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EXTREMAL MEAN WIDTH WHEN COVERING THE 1-SKELETON
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Dedicated to Imre Bárány on occasion of his sixtieth birthday

Abstract

For a given convex body K in R
d, let Dn be the compact convex set of maximal mean width whose 1-skeleton

can be covered by n congruent copies of K. Based on the fact that the mean width is proportional to the
average perimeter of two-dimensional projections, it is proved that Dn is close to being a segment for large n.

1. Introduction

Let us introduce the notation used in this paper. A compact convex set with non-empty interior
in R

d is called a convex body, and a two-dimensional compact convex set is called a convex
domain. We write V (·) to denote the volume (d-dimensional Lebesgue measure) in R

d, and Bd

to denote the Euclidean unit ball centred at the origin, and we define κd = V (Bd). Given a
compact convex set C in R

d and i = 1, . . . , d − 1, the mean i-dimensional projection Mi(C) of
C is the average i-dimensional measure of the projections of C into linear i-dimensional linear
subspaces; M1(C) is the mean width. We refer to Schneider [8] for the precise definition and
main properties of the mean projections, and to Gardner [3] and Santaló [7] for the notions
that we need about integral geometry. In addition, the intrinsic i-volume Vi(C) of C is defined
by the Steiner formula (see [8]):

V (C + λ Bd) =
d∑

i=1

κd−iVi(C) · λd−i, for λ � 0.

We note that the mean i-dimensional projection and the intrinsic i-volume are related by

Mi(C) =
(

d

i

)−1
κd−iκi

κd
· Vi(C), for i = 1, . . . , d − 1.

We present our results in terms of the intrinsic i-volume instead of the mean i-dimensional
projection because it is more convenient to work with, since the intrinsic i-volume of an
i-dimensional compact convex set is its i-dimensional volume. In addition, the first intrinsic
volume of a convex domain is half of its perimeter.

Given a convex body K in R
d, our main goal is to understand extremal coverings by

n congruent copies of K with respect to the mean width. Since the mean width measures the
one-dimensional size, we require that the n congruent copies of K cover the 1-skeleton skel1 D
of a compact convex set D, namely, the family of points x ∈ D such that no two-dimensional
circular disc centred at x is a subset of C. The notion of a 1-skeleton was introduced by
Larman and Rogers [5]. It may not be closed, and it is not continuous with respect to the
Hausdorff metric on compact convex sets (while we verify that it satisfies a certain semi-
continuity property). Still, the 1-skeleton of any compact convex set is connected, according
to [5]. Let us observe that in the planar case, the 1-skeleton is simply the boundary. This fact
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points towards the main idea of the paper; that is, we use the fact that the mean width is
proportional to the average perimeter of two-dimensional projections.

We note that coverings of the 1-skeleton of a compact convex set by translates of a convex
body K have already been investigated. More precisely, Fejes Tóth, Gritzmann and Wills [2]
prove that if n translates of K cover a compact convex set D, then

V1(D) � (n − 1) · diamK + V1(K).

Moreover, if d = 2 and K is the unit circular disc, then they prove that

V1(D) � 2 ·
(√

n2 − 1 + arc sin
1
n

)
,

where equality holds if and only if the centres are aligned and the distance between any two
consecutive centres is 2

√
1 − 1/n2.

In this paper, we further develop the results of [2]. Since we want to show that a certain
compact convex set D is close to a segment, let us consider the radius r2(D) of the largest
two-dimensional circular disc contained in D. We claim that, if s is the diameter of D, then

D ⊂ s + 3r2(D) · Bd. (1)

In order to verify (1), let h be the maximal distance of points of D from s. Then D contains a
triangle T such that s is the longest side, and the distance of the opposite vertex from s is h.
Therefore (1) follows by

hs

2
= A(T ) � 3s · r2(T )

2
.

Before stating the theorem, we quote [2] by observing that the segment sn of length n · diamK
can be readily covered by n translates of K, and

V1(sn) = n · diamK. (2)

Theorem 1.1. Given n > cd for some positive absolute constant c, if K is any convex
body in R

d, then there exists a compact convex set Dn such that V1(Dn) is maximal under
the condition that the 1-skeleton of Dn can be covered by n congruent copies of K, and Dn

satisfies the following conditions:

(i) r2(Dn) <
48

√
2π d

n
· diamK;

(ii) V1(Dn) �
(

n +
24π d

n

)
· diamK.

