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Abstract

A version of the celebrated Moment Theorem of László Fejes Tóth is proved where
the integrand is based not on the second moment but on another quadratic form.

1. Introduction

For any notions related to convexity in this paper, consult P. M. Gru-
ber [21], R. Schneider [22] or T. Bonnesen and W. Fenchel [2]. We call a
compact convex set with non-empty interior inR2 a convex disc. The area
(2-dimensional Lebesgue measure) of X ⊂ R2 is denoted by |X|. We re-
call that X is Jordan measurable if it is bounded and |∂X| = 0 holds for
the boundary ∂X. When we speak about Jordan measurable sets in this
paper, we always assume that the interior is non-empty. We write‖ · ‖ to
denote the Euclidean norm, and B2 to denote the Euclidean unit disc cen-
tred at o. Moreover, the convex hull of the objectsX1, . . . ,Xk is denoted by
[X1, . . . , Xk], and the cardinality of the �nite setΞ is denoted by #Ξ.

A core notion for us is the notion of Dirichlet�Voronoi cell. Givenn points
y1, . . . , yn ∈ R2 and a Jordan measurable C ⊂ R2, we de�ne the Dirichlet�
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Voronoi cell of yj associated to C and {yi} by

Πj =
{

y ∈ C : ‖y − yj‖ 5 ‖y − ym‖, m = 1, . . . , n
}

for j = 1, . . . , n. In addition, for any non-negative function f on R2, let

(1) Ω
(
f, C, {y1, . . . , yn}

)
=

n∑

i=1

∫

Πi

f(y − yi) dy.

The so called Moment Theorem was �rst proved on the sphere by L. Fejes
Tóth [11], and he himself soon extended it to the plane in [13] for points
inside a hexagon as follows. If C is any polygon of at most six sides, H
is an o-symmetric regular hexagon with |H| = |C|/n, and f is a monotone
increasing function of ‖x‖ then for any Ξ ⊂ C of cardinality at most n, we
have

(2) Ω(f, C, Ξ) = n ·
∫

H

f(x) dx.

Recently G. Fejes Tóth [10] has extended the Moment Theorem to the case
when C is any convex disc. The Moment Theorem and its analogues have
numerous applications in the theory of packing and covering, polytopal ap-
proximation, numerical integration, information theory, etc., (see L. Fejes
Tóth [13], A. Florian [15] and P. M. Gruber [19], [20] and [21]). Knowing the
profound importance, it is not surprising that numerous additional proofs
are available (see G. Fejes Tóth [8], A. Florian [14] and P. M. Gruber [17]).

If f is a strictly monotone increasing function of‖x‖, then G. Fejes Tóth
[9] and P. M. Gruber [18] proved that the typical Dirichlet�Voronoi cell is
asymptotically a regular hexagon in any optimal con�guration of at mostn
points for the Moment Theorem (2).

Recently the need in polytopal approximation arose for another version
of the Moment Theorem (2) where f is a positive de�nite quadratic form
(see K. J. Böröczky and B. Csikós [6]). Letq be a positive de�nite quadratic
form in two variables. First we search for the shape of the �optimal Dirichlet�
Voronoi cell� when q is used in place of f in (1). This hexagon will play the
role of regular hexagons in an analogue of (2). We de�neX to be the family
of all o-symmetric hexagons and rectangles inscribed intoB2. In addition let

I(q) = min
H∈X

∫
H q(x) dx

|H|2 .

We note that even if X is not compact, the minimum does exist. Accord-
ing to the Moment Theorem (2) with n = 1, if the eigenvalues of q coincide
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then I(q) = 5
18
√

3

√
det q, and the optimal hexagons are the regular hexagons

inscribed into B2. One of such regular hexagons we denote by Hq in this
case.

Theorem 1.1. If κ = τ > 0 are the eigenvalues of the quadratic form q,
then

I(q) =

√
τ [4κ + (4κ2 − 6τκ + 3τ2)1/2]

18[2κ + (4κ2 − 6τκ + 3τ2)1/2]
1/2

.

In addition, if κ > τ , then the minimum is attained at a uniqueHq ∈ X .

Remark. For κ > τ , we assume that q(s, t) = τs2 + κt2. Then Hq is
symmetric with respect to the coordinate axes, (1, 0) is one of its vertices,
and two other vertices are (cosϕ,± sinϕ), where ϕ ∈ (0, π/2) is de�ned by
the equation

tan (ϕ/2) =

√
2κ−√4κ2 − 6κτ + 3τ2

6κ− 3τ
.

Let q be a positive de�nitive quadratic from. According to Theorem 2.1
in K. J. Böröczky and B. Csikós [6], there existsdivq > 0 such that if C ⊂ R2

is a Jordan measurable set with non-empty interior, andn tends to in�nity,
then

min
Ξ⊂R2, #Ξ5n

Ω(q, C,Ξ) = divq ·|C|2 · n−1 + o
(
n−1

)
,

where # stands for the cardinality of a �nite set. We note that it is not
clear whether the minimum on the left hand side is attained by a setΞ of
cardinality n. The reason is that if the eigenvalues of q are di�erent then
there exist C, Ξ and y such that

Ω
(
q, C,Ξ ∪ {y}) > Ω(q, C,Ξ).

For the edge to edge tiling of the plane by translates ofHq, each tile is
the Dirichlet�Voronoi cell of its centre. Using suitable dilated copies of this
tiling, we deduce that

(3) divq 5 I(q).

Our main result is that if τ < κ 5 2.4τ hold for the eigenvalues of the
positive de�nite form q, then the typical Dirichlet�Voronoi cells are close
to be homothetic to Hq for asymptotically optimal arrangements. Let us
de�ne the corresponding notions. IfΞn ⊂ R2 is a family of at most n points
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for n = 1, then we say that a sequence {Ξn} is asymptotically optimal with
respect to q and C if

Ω(q, C,Ξn) = divq ·|C|2 · n−1 + o
(
n−1

)
.

In particular limn→∞#Ξn/n = 1.
We say that the planar convex compact sets K and M are ν-close for

some ν > 0 if

(1 + ν)−1(K − x) ⊂ M − y ⊂ (1 + ν)(K − x)

hold where x and y are the circumcentres of K and M , respectively.
Theorem 1.2. Let q be a positive de�nite quadratic form with eigen-

values τ < κ 5 2.4τ , and let C ⊂ R2 be Jordan measurable. Then for any
asymptotically optimal sequence {Ξn} of con�gurations of at most n points
in R2 there exists a sequence {νn} of positive numbers tending to zero such
that n− o(n) Dirichlet�Voronoi cells with respect toΞn and C are hexagons
that are νn-close to the hexagon homothetic to Hq with area |C|/n.

Our method does not allow to eliminate the conditionκ 5 2.4τ in The-
orem 1.2, but we believe that the statement holds for any positive de�nite
quadratic form q. Now Theorem 1.2 readily yields

Corollary 1.3. For any positive de�nite quadratic form q with eigen-
values τ 5 κ 5 2.4τ , we have

divq = I(q).

