and EAWANE

and consequently,

G(1/V3 +e,1/V3) :<1+K)?O/E§§+O(€2)+

5/3 1-k )
=(1 i .
(+m)108+12\/§|5|+0(5)

11—k
24

V(4/3)e2 + O(e%)

This means, that if || > 0 is sufficiently small, then G(1/v3+¢,1/V3) is
smaller than G(1/v/3,1/V3). O

Now we are ready to complete the proof of Theorem 1.1. Casex =1
is verified in Lemma 2.5. Suppose k > 1. By Lemma 2.4 we know that G
attains its minimum at an inner point of the domain®’. Those points in ©’
at which G is not differentiable are characterized by the equation@ = R = 0.
By Lemma 2.1, there is only one such point in the interior of ®’, the point
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t; =ty = 1/4/3, which corresponds to the regular hexagon. According to

Lemma 2.6, the regular hexagon does not minimize the function G, so we

conclude that G attains its minimum at point(s) at which G is differentiable.
At a point (¢1,t2) at which G is minimal, we have

(14105 (1-wOT _,
24 Oty 48T Ot1
(1+r)0S  (1—r)OT
24 0Oty 48T 0Ot2

=0.

Combining these equations we obtain

- 05T 05 o1 _
Oty Ota Oty Ot o

Substituting the explicit form of S and T into (11) and factoring the left
hand side we obtain.

6 (2t1t + 13 — 1) (20182 + 8] — 1) (¢1 — t2) (trta — 1)trts
(t1 + t2)4

Using the parameter t3 = tan ((7 — s1 — s2)/2) , we can rewrite this equation
in the form

=" tztltgtg(tl —t9)(ta — t3)(ts — t1) = 0.

Equation t1tots = 0 characterizes the boundary points of ®’, thus by Lemma
2.4, four sides of the extremal hexagon are equal. As the geometric role of
t1, t2 and t3 is symmetric, we may assume without loss of generality that
t1 =to. The common value of them, which will be denoted byt is in the
open interval (0,1). The restriction of G onto the diagonal t; = t3 has the
form

L+ k) (14482 —t4) + (1 — &) [3t2 — 1|(1 — #2)
48t

Gt 1) =

B ((1—2r)t* +4kt? +1) /(24t) if t € (0,1/V3],
- {((5—2)t4+4t2+m)/(24t) if te[l1/V3,1).

The derivative of the function Gy (t) = ((1 — 2k)t* +4kt? + 1) /(24¢) has two
positive real roots, 7 = 4/ 2E=VIrZ0rE3 W and 1y = y/ 285V IT_6rt3 W. Since
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the roots of G are of multiplicity one and G1(t) tends to +o00 as t tends to
0, the function G decreases on the intervals (0, 71) and (72, 00), and increases

on the interval (11, 7). Evaluating the derivative of Gy at 1/v/3 we obtain
G1(1/V3) = (k—1)/12 > 0, consequently, 71 < 1/v/3 < 75 and

4k + V4K? — 6k + 3

min  G(t,t) = min G =Gi(n) =

0<t<1/v/3 0<t<1/v3 18V2k - VARZ —6R 13
The derivative of the function Ga(t) = ((k — 2)t* + 4t> + k) /(24t) has

exactly two positive real roots 73 = | /2+m and 74 =, /Q—W

if kK < 2. As k tends to 2 from below, 74 is running out to infinity and for x >
2 it becomes pure imaginary. Thus, in the ranger = 2, 73 is the only positive
real root of GY,. As 73 and 74 are simple roots of GY, and lim;_,o G2(t) = 400,
G4 decreases on the interval (0,73) and starts increasing at 73. If kK = 2,
then it remains increasing on the whole interval (73,00), if kK < 2, then it
increases only on the interval [73, 74] and it becomes decreasing again on the

interval [74,00). The values of G% at 1/4/3 and at 1 have opposite sign as

G4(1/V3) = —G4H(1) = (1 — k)/12 < 0, thus we have 1/V/3 < 73 < 1(< 1),
and therefore

4432 —6r +4
min  G(t,t) = min G = Ga(m3) = Vi 4+ V8 6t .
1/V3st<1 1/V3st<1 18 \/2 4 /3kZ — 6Kk + 4