Remarks. (a) Actually, we verify the existence of an optimal Dn for any n.
(b) We also verify that inequalities (i) and (ii) hold if not only the 1-skeleton of Dn, but

also the whole of Dn, is covered by n � 215d congruent copies of K.

We note that the estimates of Theorem 1.1 are essentially optimal (see Example 2.1). During
the proof we will use the fact that the unit ball Bd satisfies V1(Bd) = dκd/κd−1; hence (see
Betke, Gritzmann and Wills [1])

d ·
√

2π

d + 1
< V1(Bd) <

√
2πd. (3)

The case when the whole of Dn is covered by the congruent copies of K in Theorem 1.1 is much
easier to handle; therefore we discuss it first in Section 2, where we also present Example 2.1,
showing the optimality of Theorem 1.1. After that, we consider the problem when the 1-skeleton
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of Dn is covered. We establish in Section 3 that the extremal Dn actually exists. Finally, in
Section 4 we show that r2(Dn) is small, where the most involved part of the argument is to
verify that r2(Dn) stays bounded as n tends to infinity. In Section 5, we briefly summarize the
known extremal properties of coverings with respect to other mean projections.

In the proof of Theorem 1.1, we assume that diam K = 1, and we write K1, . . . , Kn to denote
the n congruent copies of K taking part in the covering. We fix a diameter s̃ of the extremal
compact convex set Dn, and we write h̃ to denote the maximal distance of the points of Dn

from s̃, and T̃ to denote a triangle contained in Dn such that s̃ is a side and the opposite vertex
is at a distance h̃ from s̃. Since V1(Bd) <

√
2πd (see (3)) and Dn is contained in s̃ + h̃ · Bd, we

deduce that
V1(Dn) � diamDn + h̃ ·

√
2πd. (4)

On the other hand, (2) yields
V1(Dn) � n. (5)

In addition, we assume that o ∈ T̃ , and we write L̃ to denote the two-dimensional linear
subspace spanned by T̃ , and C̃ to denote Dn|L̃, where ·|L̃ stands for the projection into L̃.

2. When the whole of Dn is covered

Each Ki|L̃ has diameter at most one, and hence is of perimeter at most π according to the
Cauchy formula. In turn, the isometric inequality yields that the area of Ki|L̃ is at most π/4.
As the projections K1|L̃, . . . , Kn|L̃ cover T̃ , we deduce that diam Dn � πn/2h̃ and h̃ �

√
πn/2.

Substituting these estimates into (4) results in

V1(Dn) � π

2 h̃
· n + π

√
d ·

√
n.

Therefore inequality (5) yields h̃ � 2 for n � 215d.
Next we claim that

diamDn �
(

1 − h̃2

48

)
· n. (6)

We may assume that

diamDn �
(

1 − 22

48

)
· n � 11n

12
;

hence s̃ contains a segment s′ of length at least 11n/24 such that any line in L̃ orthogonally
intersecting s′ intersects Dn in a segment of length at least h̃/2. We write σ and σ′ to denote
the two arcs of ∂C̃ connecting the endpoints of s̃. If Ki intersects σ, then let pi and qi be the
furthest points of σ ∩ Ki, and otherwise let pi = qi be any point of σ. We define the points
p′

i, q
′
i ∈ σ′ analogously, and claim that, if the projection of Ki into aff s̃ is contained in s′, then

d(pi, qi) + d(p′
i, q

′
i) � 2 − h̃2

8
. (7)

We may assume that pi, qi, p′
i and q′

i are vertices of a quadrilateral Q. Since Q has an angle
at least π/2, and its diagonals are at most one, we deduce that either piqi or p′

iq
′
i is of length

at most √
1 − h̃2/4.

In turn, the claim (7) readily follows. Now the number of the Ki whose projection into aff s̃ is
contained in s′ is at least 11n/24 − 2 � n/3; therefore,

diamDn � 1
2

( n∑
i=1

d(pi, qi) + d(p′
i, q

′
i)

)
� 2n

3
+

n

3
·
(

1 − h̃2

16

)
=

(
1 − h̃2

48

)
· n,
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completing the proof of (6). In turn, (4) yields

V1(Dn) �
(

1 − h̃2

48

)
· n + h̃ ·

√
2πd. (8)

Optimizing the upper bound in h̃ leads to Theorem 1.1(ii), and part (i) is a direct consequence
of r2(Dn) � h̃ and V1(Dn) � n.