Naturally Corollary 1.3 is a consequence of the Moment Theorem (2)
if the eigenvalues of q coincide. The elegance of the Moment Theorem is
partially due to the fact that it contains no error term ifC is a convex disc.
If the eigenvalues of q are di�erent, then we can achieve it only for very
special C's.

Corollary 1.4. Let q be a positive de�nite quadratic form with eigen-
values τ < κ 5 2.4τ , and let C be a rectangle whose sides are parallel to the
principal axes of q. If Ξ ⊂ C has at most n points, and H is the dilate of
Hq with area |C|/n, then

Ω(q, C,Ξ) = n ·
∫

H

q(x) dx.

Let us present the simple argument how Corollary 1.3 leads to Corol-
lary 1.4. We may assume that Ξ = {y1, . . . , yn} ⊂ intC, and o is a vertex
of C. Let Γ be the group of congruencies generated by the four re�ections
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through the lines containing the sides of C, hence the images gC for g ∈ Γ
form an edge to edge tiling ofR2. The common symmetries ofC and q yield
that

Ω(q, gC, gΞ) = Ω(q, C,Ξ) for any g ∈ Γ.

We write Πi to denote the Dirichlet�Voronoi cell of yi with respect to Ξ
and C. For any integer k = 2, let Ξk be the union of all gΞ, g ∈ Γ, that lie in
kC, hence #Ξk = k2n. It is not hard to see that for any yi and g ∈ Γ with
gΞ ⊂ kC, the Dirichlet�Voronoi cell of gyi with respect to Ξk and kC is gΠi,
therefore Ω(q, kC,Ξk) = k2Ω(q, C,Ξ). Since Corollary 1.3 yields

I(q) · |C|2 5 lim inf
k→∞

k2n · Ω
(

q, C,
1
k

Ξk

)
= nΩ(q, C,Ξ),

we conclude Corollary 1.4.
The paper K. J. Böröczky and B. Csikós [6] considers best approxima-

tion with respect to the surface area of a smooth convex body inRd by
circumscribed polytopes of n facets, and proves an asymptotic formula for
the surface area di�erence asn tends to in�nity. To state this formula inRd,
[6] assigns a new quadratic form q∗ in d− 1 variables to any positive de�nite
quadratic form q in d− 1 variables. If d = 3 and κ = τ > 0 are the eigen-
values of q, then q∗ is the quadratic form with eigenvalues 2κ+τ

κ+τ = κ+2τ
κ+τ . In

particular the eigenvalues of q∗ lie in [1, 2], and hence Corollary 1.3 yields
the following.

Corollary 1.5. If κ = τ > 0 are the eigenvalues of the quadratic form
q in two variables, then

divq∗ =
√

2τ + κ

18(τ + κ)
· 4τ + 8κ + (4τ2 − 2τκ + 7κ2)1/2

[2τ + 4κ + (4τ2 − 2τκ + 7κ2)1/2]
1/2

.

2. Proof of Theorem 1.1

For the proof, we used the computer algebra software MuPAD to handle
large trigonometric polynomials and rational functions, to simplify and fac-
tor them, and to compute their integrals and derivatives. We shall always
explain the idea which led us to a formula, but the details of the computation
will be omitted when a formula was obtained by the computer.

We may assume that τ = 1 and q(s, t) = s2 + κt2. We write Pt to denote
the point

(
cos (t), sin (t)

)
. For a < b < a + π, the triangle ∆ab = [o, Pa, Pb]
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can be parameterized by the map

(u, v) 7→ u

(
cos

a + b

2
, sin

a + b

2

)
+ v

(
− sin

a + b

2
, cos

a + b

2

)
,

where (u, v) is running over the domain 0 5 u 5 cos ( b−a
2 ), |v| 5 u tan ( b−a

2 ).
Thus, the integral of the quadratic form q over the triangle [o, Pa, Pb] can be
written as follows

∫

∆ab

q =

cos b−a
2∫

0

tan b−a
2∫

− tan b−a
2

(
u cos

a + b

2
− v sin

a + b

2

)2

+ κ

(
u sin

a + b

2
+ v cos

a + b

2

)2

dv du.

This integral can be computed explicitly and after some simpli�cation it
turns out to be

∫

∆ab

q =
1
12

sin (b− a)
(
cos2 a + cos2 b + cos a cos b(4)

+ κ(sin2 a + sin2 b + sin a sin b)
)
.

Observe, that equation (4) is valid also in the casea = b, when the triangle
degenerates to a segment.

Let D be the triangle
{

(s1, s2) | 0 5 s1, 0 5 s2, s1 + s2 5 π
}
. The set of

the vertices ofD is V =
{

(0,0), (0, π), (π,0)
}
. For a ∈ R and (s1, s2) ∈ D, let

H(a, s1, s2) denote the convex hull of the verticesPa−s2 , Pa, Pa+s1 , Pa+π−s2 ,
Pa+π, Pa+π+s1 . The map R× (D \ V ) → X , (a, s1, s2) 7→ H(a, s1, s2) is a
(not injective) parametrization of the setX , so every function on X can be
written as a function of the parameters a and (s1, s2) running over R and
D \ V respectively. The shape of H(a, s1, s2) is uniquely determined by the
parameters s1 and s2, as for any a, ã ∈ R, H(ã, s1, s2) is a rotated image of
H(a, s1, s2) about the origin. In particular, the areaA(s1, s2) of H(a, s1, s2)
depends only on s1 and s2:

A(s1, s2) = sin (s1) + sin (s2) + sin (s1 + s2).
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According to (4), the integral of the quadratic form q over H(a, s1, s2) is
equal to

∫

H(a,s1,s2)

q =
1
6 [

sin (s1)
(
cos2 a + cos2(a + s1) + cos a cos(a + s1)

)

+ sin (s2)
(
cos2 a + cos2(a− s2) + cos a cos(a− s2)

)

+ sin (s1 + s2)
(
cos2(a + s1) + cos2(a− s2)

− cos (a + s1) cos (a− s2)
)
]

+
κ

6 [ sin (s1)
(

sin2 a + sin2(a + s1) + sin a sin (a + s1)
)

+ sin (s2)
(

sin2 a + sin2(a− s2) + sin a sin (a− s2)
)

+ sin (s1 + s2)
(

sin2(a + s1) + sin2(a− s2)

− sin (a + s1) sin (a− s2)
)
].

This equation can be transformed into the form

(5)
∫

H(a,s1,s2)

q = P (s1, s2) + cos (2a)Q(s1, s2) + sin (2a)R(s1, s2),

where

P (s1, s2) =
1 + κ

24
(
4 sin (s1) + 4 sin (s2) + 4 sin (s1 + s2) + sin (2s1)

+ sin (2s2)− sin (2s1 + 2s2)
)

> 0,

Q(s1, s2) =
1− κ

24
(

sin (s1) + sin (s2) + sin (3s1) + sin (3s2)

+ sin (3s1 + s2) + sin (s1 + 3s2)
)
,

R(s1, s2) =
1− κ

24
( − cos (s1) + cos (s2) + cos (3s1)− cos (3s2)

+ cos (3s1 + s2)− cos (s1 + 3s2)
)
.