The first part of the theorem will follow if we show that Gi(71) < Ga(73).
Let C' = 2k + V4k% — 6k + 3 as in Lemma 2.3, and let

C = 2k + V/4Kk2 — 6K3 + 3K,

Since (4k2 — 6K3 + 3k%) — (4k%2 — 6k +3) =3(k+ 1)(k — 1)* > 0, we have

C > C. We also have VVCC > 2k, since both C' and C are greater than
2k. These imply

2/1+C~‘_2/£+C’: ( 00—2/4)(\/5—\/5) =0
186 18VC 18V EC ’

as we wanted to show.
Let us summarize what we know about an extremal hexagon. It has two
consecutive sides of equal length. If the central angles belonging to these

Ga(13) — G1(m1) =
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sides are s; = s9 = s, then

2k — V4Kk? — 6 3
tan(s/2):ﬁ:\/ il 6:—3 ARy

This information determines the shape of the hexagon uniquely. To find
which rotation of this hexagon gives the minimum, we refer to equation (6).
Since R(s1,s2) is skew symmetric, R(s,s) = 0. Inequality tan (s/2) =7 <
1/4/3 yields that s < 7/3, sin (3s) > 0, sin (s) + sin (4s) > 0 and Q(s,s) < 0.
In conclusion, the common vertex P, of the equal sides of the extremal
hexagon must satisfy cos (2a) = 1, and sin (2a) = 0, in other words, P, must
lie on the first coordinate axis. This completes the proof of Theorem 1.1.0

3. Proof of Theorem 1.2

3.1. An equivalent formulation and some properties of the second
moment

We actually prove the following statement equivalent to Theorem 1.2.
Let ¢ be a positive definite quadratic form with eigenvalues 7 < k < 2.47,
and let C C R? be Jordan measurable. For any v > 0, and for any asymp-
totically optimal sequence {Z,,} of configurations of at most n points in R?,
the number f(n) of Dirichlet—Voronoi cells with respect to =,, and C that
are hexagons and v-close to the hexagon homothetic to H, with area |C|/n
satisfies

(12) f(n) =n—o(n).

To show that (12) yields Theorem 1.2, setng = 1. It follows by induction
on k=1,2,... and (12) that there exists integer ng > ng_1 such that if n >
ng and fix(n) is the number of Dirichlet—Voronoi cells with respect to =,
and C that are hexagons and 1/k-close to the hexagon homothetic to Hy
with area |C|/n then fx(n) > n —n/k. Therefore we may choose v, = 1/k
in Theorem 1.2 if ng < n < ngq.

Let us prepare for the proof of (12). First we discuss some estimates on
the second moment over triangles. Let R = [0,b,c| be a triangle that has
angle o at 0. Then direct computation yields

1
(13) /||a:|2dx: RP cota+ < - Jle — bl ]
R



A NEW VERSION OF L. FEJES TOTH’S MOMENT THEOREM 245

For o € (O, %), we define
1
~v(a) = cot a + 3 tan a.

In particular if the angle of R at b is § then [, |z||? dz = v(a)|R|*. The
importance of v stems from the following estimate.

LEMMA 3.1. Let the triangles S = [a,v,w] and S = [a, v, w] intersect in
the common side [v,w] and have the same area, and letw € [a,a,v]. Writing

a and & to denote the angle of S and S at a and a, respectively, we have

~ o+
w)  [ly-aPars [lr-altarz e (S50 st
S 5

PROOF. We deduce by (13) that (14) is equivalent to

2 ~ -
— 1
15 S|(cot o + cot & —i—MiZ Cotw—i—ftana—ka S|.
3 2 3 2

To prove (15), we may assume Z(v,w,a) < Z(v,w,a), hence Z(v,w,a) is
obtuse according to w € [a,a,v]. Let ag = a+ 2(w — a), let ap = Z(v, ag, w),
and let Sy = [v,ap, w] (see Figure 1). In particular a < ap, ap + & < 7 and

|So| = |S]. For the triangle T'= (Sy — ag) U (a — 5), its angle at o is ag +

.0 a

Fig. 1

&, and the opposite side o is of length 2|[v — w]||. Let o' be the orthogonal
projection of o to the perpendicular bisector of the segment o, and let ¢ be
the angle of the triangle [0/, 0] at o/, and hence ¢ > ap + & Writing h to
denote the distance of o’ from o, we have