Let us show that the estimates of Theorem 1.1 are essentially optimal.

Example 2.1. (a) There exists a convex body K in R
d such that the optimal Dn in

Theorem 1.1 is a segment of length n diamK for large n.
We consider an isosceles triangle in R

d with equal angles π/6, and we define K to be the
convex body resulting from rotating the triangle around its longest side in R

d. Assuming that
this longest side is one, the inequality (8) in the proof of Theorem 1.1 can be replaced by

V1(Dn) � n − h̃ · cn + h̃ ·
√

2πd

for suitable positive absolute constant c. Therefore h̃ = 0 for large n.
(b) If K = Bd, then

r2(Dn) >

√
d

50n
and V1(Dn) > 2n +

d

6n
for large n.

It follows by (1) and 18V1(Bd) < 50
√

d that it is sufficient to verify the inequality for V1(Dn).
Let Zn be the right cylinder with base a (d − 1)-ball of radius � = V1(Bd−1)/(2n) and height
2n(1 − 2�2/3). Then Zn can be covered by n unit balls for large n, and

V1(Zn) = 2n ·
(

1 − 2�2

3

)
+ � · V1(Bd−1)

= 2n +
1
6n

· V1(Bd−1)2,

where V1(Bd−1) >
√

d according to (3).

3. Existence of the extremal set when the 1-skeleton is covered

When the 1-skeleton of Dn is covered, the proof of Theorem 1.1 is mostly based on the
following simple property: if L is a two-dimensional linear subspace and D is a compact convex
set, then ∂(D|L) is contained in the projection of skel1 D into L. In particular,

∂(Dn|L) ⊂ K1|L ∪ . . . ∪ Kn|L, (9)

which in turn yields that
diamDn � n. (10)

Now the existence of the extremal Dn readily follows from (10), the Blaschke selection
theorem and the following claim.

Lemma 3.1. Given a sequence of compact convex sets {Ck} that tends to a compact convex
set C, if x ∈ skel1 C and ε > 0, then (x + ε Bd) ∩ skel1 Ck �= ∅ holds for large k.

Remark. The analogous statement holds for the m-skeleton (see Section 5 for the
definition).

Proof of Lemma 3.1. We suppose that Lemma 3.1 does not hold for certain ε > 0, and seek
a contradiction. We choose a hyperplane H in such a way that x is an extremal point of H ∩ C.
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Let xk be the closest point of Ck to x, and let Hk be the hyperplane that contains xk, and is
parallel to H. We deduce that, if k is large, then d(x, xk) < ε/2, and xk is not the midpoint of
any segment in Hk ∩ Ck that has length at least ε/d. For such a k, we write xk in the form

m∑
i=0

λiyi,

where m � d, y0, . . . , ym are extremal points of Hk ∩ Ck, and the coefficients satisfy λ0 �
. . . � λm � 0 and

∑m
i=0 λi = 1. In particular, λ0 � 1/(d + 1). Since y0 ∈ skel1 Ck, we have

d(x, y0) � ε; hence d(xk, y0) > ε/2. In addition, the point

p =
1

1 − λ0

m∑
i=1

λiyi

of Hk ∩ Ck satisfies

p − xk =
−λ0

1 − λ0
(y0 − xk);

therefore the segment y0p contains a segment with midpoint xk length at least ε/d. This is
absurd, which in turn yields Lemma 3.1.

4. The proof of Theorem 1.1

The main part of the argument is to show that h̃ is bounded. Here we heavily use the
non-trivial fact that the 1-skeleton is connected, according to [5].

First, we associate a geometric graph G to the covering via constructing a sequence of four
graphs. Let G1 be the graph on K1, . . . , Kn as vertices such that a pair {Ki, Kj} is an edge if
and only if i �= j, and Ki and Kj intersect. Since the 1-skeleton is connected, G is a connected
graph. Let G2 be a spanning tree of G1, namely, a minimal connected graph on K1, . . . , Kn

such that each edge of G2 is an edge of G1. We number the n − 1 edges of G2, and associate
a point vk ∈ Ki ∩ Kj to the kth edge {Ki, Kj} for k = 1, . . . , d − 1. Since coincidences may
occur, let {v1, . . . , vm}, for m � n − 1, be the family of different points among v1, . . . , vn−1.