Below we frequently drop the reference to the variables to simplify the for-
mulas.
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Our goal is to determine the minimum of

F (a, s1, s2) =

∫
H(a,s1,s2)

q

A(s1, s2)
2

for (a, s1, s2) ∈ R× (D \ V ). By the Cauchy�Schwarz inequality applied
in (5), if we �x the shape of the hexagon, i.e., we keep s1 and s2 �xed,
then the value of F (a, s1, s2) as a function of a oscillates between (P ±√

Q2 + R2 )/A2. If R(s1, s2) = Q(s1, s2) = 0, then F is constant in a, oth-
erwise the minimum Gs := (P −

√
Q2 + R2 )/A2, s = (s1, s2), is attained

when

(6) cos (2a) =
−Q√

Q2 + R2
and sin (2a) =

−R√
Q2 + R2

.

This means that to �nd the in�mum or minimum ofF (a, s1, s2), we have to
determine the in�mum or minimum of the functionGs : (D \ V ) → R.

The central angles corresponding to the consecutive sides of the possibly
degenerated hexagon H(a, s1, s2) are s1, s2 and s3 = π − s1 − s2. The per-
mutation group S3 of these three angles acts on the triangleD as the group
of all a�ne symmetries ofD. It is clear from the geometrical meaning of the
function Gs that it is invariant under this action.

Let us introduce two new parameters t1 = tan (s1/2) and t2 = tan (s2/2).
If (s1, s2) is running over D, then (t1, t2) is changing in the set

D′ =
{

(t1, t2) | 0 5 t1, 0 5 t2, t1t2 5 1
} ∪ {

(∞, 0), (0,∞)
}

.

Denote by G : D′ \ {(0, 0)} → R the function which expressesGs in terms of
the new parameters. G is related to Gs by the identity

G
(
tan (s1/2, ), tan (s2/2)

)
= Gs, s = (s1, s2).

The advantage of this reparametrization is that any trigonometric polyno-
mial of the variables s1 and s2 can be written as a rational function of t1

and t2 due to the identities sin (x) = 2 tan (x/2)
1+tan2(x/2)

and cos (x) = 1−tan2(x/2)
1+tan2(x/2)

. In
particular, we have

P =
(2/3)(1 + κ)(t1 + t2)

(
2t1t2 + t21 + t22 − t21t

2
2 + 1

)

(t21 + 1)2(t22 + 1)2
,
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Q = (2/3)(1− κ)(t1 + t2)

×
(
2t1t2 − 2t21 − 2t22 − 10t21t

2
2 + t41 + t42 + 2t31t2 + 2t1t

3
2 + 2t31t

3
2 + 3t41t

4
2 + 1

)

(t21 + 1)3(t22 + 1)3
,

R =
(4/3)(1− κ)

(− 2t1t2 − t21 − t22 − 3t21t
2
2 + 2t31t

3
2 + 1

)
(t2 − t1)(t2 + t1)

(t21 + 1)3(t22 + 1)3
,

A =
4(t1 + t2)

(t21 + 1)(t22 + 1)
.

Substituting these expressions into the formula de�ningG, we obtain

(7) G =
1 + κ

24
· S +

1− κ

24

√
T ,

where

S =

(
2t1t2 + t21 + t22 − t21t

2
2 + 1

)

t1 + t2
,(8)

T =
1

(t1 + t2)
2 [− 4t1t2 − 2t21 − 2t22 + t41 + t42 + 4t1t

3
2 + 4t31t2

+ 12t21t
2
2 − 2t21t

4
2 − 20t31t

3
2 − 2t41t

2
2 + 9t41t

4
2 + 1].

The following lemma describes those (possibly degenerated) hexagons for
which

∫
H(a,s1,s2) q does not depend on a.

Lemma 2.1. For a point (s1, s2) ∈ D, Q(s1, s2) = R(s1, s2) = 0 if and
only if one of the following cases are ful�lled

1. κ = 1;
2. H(a, s1, s2) is a segment, i.e., s1 = s2 = 0 or {s1, s2} = {0, π};
3. H(a, s1, s2) is a square, i.e., s1 = s2 = π/2 or {s1, s2} = {0, π/2};
4. H(a, s1, s2) is a regular hexagon, i.e., s1 = s2 = π/3.

Proof. We shall solve the system of equations P = Q = 0 for the un-
known parameters t1 and t2. Since (1− κ)(t1 + t2) is a common factor of
P and Q, the system is solved by any t1, t2 when [κ = 1] and it is also
solved by any (t1, t2) ∈ D′ satisfying t1 + t2 = 0. The straight line t1 + t2 = 0
cuts the domain D′ at the origin so the second case gives only one solution,
[s1 = s2 = t1 = t2 = 0].
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Suppose now that κ 6= 1 and t1 + t2 6= 0. Then we are to �nd the inter-
section points of the algebraic curves

0 = 2t1t2 − 2t21 − 2t22 − 10t21t
2
2 + t41 + t42 + 2t31t2 + 2t1t

3
2(9)

+ 2t31t
3
2 + 3t41t

4
2 + 1,

0 =
(− 2t1t2 − t21 − t22 − 3t21t

2
2 + 2t31t

3
2 + 1

)
(t2 − t1).

If t1 = t2, then the second equation is ful�lled, and the �rst equation can be
factored as

0 = (t1 − 1)(t1 + 1)
(
3t21 − 1

)(
t21 + 1

)
.

Thus, the geometrically relevant solutions obtained in this case are[t1 = t2 =
1, s1 = s2 = π/2] and

[
t1 = t2 = 1/

√
3, s1 = s2 = π/3

]
.

If t1 6= t2, then the second equation of (9) can be divided by(t2− t1). The
degree of the remaining equations can be reduced if we rewrite the equations
in terms of the elementary symmetric polynomialsσ1 = t1 + t2 and σ2 = t1t2.
The obtained equations are the following:

0 = 6σ2 − 2σ2
1 − 12σ2

2 + σ4
1 + 2σ3

2 + 3σ4
2 − σ2

1σ2 + 1,(10)

0 = −σ2
1 − 3σ2

2 + 2σ3
2 + 1.

Expressing σ2
1 from the second equation and substituting the result into the

�rst equation we obtain a polynomial equation forσ2 which has the following
factorization:

0 = σ2(σ2 + 1)(σ2 − 1)4.

Solutions for which [σ2 = 0, σ1 = ±1] correspond to cases when H(a, s1, s2)
is a square. The cases [σ2 = t1t2 = −1] and [σ2 = 1, σ1 = 0] give no geomet-
rically relevant solution. ¤

Lemma 2.2. We have

I(q) 5 4κ +
√

4κ2 − 6κ + 3

18
√

2κ +
√

4κ2 − 6κ + 3
.