S ag +
5 .

o —w|®> = |T| - Jv — wl||/h = 2|S| tan 2> > 2| tan
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In addition even if either ag or & is obtuse, we still have

2
cot ag 4+ cot & = 2 cot a0+d. (tana0+a) [1+(tana02a) ] 2200,604074-07,

T ) ) 2

therefore

2 ~
— 1
S|(cot ag + cot & +M22 cotw—l—ftanao—i_a S|.
3 2 3 2

Differentiation with respect to « shows that the function

+ —ta
3 n

S -
f(a)zcota—Q(cota+a a+a>

is decreasing on (0, ap]. In turn we conclude (15). O

3.2. The graph of skew edges

We may assume that 7 = 1 and q(s,t) = s + xt2,

e no four points of =, lie on a circle,

e no three points of =, determine a right angle.
We write D,, to denote the Dirichlet—Voronoi tiling of C' induced by Z,, and
hence for any vertex v of D,, in int C, v is of degree three, and v does not lie

on the line connecting two closest points of 2, to v. For n = {/1(q)|C|?, we
claim that if n is large and

(16) x+—B2CC’ then Enﬂ<x+ )75@

\/> \/>
Otherwise if z € x + \f B? lies in the Dirichlet—Voronoi cell of a € Z,, then
a(z—a) 2 ||z —al* = 7 thus

(g, C,Z,) 2 m-n*n~t =7 I(g)|C)Pn !

which contradicts the asymptotic optimality of Z,, for large n.
Next we claim that if n is large, and II is a Dirichlet—Voronoi cell for =,

and C such that x + ?7% B2 c C for some x € TI then

(17) I CintC is a convex polygon and diamII < 477n_%.
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Let a € E,, correspond to II, and hence ||z — al| = 37"5 by (16). If there exists

z € Il with ||z —al| > 37777; then let 2’ € [z, a] satisfy f—\/’% < |l —a] < Z’—\/’% We

have 2’ + %\/ﬁ B2Ca+ Zl—\/% B? C C, thus (16) applied to 2’ contradicts that

z € II. Therefore I C a + f—\/"ﬁ B2, concluding the proof (17).

For large n, we may choose a finite set {W; ,} of squares of side length
n"s lying in C such that for any W;,, its distance from 0C and from any

other Wj,, is at least 6nn7i,
e OW;,, contains no vertex of ﬁn,

e no edge of 75n contains a vertex of W; ,,,
moreover the union W, of all W, satisfies

(18) lim [W,|/|C] = 1.

In particular if IT € D,, satisfies I1 N Win # 0 then
(19) IT satisfies (17), and hence IIN W, = 0 for j # 1.

We define D,, to be the Dirichlet—Voronoi cell complex with respect to
=, and W,,, and hence the tiles of D,, are the non-empty intersections of

the tiles of D,, with W,,. For any Dirichlet—Voronoi cell IT of D,,, we write
a(IT) to denote the corresponding point of Z,,. In particular, vertices of W),
have degree two as vertices of D,,. If v is a vertex of D,, different from the
vertices of Wy, then v is of degree three, and if, in addition, v € int W,, and

it is a common vertex of the Dirichlet—Voronoi cells IT and II of D,, then
v ¢ [a(I), a(ID)].

Next for any triple (I, e, v) where II is a Dirichlet—Voronoi cell of D,,
e is a side of II intersecting int W,,, and v is an endpoint of e, we define a
prescheme S associated to D, to be S = [a(H), v, w} where w is the closest
point of e to a(IT). We write a(S) = a(Il), w(S) = w and v(S) = v. We note
that possibly a(S) ¢ W,,, and either S is a segment with v(S) = w(S), or S
is a triangle whose angle at w(S) is at least 7 /2.

We call a prescheme S a scheme associated to D, if it is a triangle, and
either v(S) € int Wy, or w(S) € int W,,. Let ¥,, denote the family of schemes
associated to D, and hence (18) and (19) yield

(20) lim |US,|/|C] = 1.