Next we define the geometric graph G3 on v1, . . . , vm in such a way that the segment vkvl

represents an edge if and only if k �= l, so vk and vl are contained in the same Ki. Then G3 is
connected, as well, and we let G be a spanning tree of G3. We write σ to denote the union of
the edges of G, which is a connected set consisting of segments. In addition, the total length
|σ| of σ is at most n − 2, and

skel1 Dn ⊂ σ + Bd.

We think about the first intrinsic volume as a mean perimeter of two-dimensional projections.
Let μd,i denote the unique invariant measure on the Grassmanian Gr(d, i) of linear i-spaces in
R

d such that μd,i(Gr(d, i)) = 1. Then

V1(Dn) =
V1(Bd)

π
·
∫
Gr(d,2)

V1(Dn|L) dμd,2(L),

|σ| =
V1(Bd)

π
·
∫
Gr(d,2)

∣∣σ|L
∣∣ dμd,2(L).

We note that if L is any linear two-space, then

∂(Dn|L) ⊂ σ|L + Bd.
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Proposition 4.1. Given a convex domain C in R
2, let γ be a connected union of finitely

many segments such that ∂C ⊂ γ + B2. Then
(i) V1(C) � |γ| + π;
(ii) 33

32 V1(C) � |γ| + π if r2(C) � 19.

Proof. If s is a segment and l is a linear subspace of dimension one, then the length of s|l
is just the integral of the function #(s ∩ (x + l⊥)) over l. Therefore the Cauchy formula yields

V1(C) =
1
2
P (C) =

π

2
·
∫
Gr(2,1)

∫
l⊥

1
2

· #(∂C ∩ (x + l)) dx dμ2,1(l),

|γ| =
π

2
·
∫
Gr(2,1)

∫
l⊥

#(γ ∩ (x + l)) dx dμ2,1(l),

where the integrals readily make sense. (Actually, these formulae are well-known in geometry;
see, say, [7].) For any line l passing through the origin, let a and ã denote the length of C|l
and that of C|l⊥, respectively. Since the projections of γ into l and l⊥ are of length at least
a − 2 and ã − 2, respectively, we deduce that

a + ã �
∫
l⊥

#(γ ∩ (x + l)) dx +
∫
l

#(γ ∩ (x + l⊥)) dx + 4,

which in turn yields statement (i). Therefore, let r2(C) > 19, and we claim that

33
32

(a + ã) �
∫
l⊥

#(γ ∩ (x + l)) dx +
∫
l

#(γ ∩ (x + l⊥)) dx + 4. (11)

We may assume that a � ã, and that l is the first coordinate axis. For any integer k, we define
the interval Ik on l to be the closed interval [2k − 1, 2k + 1] if k is odd, and the open interval
(2k − 1, 2k + 1) if k is even. We say that a vertical line is proper if it does not go through a
self-intersection point of γ, or an endpoint of a segment in γ. In addition, an interval Ik is called
saturated if k is even and any vertical proper line intersecting Ik intersects γ in at least two
points. If the number of saturated intervals is at least a/32, then (11) readily follows; hence
we assume that the number of saturated intervals is at most a/32.

Now there exists an interval s of length at least a/2 contained in C|l such that, if a vertical
line intersects s, then it intersects C in a segment of length at least r2(C). Since there exist at
least a/8 intervals Ik with even k that intersect s, we can find at least a/16 + 1 among them
that are not saturated. If Ik is one of these at least a/16 + 1 intervals, then we associate a
vertical proper line lk to Ik which intersects Ik, and intersects γ only in one point. We call lk
a witness. Let lk1 and lk2 be two consecutive witnesses; hence there exists an Im with odd m
that lies between lk1 and lk2 . Next, we consider the points p, q ∈ ∂C whose first coordinate is
2m, and let p′, q′ ∈ γ be the points whose distances from p and q, respectively, are at most one.
Then the projection of the segment p′q′ into l⊥ is of length at least r2(C) − 2 � 17, and there
is a polygonal path in γ that connects p′ and q′, and does not intersect lk1 and lk2 . Therefore∫

l⊥
#(γ ∩ (x + l)) dx > 17 · a

16
.

In turn, we deduce that (11) holds, and Proposition 4.1 as well.