Proof. It is enough to show that the right hand side is in the range
of G. However, if we evaluateG at t1 = t2 =

√
2κ−√4κ2−6κ+3

6κ−3 we get exactly
the right hand side. ¤

Lemma 2.3. The following function is strictly monotone increasing in
κ = 1.

4κ +
√

4κ2 − 6κ + 3

18
√

2κ +
√

4κ2 − 6κ + 3
· 1√

κ
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Proof. We write h to denote the function above, and de�ne B = 2κ

and C = 2κ +
√

4κ2 − 6κ + 3. In particular C > B, and h is proportional to
B+C√

BC
= 1+(C/B)√

C/B
, which is a strictly monotone increasing function ofC/B if

C > B. Since C/B = 1+ 1
2

√
3(1− κ−1)2 + 1 is a strictly increasing function

of κ = 1, we conclude the lemma. ¤

Lemma 2.4.The in�mum I(q) of Gs is a minimum, attained at an inner
point of the triangle D.

Proof. Since D is compact and Gs is continuously de�ned on D \ V ,
to prove that the in�mum is attained somewhere, it is enough to show that
limGs = ∞ as s = (s1, s2) ∈ D \ V tends to one of the vertices ofD. By the
S3 invariance of Gs, it is enough to check this for the vertex (0, 0). However,
equations (7) and (8) imply immediately that Gs = G(t1, t2) is asymptoti-
cally equal to 1/

(
12(t1 + t2)

)
as (t1, t2) ∈ D′ tends to the origin.

To prove that the minimum is attained inside the triangleD, we have to
show that the minimum of the restriction ofGs onto any of the sides of D is
larger than the global minimum ofGs. Referring again to the S3-invariance
of Gs it is enough to consider one of the sides, say the side0 < s1 < π, s2 = 0,
which side is characterized also by t1 > 0 = t2. However if t2 = 0 then

G =
1 + κ

24

(
t1 +

1
t1

)
+

1− κ

24

∣∣∣∣t1 −
1
t1

∣∣∣∣ .

This function is symmetric in t1 and 1/t1, so we may assume without loss of
generality that t1 = 1. In that caseG = (1/12)(t1 +κ/t1), from which we can
see, that the minimum of the restriction ofGs onto the sides of the triangle
D is √κ/6. Lemma 2.3 and letting κ tend to ∞ yield

4κ +
√

4κ2 − 6κ + 3

18
√

2κ +
√

4κ2 − 6κ + 3
<

√
κ

6
,

therefore Lemma 2.2 completes the proof. ¤

The following statement is a direct consequence of L. Fejes Tóth's Mo-
ment Theorem (2), but we include the simple argument for the sake of com-
pleteness.

Lemma 2.5. For κ = 1, I(q) = 5
√

3/54 and the minimum is attained by
regular hexagons.
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Proof. The peculiarity of the case κ = 1 is that in this case the coef-
�cient of

√
T in G is 0, therefore G is smooth. By Lemma 2.4, the point

(t1, t2) ∈ D′ at which G = (1 + κ)S/24 attains its minimum must satisfy

∂S

∂t1
(t1, t2) =

(
2t1t2 + t21 − 1

)
(1 + t2)(1− t2)

12(t1 + t2)
2 = 0,

∂S

∂t2
(t1, t2) =

(
2t1t2 + t22 − 1

)
(1 + t1)(1− t1)

12(t1 + t2)
2 = 0.

It is easy to list all the solutions of this system of equations:
[{t1, t2} = {±1,0}] , [t1 = t2 ∈

{ ±1, ±1/
√

3
}
],

[
t1 = −t2 ∈ {±i,±1}] .

The only solution which belongs to the interior of the domainD′ is t1 = t2 =
1/
√

3, and these parameters correspond to the regular hexagons. ¤
Lemma 2.6. If κ > 1, then the regular hexagon does not minimizeG.
Proof. Computations in the proof of the previous lemma show that the

derivative of S vanishes at t1 = t2 = 1/
√

3. At this point, the derivative ofT
vanishes as well, since T = 0 everywhere and T = 0 at t1 = t2 = 1/

√
3. On

the other hand,

G
(
1/
√

3, 1/
√

3
)

= (1 + κ)
5
√

3
108

and ∂2T

(∂t1)
2

(
1√
3
,

1√
3

)
=

8
3
,

and consequently,

G
(
1/
√

3 + ε, 1/
√

3
)

= (1 + κ)
5
√

3
108

+ O(ε2) +
1− κ

24

√
(4/3)ε2 + O(ε3)

= (1 + κ)
5
√

3
108

+
1− κ

12
√

3
|ε|+ O(ε2).

This means, that if |ε| > 0 is su�ciently small, then G
(
1/
√

3 + ε, 1/
√

3
)
is

smaller than G
(
1/
√

3, 1/
√

3
)
. ¤

Now we are ready to complete the proof of Theorem 1.1. Case κ = 1
is veri�ed in Lemma 2.5. Suppose κ > 1. By Lemma 2.4 we know that G
attains its minimum at an inner point of the domainD′. Those points in D′
at which G is not di�erentiable are characterized by the equationQ = R = 0.
By Lemma 2.1, there is only one such point in the interior ofD′, the point
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t1 = t2 = 1/
√

3, which corresponds to the regular hexagon. According to
Lemma 2.6, the regular hexagon does not minimize the functionG, so we
conclude that G attains its minimum at point(s) at whichG is di�erentiable.

At a point (t1, t2) at which G is minimal, we have

(1 + κ)
24

∂S

∂t1
+

(1− κ)
48
√

T

∂T

∂t1
= 0,

(1 + κ)
24

∂S

∂t2
+

(1− κ)
48
√

T

∂T

∂t2
= 0.

Combining these equations we obtain

(11) ∂S

∂t1

∂T

∂t2
− ∂S

∂t2

∂T

∂t1
= 0.

Substituting the explicit form of S and T into (11) and factoring the left
hand side we obtain.

16

(
2t1t2 + t22 − 1

)(
2t1t2 + t21 − 1

)
(t1 − t2)(t1t2 − 1)t1t2

(t1 + t2)
4 = 0

Using the parameter t3 = tan
(
(π− s1− s2)/2

)
, we can rewrite this equation

in the form
16

t1 + t2
t1t2t3(t1 − t2)(t2 − t3)(t3 − t1) = 0.

Equation t1t2t3 = 0 characterizes the boundary points ofD′, thus by Lemma
2.4, four sides of the extremal hexagon are equal. As the geometric role of
t1, t2 and t3 is symmetric, we may assume without loss of generality that
t1 = t2. The common value of them, which will be denoted by t is in the
open interval (0, 1). The restriction of G onto the diagonal t1 = t2 has the
form

G(t, t) =
(1 + κ)(1 + 4t2 − t4) + (1− κ)|3t2 − 1|(1− t2)

48t

=

{(
(1− 2κ)t4 + 4κt2 + 1

)
/(24t) if t ∈ (

0, 1/
√

3
]
,

(
(κ− 2)t4 + 4t2 + κ

)
/(24t) if t ∈ [

1/
√

3, 1
)
.