We observe that for any scheme S associated to D,,, the reflected image
S of S through the line passing through v(S) and w(S) is a scheme, as well,
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with v(S) = v(S) and w(S) = w(S) € [a(S),a(g),v(S)] . Moreover the con-
ditions on Z,, at the beginning of this section ensure that if w(S) € int W),
and it is a vertex of D, then [w(S),v(S)] N [a(S),a(g)] = (), and the angle
of S at w(S) is obtuse.

We call an edge e of D,, a skew edge of D, if e = 5N S for some schemes
S and S associated to D, such that e N [a(S), a(g)] = and w(S) = w(S) €
int W, (see Figure 2). In this case e = [w(S),v(5)], and we call w(S) =

Fig. 2

w(S) the initial endpoint of e, and v(S) = v(S) the terminal endpoint of e.
We note that possibly v(S) € OW,,, and e = IINII for the Dirichlet—Voronoi
cells IT and II of D,, with a(II) = a(S) and a(II) = a(5).

We define a related planar graph G,,. Its vertex set consists of the ver-
tices of D, that lie either in int W), or are endpoints of the skew edges of D,,.
The edges of G, are the skew edges of D,,. In particular the vertices of G,
are the points of the form v(S) as S runs through schemes associated to D,,.
It follows by applying the Euler theorem in each W, that the number of
vertices of D,, in W; ,, is two more than twice the number of cells of D,, lying
in W; 5. Since none of the four vertices of W ,, is a vertex of G, (19) yields
that

(21) the number of vertices of Gy, is at most 2n.

3.3. The stars of the vertices

Next we define the star St (v) for any vertex v of G, to be the family
of all schemes S with v(S) =v. Let G;p, i =1,...,k(n), be the connected
components of Gy,. For each G; ,,, let m;, be the number of vertices of G ,,
and let ¥; , be the union of all St (v) where v is a vertex of Gj .
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We observe that m;, =1 if and only if G;, is an isolated vertex v of
Gp. In this case, UV, ,, = USt (v) is a triangle with circumcentre v € int W,
Writing 7 to denote the circumradius of U St (v), we define

Hw)=1 | {S-a(s).a(8)- 5},

SeSt (v)

which is a hexagon satisfying H(v) € X' (see Figure 3). Therefore if v is an

USt (v) H(v)

Fig. 3

isolated vertex of G;, and St (v) = V¥; ,, then

Ysew,, Jsa(z—a(S)) dv 3 fH(v) q(x) dx
22 - = > 2I(q).
(22) U0, )2 1l H(’u)‘2 2 2(a)

Our main goal is to show that an even better estimate holds for ¥; , if
either m;,, = 2 or m;, =1 and H(v) is “far” from H,. To make this idea
more specific, let us introduce some notation and constants. Choose three
non-neighbouring vertices of Hy, and let Tj, be their convex hull, hence |Tj,| =

$|H,|. In particular if v is an isolated vertex of G, and USt (v) is homothetic
either to T, or to —T; then H(v) = H,. We note that for p € (0, %), if a
triangle T" is p1/4-close to ATj, for some A > 0, and satisfies

(14 (1/4)) "TANT,) S A(T) < (1+ (u/4)) AT,

then T is p-close to Tj;. Now there exists some p € (0, %) depending only on
q and v with the following property. If Il C int W, is a Dirichlet—Voronoi
cell of D,, whose vertices are isolated vertices of G, and there exists A > 0
such that for each vertex v of I, USt (v) is p-close either to AT}, or to —A\Ty,
then II is a hexagon that is v-close to AH,. Since H, is the unique ex-
tremal hexagon in X according to Theorem 1.1, there exists somed with the
following properties:
1.01533

1<1+49
<o <1.01532’
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and if v is an isolated vertex of G,, and USt(v) is not u/4-close to any
homothetic copy of either T or —T;, then

2 5est (v) Jsa(z —a(9)) dx fH(v) q(x) dz
(23) | USt (v)] | H(v)|? (1+9)21g)

The core statement to prove (12) (and in turn Theorem 1.2) is the fol-
lowing estimate. If either m;, = 2, or m;, =1 and UV, ,, is not p/4-close
to any homothetic copy of either T; or —T; then

2I(q)

i\n

U2

(24) 3 /q(;v—a(S)) dz > (14 6)