Since the diameter of the o-symmetric set 1
2 (Dn − Dn) is |s̃|, we deduce that V1(Dn) �

(|s̃|/2) · V1(Bd). We assume that h̃ � 60; hence r2(T̃ ) � 20 according to (1). Let Σ be the
family of linear two-spaces such that s̃|L is of length at least |s̃|/2, and r2(Dn|L) � 19. Then
μd,2(Σ) > cd

1 for some positive absolute constant c1, and, if L ∈ Σ, then

V1(Dn|L) � |s̃|
2

� V1(Dn)
V1(Bd)

.
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We deduce by Proposition 4.1 and by V1(Bd) <
√

2πd (see (3)) that

V1(Dn) +
cd
1

32 π
· V1(Dn) < |σ| + V1(Bd) � n − 2 +

√
2πd.

Thus V1(Dn) � n yields that n < cd
2 for some positive absolute constant c2; or, in other words,

if n � cd
2, then h̃ � 60.

In the final part of the proof, we use the notation set up in Section 2 for C̃. If h̃ � 2, then
among the sets Ki|L̃ there exist at least n/3 that do not intersect either σ or σ′; hence these
Ki|L̃ satisfy d(pi, qi) + d(p′

i, q
′
i) � 1. In particular, diamDn � 5n/6. On the other hand, we

deduce by V1(Dn) � n and by (4) that diam Dn � n − 60
√

2πd, which leads to a contradiction
if n is large. Therefore h̃ < 2. Now the argument used in Section 2 completes the proof of
Theorem 1.1.

5. Extremal properties of other mean projections

The m-skeleton of a compact convex set D is formed by the points of D which are not centres
of any (m + 1)-dimensional ball that is contained in D (see Larman and Rogers [6]). In this
section, we summarize what is known about the supremum of Vm(D) for some 2 � m � d − 1,
where the m-skeleton of D is covered by n congruent copies of a given convex body K. Actually,
we may also write ‘maximum’ in place of ‘supremum’, which fact can be verified analogously
to the case of the 1-skeleton.

The properties below are either due to Gritzmann [4], or based on ideas in [4] (see also [2]).
• If the m-skeleton of the compact convex set D is covered by n congruent copies of the

given convex body K, then
Vm(D) � n · Vm(K). (12)

The inequality (12) is a consequence of the facts that Vm(K) is proportional to the mean
m-dimensional projection, and that the projection of D into an m-dimensional linear subspace
coincides with the projection of the m-skeleton of D.

• For any n, 2 � m � d − 1 and convex body K in R
d, there exists a covering of some

convex compact set D by n congruent copies of K such that

Vm(D) � n · Vm(K)
2em

.

We may assume that diamK = 1, and that the segment ou is a diameter of K. We recall
that K/u is the projection of K into u⊥, and we observe that for any y ∈ ((m − 1)/m)(K/u),
the line y + linu intersects K in a segment of length at least 1/m. Thus the covering is given by
the translates (i/m)u + K, i = 1, . . . , n, and D is the intersection of union of these translates
and the infinite cylinder linu + ((m − 1)/m)(K/u). Finally,

Vm(K) < 2 Vm−1(K/u) and Vm(D) >
n

m

(
m − 1

m

)m−1

Vm−1(K/u)

yield Vm(D) � n · Vm(K)/2em.

• Given a convex body K and 2 � m � d − 1, let Dn be the convex compact set of maximal
intrinsic m-volume that can be covered by n congruent copies of K. Then rm+1(Dn) stays
bounded as n tends to infinity.

The main observation is that Dn has an m-dimensional section with content at least
cVm(Dn), where c > 0 depends only on m and d. It follows that

Vm+1(Dn) � c

m + 1
Vm(Dn) rm+1(Dn),

which in turn yields the boundedness of rm+1(Dn).
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If Dn is a convex compact set of maximal intrinsic m-volume whose m-skeleton can be
covered by n congruent copies of K, then we do not know whether for any K, rm+1(Dn) stays
bounded as n tends to infinity.

• If 2 � m � d − 1, then the asymptotic structure of the optimal covering by n congruent
copies of K for large n seems to depend on K.

We discuss now only the case d = 3 and m = 2. If K is a right cylinder of height two over
the unit disc, then most probably the optimal compact convex sets are right cylinders of height
2n over a unit disc for large n. However, if K is a pyramid over a regular hexagon and the
height of K is small, then most probably the optimal compact convex sets for large n are
two-dimensional with large two-dimensional inradius, and the optimal arrangement is based
on the tiling of the plane by regular hexagons.
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