The derivative of the functionG1(t) =
(
(1− 2κ)t4 + 4κt2 + 1

)
/(24t) has two

positive real roots, τ1 =
√

2κ−√4κ2−6κ+3
6κ−3 and τ2 =

√
2κ+

√
4κ2−6κ+3
6κ−3 . Since
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the roots of G′
1 are of multiplicity one and G1(t) tends to +∞ as t tends to

0, the functionG1 decreases on the intervals (0, τ1) and (τ2,∞), and increases
on the interval (τ1, τ2). Evaluating the derivative of G1 at 1/

√
3 we obtain

G′
1

(
1/
√

3
)

= (κ− 1)/12 > 0, consequently, τ1 < 1/
√

3 < τ2 and

min
0<t<1/

√
3
G(t, t) = min

0<t<1/
√

3
G1 = G1(τ1) =

4κ +
√

4κ2 − 6κ + 3

18
√

2κ +
√

4κ2 − 6κ + 3
.

The derivative of the function G2(t) =
(
(κ− 2)t4 + 4t2 + κ

)
/(24t) has

exactly two positive real roots τ3 =
√

κ
2+
√

3κ2−6κ+4
and τ4 =

√
κ

2−√3κ2−6κ+4

if κ < 2. As κ tends to 2 from below, τ4 is running out to in�nity and forκ >
2 it becomes pure imaginary. Thus, in the rangeκ = 2, τ3 is the only positive
real root of G′

2. As τ3 and τ4 are simple roots ofG′
2, and limt→0 G2(t) = +∞,

G2 decreases on the interval (0, τ3) and starts increasing at τ3. If κ = 2,
then it remains increasing on the whole interval (τ3,∞), if κ < 2, then it
increases only on the interval [τ3, τ4] and it becomes decreasing again on the
interval [τ4,∞). The values of G′

2 at 1/
√

3 and at 1 have opposite sign as
G′

2

(
1/
√

3
)

= −G′
2(1) = (1− κ)/12 < 0, thus we have 1/

√
3 < τ3 < 1(< τ4),

and therefore

min
1/
√

35t<1
G(t, t) = min

1/
√

35t<1
G2 = G2(τ3) =

√
κ

18
4 +

√
3κ2 − 6κ + 4√

2 +
√

3κ2 − 6κ + 4
.

The �rst part of the theorem will follow if we show thatG1(τ1) < G2(τ3).
Let C = 2κ +

√
4κ2 − 6κ + 3 as in Lemma 2.3, and let

C̃ = 2κ +
√

4κ2 − 6κ3 + 3κ4.

Since (4κ2 − 6κ3 + 3κ4)− (4κ2 − 6κ + 3) = 3(κ + 1)(κ− 1)3 > 0, we have
C̃ > C. We also have

√
C̃C > 2κ, since both C and C̃ are greater than

2κ. These imply

G2(τ3)−G1(τ1) =
2κ + C̃

18
√

C̃
− 2κ + C

18
√

C
=

(
√

C̃C − 2κ)(
√

C̃ −√C )

18
√

C̃C
> 0,

as we wanted to show.
Let us summarize what we know about an extremal hexagon. It has two

consecutive sides of equal length. If the central angles belonging to these
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sides are s1 = s2 = s, then

tan (s/2) = τ1 =

√
2κ−√4κ2 − 6κ + 3

6κ− 3
.

This information determines the shape of the hexagon uniquely. To �nd
which rotation of this hexagon gives the minimum, we refer to equation (6).
Since R(s1, s2) is skew symmetric, R(s, s) = 0. Inequality tan (s/2) = τ1 <

1/
√

3 yields that s < π/3, sin (3s) > 0, sin (s) + sin (4s) > 0 and Q(s, s) < 0.
In conclusion, the common vertex Pa of the equal sides of the extremal
hexagon must satisfy cos (2a) = 1, and sin (2a) = 0, in other words, Pa must
lie on the �rst coordinate axis. This completes the proof of Theorem 1.1.¤

3. Proof of Theorem 1.2

3.1. An equivalent formulation and some properties of the second
moment

We actually prove the following statement equivalent to Theorem 1.2.
Let q be a positive de�nite quadratic form with eigenvalues τ < κ 5 2.4τ ,
and let C ⊂ R2 be Jordan measurable. For any ν > 0, and for any asymp-
totically optimal sequence {Ξn} of con�gurations of at most n points in R2,
the number f(n) of Dirichlet�Voronoi cells with respect to Ξn and C that
are hexagons and ν-close to the hexagon homothetic toHq with area |C|/n
satis�es

(12) f(n) = n− o(n).

To show that (12) yields Theorem 1.2, setn0 = 1. It follows by induction
on k = 1, 2, . . . and (12) that there exists integernk > nk−1 such that if n >
nk and fk(n) is the number of Dirichlet�Voronoi cells with respect to Ξn

and C that are hexagons and 1/k-close to the hexagon homothetic to Hq

with area |C|/n then fk(n) > n− n/k. Therefore we may choose νn = 1/k
in Theorem 1.2 if nk < n 5 nk+1.

Let us prepare for the proof of (12). First we discuss some estimates on
the second moment over triangles. Let R = [o, b, c] be a triangle that has
angle α at o. Then direct computation yields

(13)
∫

R

‖x‖2 dx = |R|2 cotα +
1
6
· ‖c− b‖2|R|.
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For α ∈ (0, π
2 ), we de�ne

γ(α) = cotα +
1
3

tanα.

In particular if the angle of R at b is π
2 then

∫
R ‖x‖2 dx = γ(α)|R|2. The

importance of γ stems from the following estimate.
Lemma 3.1. Let the triangles S = [a, v, w] and S̃ = [ã, v, w] intersect in

the common side [v,w] and have the same area, and letw ∈ [a, ã, v]. Writing
α and α̃ to denote the angle of S and S̃ at a and ã, respectively, we have

(14)
∫

S

‖y − a‖2 dy +
∫

S̃

‖y − ã‖2 dy = 2γ

(
α + α̃

2

)
|S|2.

Proof. We deduce by (13) that (14) is equivalent to

(15) |S|(cotα + cot α̃) +
‖v − w‖2

3
= 2

(
cot

α + α̃

2
+

1
3

tan
α + α̃

2

)
|S|.