SE‘Ifi,n S
If mi, =1 then (24) follows by (23).
3.4. The proof of (24) if m;, =2

Our plan is to apply a linear map that transformsq into the Fuclidean
form, and to show (24) using estimates on the second moment. Unfortu-
nately the estimates in this case hold only if there is a restriction onx. We
define the linear transformation ® by ®(s,t) = (s,ty/k) for (s,t) € R%. In

particular ¢(z) = ||®xz||* and det ® = \/k. We set Gi, =Gy, B, = 5,

—n

and W), = ®W,,. For any S € ¥, ,,, we call ®S a scheme for G, and de-

i,n?
fine a(®S) = ®a(S), v(PS) = Pv(S) and w(PS) = dw(S). If e is an edge of
G, with initial endpoint w and terminal endpoint v, then we say that dw
is the initial endpoint and ®v is the terminal endpoint of ®e.

We observe that ®D,, is typically not the the family of Dirichlet—Voronoi
cells with respect to =), and W¥. Let us see what properties of the schemes
prevail after applying ®.

Let S and S be two schemes for G}, with v(S) = v(S) and w(S) = w(S).
We call these triangles twins, and observe that they satisfy

(25) S| = 15| and w(S) € [v(S),a(s), a(S)],
even if S and S are typically not congruent. In addition we define

a(s) = a(§) _ 4(1}(5),(1(5),@0(5’)) gé(v(S),a(S),w(S’)) - g
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In particular, Lemma 3.1 yields

(26)
/Hy—a(S))HQdy+/Hy—a(§))HQdyzv(a(S))\52+v(a<§))\§\2-
5 5

Let us define the star of a vertez v of G7,,. If v € int Wy, then the star
St*v at v is simply the set of schemes S for G}, with v(S) =v. Next let
v e IOW,. So far, v is the vertex of exactly two schemes S and S for Gl s
and these two schemes are twins intersecting in an edge ofG7,,. For technical

purposes, also in this case, we need six schemes atv whose angles at v add up
to 2w, hence we define four “degenerate schemes”. We choose four segments

S1, S, S3, Sy such that v is an endpoint of each, and each intersects S U S
in v. Let 8 be the sum of the angles of S and S at v (see Figure 4). For

oW}
S w
S
- ﬁ
S3 v
Sa
Fig. 4

i =1,2,3,4, we define v(S;) = v, a(S;) to be the other endpoint of S;, and
w(S;) to be the midpoint of S;. In addition, we define the angle of S; at

v(S;) to be 2”475 =7 - %, at w(S;) to be 7, and at a(S5;) to be a(S;) = g.

We call S; and S5 twins as well as S3 and S;. We set integrals over any S;

to be zero, and define St*(v) = {51, S2, S3, S4, S, §}
Finally we define ¥, to be the union of all St*(v) as v runs through the

i=1,...,k(n). Since the substitution y = ®z yields

: *
vertices of G7

>sew,, Jya(z —a(9)) dz _ k. 2 sewr Jslly = “(S)HQdy

U, v, | ’
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and Lemma 2.3 yields

21(q) < 1.01532 - /s - 7(66) for k € [1,2.4],
our goal (24) follows if

1.01533y(%)

2 . |2
27) 3 /Hy—a(S)) 1Pay> == g, |
sev;, % )
Applying (26) and the Cauchy—Schwarz inequality leads to
ZSeqx;n Jslly—a(9)] Sdy S ZSe\IJ;n ACENIER
|y, B |’
1 -1
(X )
Sev;,

We write €, to denote the number of edges of G}, hence

*
#\Ij’iﬂ’b = 6mi,n — 267;’”.

We observe that the sum of the angles at the vertices of G}, of the elements
of \I/;“n is m; p2m. The contribution of a twin .S and S of schemes of \I/fn to
this sum is 27 — a(S) — a(S) if SN S is an edge of Gi,,and m—a(S) — a(S)

otherwise. Since e;, twins intersect in an edge of G}, , we have
k)

Z a(S) = mjpm.