To prove (15), we may assume ∠(v, w, ã) 5 ∠(v, w, a), hence ∠(v, w, a) is
obtuse according to w ∈ [a, ã, v]. Let a0 = ã + 2(w− ã), let α0 = ∠(v, a0, w),
and let S0 = [v, a0, w] (see Figure 1). In particular α 5 α0, α0 + α̃ < π and
|S0| = |S|. For the triangle T = (S0 − a0) ∪ (ã− S̃), its angle at o is α0 +

Fig. 1

α̃, and the opposite side σ is of length 2‖v − w‖. Let o′ be the orthogonal
projection of o to the perpendicular bisector of the segmentσ, and let ζ be
the angle of the triangle [o′, σ] at o′, and hence ζ > α0 + α̃. Writing h to
denote the distance of o′ from σ, we have

‖v − w‖2 = |T | · ‖v − w‖/h = 2|S| tan
ζ

2
= 2|S| tan

α0 + α̃

2
.
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In addition even if either α0 or α̃ is obtuse, we still have

cotα0 +cot α̃ = 2cot
α0 + α̃

2
· (tan α0+α̃

2 )
2
[1 + (tan α0−α̃

2 )
2
]

(tan α0+α̃
2 )

2 − (tan α0−α̃
2 )

2 = 2 cot
α0 + α̃

2
,

therefore

|S|(cotα0 + cot α̃) +
‖v − w‖2

3
= 2

(
cot

α0 + α̃

2
+

1
3

tan
α0 + α̃

2

)
|S|.

Di�erentiation with respect to α shows that the function

f(α) = cot α− 2
(

cot
α + α̃

2
+

1
3

tan
α + α̃

2

)

is decreasing on (0, α0]. In turn we conclude (15). ¤

3.2. The graph of skew edges

We may assume that τ = 1 and q(s, t) = s2 + κt2,
• no four points of Ξn lie on a circle,
• no three points of Ξn determine a right angle.

We write D̃n to denote the Dirichlet�Voronoi tiling ofC induced by Ξn, and
hence for any vertex v of D̃n in intC, v is of degree three, and v does not lie
on the line connecting two closest points ofΞn to v. For η = 4

√
I(q)|C|2, we

claim that if n is large and

(16) x +
η
4
√

n
B2 ⊂ C then Ξn ∩

(
x +

2η
4
√

n
B2

)
6= ∅.

Otherwise if z ∈ x + η
4√n

B2 lies in the Dirichlet�Voronoi cell of a ∈ Ξn then
q(z − a) = ‖z − a‖2 = η2√

n
, thus

Ω(q, C, Ξn) = π · η4n−1 = π · I(q)|C|2n−1,

which contradicts the asymptotic optimality ofΞn for large n.
Next we claim that if n is large, and Π is a Dirichlet�Voronoi cell forΞn

and C such that x + 6η
4√n

B2 ⊂ C for some x ∈ Π then

(17) Π ⊂ intC is a convex polygon and diamΠ 5 4ηn−
1
4 .
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Let a ∈ Ξn correspond to Π, and hence ‖x− a‖ 5 2η
4√n

by (16). If there exists
z ∈ Π with ‖z− a‖ > 2η

4√n
then let z′ ∈ [z, a] satisfy 2η

4√n
< ‖z′− a‖ < 3η

4√n
. We

have z′ + η
4√n

B2 ⊂ a + 4η
4√n

B2 ⊂ C, thus (16) applied to z′ contradicts that
z ∈ Π. Therefore Π ⊂ a + 2η

4√n
B2, concluding the proof (17).

For large n, we may choose a �nite set {Wi,n} of squares of side length
n−

1
8 lying in C such that for any Wi,n, its distance from ∂C and from any

other Wj,n is at least 6ηn−
1
4 ,

• ∂Wi,n contains no vertex of D̃n,
• no edge of D̃n contains a vertex of Wi,n,

moreover the union Wn of all Wi,n satis�es

(18) lim
n→∞ |Wn|/|C| = 1.

In particular if Π ∈ D̃n satis�es Π ∩Wi,n 6= ∅ then

(19) Π satis�es (17), and hence Π ∩Wj,n = ∅ for j 6= i.

We de�ne Dn to be the Dirichlet�Voronoi cell complex with respect to
Ξn and Wn, and hence the tiles of Dn are the non-empty intersections of
the tiles of D̃n with Wn. For any Dirichlet�Voronoi cell Π of Dn, we write
a(Π) to denote the corresponding point ofΞn. In particular, vertices of Wn

have degree two as vertices of Dn. If v is a vertex of Dn di�erent from the
vertices of Wn then v is of degree three, and if, in addition, v ∈ intWn and
it is a common vertex of the Dirichlet�Voronoi cells Π and Π̃ of Dn then
v /∈ [

a(Π), a(Π̃)
]
.

Next for any triple (Π, e, v) where Π is a Dirichlet�Voronoi cell of Dn,
e is a side of Π intersecting intWn, and v is an endpoint of e, we de�ne a
prescheme S associated to Dn to be S =

[
a(Π), v, w

]
where w is the closest

point of e to a(Π). We write a(S) = a(Π), w(S) = w and v(S) = v. We note
that possibly a(S) /∈ Wn, and either S is a segment with v(S) = w(S), or S
is a triangle whose angle at w(S) is at least π/2.

We call a prescheme S a scheme associated to Dn if it is a triangle, and
either v(S) ∈ intWn or w(S) ∈ intWn. Let Σn denote the family of schemes
associated to Dn, and hence (18) and (19) yield

(20) lim
n→∞ | ∪ Σn|/|C| = 1.

We observe that for any scheme S associated to Dn, the re�ected image
S̃ of S through the line passing through v(S) and w(S) is a scheme, as well,
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with v(S) = v(S̃) and w(S) = w(S̃) ∈ [
a(S), a(S̃), v(S)

]
. Moreover the con-

ditions on Ξn at the beginning of this section ensure that ifw(S) ∈ intWn

and it is a vertex of Dn then
[
w(S), v(S)

] ∩ [
a(S), a(S̃)

]
= ∅, and the angle

of S at w(S) is obtuse.
We call an edge e of Dn a skew edge of Dn if e = S ∩ S̃ for some schemes

S and S̃ associated toDn such that e∩ [
a(S), a(S̃)

]
= ∅ and w(S) = w(S̃) ∈

intWn (see Figure 2). In this case e =
[
w(S), v(S)

]
, and we call w(S) =

Fig. 2

w(S̃) the initial endpoint of e, and v(S) = v(S̃) the terminal endpoint of e.
We note that possibly v(S) ∈ ∂Wn, and e = Π∩ Π̃ for the Dirichlet�Voronoi
cells Π and Π̃ of Dn with a(Π) = a(S) and a(Π̃) = a(S̃).

We de�ne a related planar graph Gn. Its vertex set consists of the ver-
tices of Dn that lie either in intWn or are endpoints of the skew edges ofDn.
The edges of Gn are the skew edges of Dn. In particular the vertices of Gn

are the points of the form v(S) as S runs through schemes associated toDn.
It follows by applying the Euler theorem in each Wi,n that the number of
vertices of Dn in Wi,n is two more than twice the number of cells ofDn lying
in Wi,n. Since none of the four vertices ofWi,n is a vertex of Gn, (19) yields
that

(21) the number of vertices of Gn is at most 2n.

3.3. The stars of the vertices

Next we de�ne the star St (v) for any vertex v of Gn to be the family
of all schemes S with v(S) = v. Let Gi,n, i = 1, . . . , k(n), be the connected
components of Gn. For each Gi,n, let mi,n be the number of vertices ofGi,n,
and let Ψi,n be the union of all St (v) where v is a vertex of Gi,n.
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We observe that mi,n = 1 if and only if Gi,n is an isolated vertex v of
Gn. In this case, ∪Ψi,n = ∪St (v) is a triangle with circumcentre v ∈ intWn.
Writing r to denote the circumradius of ∪St (v), we de�ne

H(v) =
1
r

⋃

S∈St (v)

{
S − a(S), a(S)− S

}
,

which is a hexagon satisfying H(v) ∈ X (see Figure 3). Therefore if v is an

Fig. 3

isolated vertex of Gn and St (v) = Ψi,n then

(22)
∑

S∈Ψi,n

∫
S q

(
x− a(S)

)
dx

| ∪Ψi,n|2
=

1
2

∫
H(v) q(x) dx

1
4

∣∣H(v)
∣∣2 = 2I(q).

Our main goal is to show that an even better estimate holds forΨi,n if
either mi,n = 2 or mi,n = 1 and H(v) is �far� from Hq. To make this idea
more speci�c, let us introduce some notation and constants. Choose three
non-neighbouring vertices ofHq, and let Tq be their convex hull, hence |Tq| =
1
2 |Hq|. In particular if v is an isolated vertex ofGn and ∪St (v) is homothetic
either to Tq or to −Tq then H(v) = Hq. We note that for µ ∈ (0, 1

2), if a
triangle T is µ/4-close to λTq for some λ > 0, and satis�es

(
1 + (µ/4)

)−1
A(λTq) 5 A(T ) 5

(
1 + (µ/4)

)
A(λTq),

then T is µ-close to Tq. Now there exists some µ ∈ (0, 1
2) depending only on

q and ν with the following property. If Π ⊂ intWn is a Dirichlet�Voronoi
cell of Dn whose vertices are isolated vertices ofGn, and there exists λ > 0
such that for each vertex v of Π, ∪St (v) is µ-close either to λTq or to −λTq,
then Π is a hexagon that is ν-close to λHq. Since Hq is the unique ex-
tremal hexagon in X according to Theorem 1.1, there exists someδ with the
following properties:

1 < 1 + δ <
1.01533
1.01532

,
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and if v is an isolated vertex of Gn, and ∪St (v) is not µ/4-close to any
homothetic copy of either Tq or −Tq, then

(23)
∑

S∈St (v)

∫
S q

(
x− a(S)

)
dx

∣∣ ∪ St (v)
∣∣2 = 2 ·

∫
H(v) q(x) dx
∣∣H(v)

∣∣2 = (1 + δ)2I(q).

The core statement to prove (12) (and in turn Theorem 1.2) is the fol-
lowing estimate. If either mi,n = 2, or mi,n = 1 and ∪Ψi,n is not µ/4-close
to any homothetic copy of either Tq or −Tq then

(24)
∑

S∈Ψi,n

∫

S

q
(
x− a(S)

)
dx = (1 + δ) · 2I(q)

mi,n
· | ∪Ψi,n|2.

If mi,n = 1 then (24) follows by (23).

3.4. The proof of (24) if mi,n = 2

Our plan is to apply a linear map that transforms q into the Euclidean
form, and to show (24) using estimates on the second moment. Unfortu-
nately the estimates in this case hold only if there is a restriction onκ. We
de�ne the linear transformation Φ by Φ(s, t) = (s, t

√
κ) for (s, t) ∈ R2. In

particular q(x) = ‖Φx‖2 and detΦ =
√

κ. We set G∗
i,n = ΦGi,n, Ξ∗n = ΦΞn

and W ∗
n = ΦWn. For any S ∈ Ψi,n, we call ΦS a scheme for G∗

i,n, and de-
�ne a(ΦS) = Φa(S), v(ΦS) = Φv(S) and w(ΦS) = Φw(S). If e is an edge of
Gi,n with initial endpoint w and terminal endpoint v, then we say that Φw
is the initial endpoint and Φv is the terminal endpoint of Φe.

We observe that ΦDn is typically not the the family of Dirichlet�Voronoi
cells with respect to Ξ∗n and W ∗

n . Let us see what properties of the schemes
prevail after applying Φ.

Let S and S̃ be two schemes forG∗
i,n with v(S) = v(S̃) and w(S) = w(S̃).

We call these triangles twins, and observe that they satisfy

(25) |S| = |S̃| and w(S) ∈ [
v(S), a(S), a(S̃)

]
,

even if S and S̃ are typically not congruent. In addition we de�ne

α(S) = α(S̃) =
∠

(
v(S), a(S), w(S)

)
+ ∠

(
v(S), a(S̃), w(S)

)

2
<

π

2
.
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In particular, Lemma 3.1 yields

∫

S

∥∥y − a(S)
)∥∥2

dy +
∫

S̃

∥∥y − a(S̃)
)∥∥2

dy = γ
(
α(S)

) |S|2 + γ
(
α(S̃)

) |S̃|2.
(26)

Let us de�ne the star of a vertex v of G∗
i,n. If v ∈ intW ∗

n then the star
St∗ v at v is simply the set of schemes S for G∗

i,n with v(S) = v. Next let
v ∈ ∂W ∗

n . So far, v is the vertex of exactly two schemes S and S̃ for G∗
i,n,

and these two schemes are twins intersecting in an edge ofG∗
i,n. For technical

purposes, also in this case, we need six schemes atv whose angles at v add up
to 2π, hence we de�ne four �degenerate schemes�. We choose four segments
S1, S2, S3, S4 such that v is an endpoint of each, and each intersectsS ∪ S̃

in v. Let β be the sum of the angles of S and S̃ at v (see Figure 4). For

Fig. 4

i = 1, 2, 3, 4, we de�ne v(Si) = v, a(Si) to be the other endpoint of Si, and
w(Si) to be the midpoint of Si. In addition, we de�ne the angle of Si at
v(Si) to be 2π−β

4 = π
2 − β

4 , at w(Si) to be π
2 , and at a(Si) to be α(Si) = β

4 .
We call S1 and S2 twins as well as S3 and S4. We set integrals over any Si

to be zero, and de�ne St∗(v) = {S1, S2, S3, S4, S, S̃}.
Finally we de�ne Ψ∗

i,n to be the union of all St∗(v) as v runs through the
vertices of G∗

i,n, i = 1, . . . , k(n). Since the substitution y = Φx yields

∑
S∈Ψi,n

∫
S q

(
x− a(S)

)
dx

| ∪Ψi,n|2
=
√

κ ·
∑

S∈Ψ∗i,n

∫
S

∥∥y − a(S)
∥∥2

dy
∣∣ ∪Ψ∗

i,n

∣∣2 ,
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and Lemma 2.3 yields

2 I(q) < 1.01532 · √κ · γ(π
6 )

6
for κ ∈ [1, 2.4],

our goal (24) follows if

(27)
∑

S∈Ψ∗i,n

∫

S

∥∥y − a(S)
)∥∥2

dy >
1.01533γ(π

6 )
6mi,n

· ∣∣ ∪Ψ∗
i,n

∣∣2
.