Sev*

i,mn

First assume m;,, = 3, hence e;,, = Mmin, — 1 as GF_ is connected. Since
n =9, no= ) i,n

ay(a) is increasing and y(a) ! is concave on (0, 5) (see Propositions 3.4 and
3.5, respectively, in K. J. Boroczky, P. Tick, G. Wintsche |7]), we have

6m;., — 2e;
Sew: ©,n M

9 (37
7 7\11 )"

v

> 6mi7n mmﬂ
= Y
4mi7n + 2 4m,~7n + 2
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Numerical evaluation shows %7(%) > 1.01533 7(%), which yields (27) in

this case.
Finally we assume m;, = 2, hence #¥7, = 10. In this case G}, has a

unique edge, which is the intersection of say S1, 52 € V7. Now St* (v(S1))

has four more elements, which we denote by S3, S4, S5, Sg. In addition
St* (w(S1)) has four elements denoted by S7, Ss, Sg, S1o. Since the sum of

the angles of S1 and Sy at w(Sy) is at least 7, there exists some ¢ = 0 such
that
a(S1) + a(S2) + a(S3) + a(Ss) + a(Ss) + a(Ss) = T — ¢;
a(S7) + a(Ss) + a(Sg) + a(S10) = 7 + .
It follows that

6m( PRRICIE)) ‘l>_1 > 12 (67 (Wg"”)_l +4y (W Z "0>_l>_1.

sev;,,

As the derivative of v(a) ! is decreasing, the function

= -1 T+ @ -1
o (52) +o ()

is decreasing in ¢ € [0, 7). Therefore

6mn< > (a(9) _1>1 =1 <67 (%)4 th (D_1>1

> 1.01533+ (%) :

where the last inequality follows by numerical evaluation. We conclude (27),
and in turn (24).

3.5. Proof of (12) based on (22) and (24)
As the sequence {=Z,} is asymptotically optimal, (3) yields

(28) Q(g.C,Z,) £ I(q) - |CPn " +o(n7Y).
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Let us number the components G, in a way such that i < g(n) if and
only if G ,, is an isolated vertex, and U¥; ,, is pu/4-close to some homothetic
copy of either T, or —Tj. In particular m;,, =1if i < g(n).

It follows by (22), (24), and the Cauchy—Schwarz inequality that

(29)
k(n)
Q(qa Ca '—*n> 2 Z Z /q(.’L‘ - G(S)) dx
=1 SE\IJZ'JL S
k(n) 2 2
Uv;., Uv;.,
2 2I(Q)Zw+52I(Q) Z |m|
i—1 i,n i>g(n) i,n
k(n 2
uw in % n U \Ilivn
22[((]).(22 1(L) ‘) +52[(q)-<2>9( )| |) _
Zz 1 Min Zi>g(n) Min

Since Z 1 min S 2n according to (21), the estimates (20) and (28) yield
> U] =o(D).
i>g(n)
In turn we deduce by (20) that

g(n)

(30) D U] =[C| - o(1).

i=1

Let A:( fﬁ})\uxﬂ-, )/g(n), and for each i=1,...,9(n), let t; =

|UW; | —A (here we drop the reference to n). In particular fﬁq) t; =0.

Since m; , = 1 if i < g(n), we deduce by (28), (29) and (30) that

1-cf | ST 2 2
L5 o(nh) 220(0) Y (A+ 1) = 21(q)g(m) A +21(g Zt
=1
> W +o(n™) +2I(q Zt2

In particular g(n) = 2n — o(n). We renumber the ¢;, i =1,...,g9(n), in a

way such that [t;| < & |2 L if and only if i £ h(n), hence h(n) = 2n —o(n), as
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well. Since A = % +o(n~1), it follows that for largen and any i < h(n), the

area of the triangle UV; , is between (14 (1/4)) _1% and (14 (u/4)) %,
therefore UW¥; ,, is u-close to the homothet of either Tj, or —T of area 1€l

o -
Since each vertex of D, but the vertices of W;,, is of degree three: Lthe
number of Dirichlet—Voronoi cells whose all vertices are some G, for i <

h(n)is n—o(n). All these Dirichlet—Voronoi cells arev-close to the homothet

of H, with area ‘% by the definition of . All but o(n) of them lies in int W,
hence n — o(n) of these Dirichlet—Voronoi cells are Dirichlet—Voronoi cells for
=y, with respect to C. We conclude (12), and in turn Theorem 1.2.
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