Applying (26) and the Cauchy�Schwarz inequality leads to
∑

S∈Ψ∗i,n

∫
S

∥∥y − a(S)
)∥∥2

dy
∣∣ ∪Ψ∗

i,n

∣∣2 =
∑

S∈Ψ∗i,n
γ
(
α(S)

) |S|2
∣∣ ∪Ψ∗

i,n

∣∣2

=
( ∑

S∈Ψ∗i,n

γ
(
α(S)

)−1
)−1

.

We write ei,n to denote the number of edges ofG∗
i,n, hence

#Ψ∗
i,n = 6mi,n − 2ei,n.

We observe that the sum of the angles at the vertices ofG∗
i,n of the elements

of Ψ∗
i,n is mi,n2π. The contribution of a twin S and S̃ of schemes of Ψ∗

i,n to
this sum is 2π−α(S)−α(S̃) if S ∩ S̃ is an edge of G∗

i,n, and π−α(S)−α(S̃)
otherwise. Since ei,n twins intersect in an edge of G∗

i,n, we have
∑

S∈Ψ∗i,n

α(S) = mi,nπ.

First assume mi,n = 3, hence ei,n = mi,n − 1 as G∗
i,n is connected. Since

αγ(α) is increasing and γ(α)−1 is concave on (0, π
2 ) (see Propositions 3.4 and

3.5, respectively, in K. J. Böröczky, P. Tick, G. Wintsche [7]), we have

6mi,n

( ∑

S∈Ψ∗i,n

γ
(
α(S)

)−1
)−1

= 6mi,n

6mi,n − 2ei,n
· γ

(
mi,nπ

6mi,n − 2ei,n

)

= 6mi,n

4mi,n + 2
· γ

(
mi,nπ

4mi,n + 2

)
= 9

7
· γ

(
3π

14

)
.
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Numerical evaluation shows 9
7 γ(3π

14 ) > 1.01533 γ(π
6 ), which yields (27) in

this case.
Finally we assume mi,n = 2, hence #Ψ∗

i,n = 10. In this case G∗
i,n has a

unique edge, which is the intersection of sayS1, S2 ∈ Ψ∗
i,n. Now St∗

(
v(S1)

)
has four more elements, which we denote by S3, S4, S5, S6. In addition
St∗

(
w(S1)

)
has four elements denoted by S7, S8, S9, S10. Since the sum of

the angles of S1 and S2 at w(S1) is at least π, there exists some ϕ = 0 such
that

α(S1) + α(S2) + α(S3) + α(S4) + α(S5) + α(S6) = π − ϕ;

α(S7) + α(S8) + α(S9) + α(S10) = π + ϕ.

It follows that

6mi,n

( ∑

S∈Ψ∗i,n

γ
(
α(S)

)−1
)−1

= 12

(
6γ

(
π − ϕ

6

)−1

+ 4γ

(
π + ϕ

4

)−1
)−1

.

As the derivative of γ(α)−1 is decreasing, the function

6γ

(
π − ϕ

6

)−1

+ 4γ

(
π + ϕ

4

)−1

is decreasing in ϕ ∈ [0, π). Therefore

6mi,n

( ∑

S∈Ψ∗i,n

γ
(
α(S)

)−1
)−1

= 12
(

6γ
(π

6

)−1
+ 4γ

(π

4

)−1
)−1

> 1.01533γ
(π

6

)
,

where the last inequality follows by numerical evaluation. We conclude (27),
and in turn (24).

3.5. Proof of (12) based on (22) and (24)

As the sequence {Ξn} is asymptotically optimal, (3) yields

(28) Ω(q, C,Ξn) 5 I(q) · |C|2n−1 + o
(
n−1

)
.
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Let us number the components Gi,n in a way such that i 5 g(n) if and
only if Gi,n is an isolated vertex, and ∪Ψi,n is µ/4-close to some homothetic
copy of either Tq or −Tq. In particular mi,n = 1 if i 5 g(n).

It follows by (22), (24), and the Cauchy�Schwarz inequality that

Ω(q, C, Ξn) =
k(n)∑

i=1

∑

S∈Ψi,n

∫

S

q
(
x− a(S)

)
dx

(29)

= 2I(q)
k(n)∑

i=1

| ∪Ψi,n|2
mi,n

+ δ 2I(q)
∑

i>g(n)

| ∪Ψi,n|2
mi,n

= 2I(q) · (
∑k(n)

i=1 | ∪Ψi,n|)2

∑k(n)
i=1 mi,n

+ δ 2I(q) · (
∑

i>g(n) | ∪Ψi,n|)2

∑
i>g(n) mi,n

.

Since ∑k(n)
i=1 mi,n 5 2n according to (21), the estimates (20) and (28) yield

∑

i>g(n)

| ∪Ψi,n| = o(1).

In turn we deduce by (20) that

(30)
g(n)∑

i=1

| ∪Ψi,n| = |C| − o(1).

Let A = (
∑g(n)

i=1 | ∪Ψi,n|)/g(n), and for each i = 1, . . . , g(n), let ti =

| ∪Ψi,n| −A (here we drop the reference to n). In particular ∑g(n)
i=1 ti = 0.

Since mi,n = 1 if i 5 g(n), we deduce by (28), (29) and (30) that

I(q) · |C|2
n

+ o
(
n−1

)
= 2I(q)

g(n)∑

i=1

(A + ti)
2 = 2I(q)g(n)A2 + 2I(q)

g(n)∑

i=1

t2i

= 2I(q) · |C|2
g(n)

+ o
(
n−1

)
+ 2I(q)

g(n)∑

i=1

t2i .

In particular g(n) = 2n− o(n). We renumber the ti, i = 1, . . . , g(n), in a
way such that |ti| 5 µ

8 · |C|2n if and only if i 5 h(n), hence h(n) = 2n− o(n), as



A NEW VERSION OF L. FEJES TÓTH'S MOMENT THEOREM 255

well. SinceA = |C|
2n +o

(
n−1

)
, it follows that for largen and any i 5 h(n), the

area of the triangle ∪Ψi,n is between
(
1 + (µ/4)

)−1 |C|
2n and

(
1 + (µ/4)

) |C|
2n ,

therefore ∪Ψi,n is µ-close to the homothet of either Tq or −Tq of area |C|
2n .

Since each vertex of Dn but the vertices of Wi,n is of degree three, the
number of Dirichlet�Voronoi cells whose all vertices are someGi,n for i 5
h(n) is n−o(n). All these Dirichlet�Voronoi cells areν-close to the homothet
of Hq with area |C|

n by the de�nition of µ. All but o(n) of them lies in intWn,
hence n− o(n) of these Dirichlet�Voronoi cells are Dirichlet�Voronoi cells for
Ξn with respect to C. We conclude (12), and in turn Theorem 1.2.
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