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a b s t r a c t

Let K be a convex body in Rd and let Xn = (x1, . . . , xn) be a random sample of n indepen-
dent points in K chosen according to the uniform distribution. The convex hull Kn of Xn is
a random polytope in K , and we consider its mean widthW (Kn). In this article, we assume
that K has a rolling ball of radius % > 0. First, we extend the asymptotic formula for the
expectation ofW (K)−W (Kn)which was earlier known only in the case when ∂K has pos-
itive Gaussian curvature. In addition, we determine the order of magnitude of the variance
ofW (Kn), and prove the strong law of large numbers forW (Kn). We note that the strong
law of large numbers for any quermassintegral of K was only known earlier for the case
when ∂K has positive Gaussian curvature.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction and results

The convex hull of n independent, uniformly distributed randompoints in a given convex body K inRd is a type of random
polytope that has been studied extensively (basic references can be found in the surveys [1] and [2], see also [3]). As in the
seminal papers of Rényi and Sulanke [4,5] (restricted to the planar case), which initiated this line of research, most of the
investigations deal with asymptotic results, for n tending to infinity. We note that circumscribed polytopes have also been
investigated, among others, by Rényi and Sulanke [6], Kaltenbach [7], and Böröczky and Reitzner [8].
We are interested in asymptotic results on the approximation orders of general convex bodies by random polytopes. We

write g(n) ∼ h(n) if limn→∞
g(n)
h(n) = 1. Let K be a convex body in Rd with V (K) = 1, and let Kn denote the convex hull of n

independent, uniformly (according to the Lebesgue measure) distributed random points in K . ByW (·) and V (·)we denote,
respectively, mean width and volume. Upper and lower bounds for the order of magnitude of the expectation of the mean
width difference were determined by Schneider [9]. According to Schneider’s theorem there exist constants γ1, γ2 > 0
depending on K such that

γ1n−2/(d+1) < W (K)− EW (Kn) < γ2n−1/d. (1)

The upper bound in (1) is of optimal order for polytopes. This can be verified, for example, with the help of (5). Let Ck
+
denote

the set of all convex bodies with boundary of differentiability class Ck and with Gaussian curvature κ(x) > 0 for all x ∈ ∂K .
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For the case when ∂K is C3
+
, and hence κ(x) > 0 for all x ∈ ∂K , Schneider, Wieacker [10] proved that

W (K)− EW (Kn) ∼
2Γ ( 2

d+1 )

d(d+ 1)
d−1
d+1 κdκ

2
d+1
d−1

∫
∂K
κ(x)

d+2
d+1 dx ·

1

n
2
d+1
, (2)

where κd is the volumeof the Euclidean d-dimensional unit ball. Reitzner [11] extended the asymptotic formula (2) to convex
bodies with C2

+
boundary. In the case when the boundary of K is Ck

+
for k ≥ 4, an asymptotic expansion of the expectation

was obtained by Gruber [12] and Reitzner [11]. For surveys of further related results, consult the paper Bárány [13], or the
monograph Schneider, Weil [14]. In this paper, we further extend the class of convex bodies for which (2) holds. We say
that a convex body K has a rolling ball if there exists a % > 0 such that any x ∈ ∂K lies in some ball of radius % contained in
K . According to Hug [15], the existence of a rolling ball is equivalent to saying that the exterior unit normal at x ∈ ∂K is a
Lipschitz function of x. In particular, if ∂K is C2 then K has a rolling ball, which was already observed byW. Blaschke. In this
article we shall prove the following theorem.

Theorem 1.1. The asymptotic formula (2) holds for any convex body K of volume one which has a rolling ball.

Wenote that Theorem 1.1 is close to be optimal. Example 2.1 shows that there exists a convex body K with a C1 boundary
such that in fact ∂K is C∞

+
at all but one point and limn→∞ n

2
d+1 (W (K)− EW (Kn)) = ∞.

We recall the corresponding results about the expectation of volume for comparison. Bárány and Larman [16] proved
that there exist constants γ1, γ2 > 0 depending on K such that

γ1n−1(log n)d−1 < V (K)− EV (Kn) < γ2n−2/(d+1). (3)

Here, as opposed to (1), the lower bound is optimal for polytopes, and the upper bound is optimal for smooth convex bodies.
On the one hand, Bárány and Buchta [17] provided an asymptotic formula for the case when K is a polytope. On the other
hand, generalizing a result of Bárány [18] for convex bodies with C3

+
boundaries, Schütt [19] proved that if κ(x) > 0 for a

set of x ∈ ∂K of positive (d− 1)-measure then

V (K)− EV (Kn) ∼ c ·
∫
∂K
κ(x)

1
d+1 dx · n−2/(d+1),

where the constant c depends only on d. Here the integral above is the so-called affine surface area.
Furthermore, Reitzner [20] proved that the strong law of large numbers holds in the case of random volume

approximation of convex bodies with C2
+
boundary. This result was made possible by the upper bound on the variance of

the volume of optimal order obtained in [20]. A matching lower bound on the variance was proved by Bárány and Reitzner
in [21] for arbitrary convex bodies. In this article, we prove the analogous estimates on the variance of the mean width for
convex bodies with a rolling ball. We note that in the case of random approximation, upper bounds of optimal order on
the variance have only been proved for convex bodies that are either polytopes or have C2

+
boundary (see say Reitzner [22],

Buchta [23], Vu [24] and Bárány and Reitzner [21]).

Theorem 1.2. If K is a d-dimensional convex body of volume one with a rolling ball, then

γ1 n−
d+3
d+1 < VarW (Kn) < γ2 n−

d+3
d+1 ,

where the positive constants γ1, γ2 depend on K .

The upper bound in Theorem 1.2 yields the strong law of large numbers by standard arguments.

Theorem 1.3. If K is a d-dimensional convex body of volume one with a rolling ball then

lim
n→∞

(W (K)−W (Kn))n
2
d+1 =

2Γ ( 2
d+1 )

d(d+ 1)
d−1
d+1 κdκ

2
d+1
d−1

∫
∂K
κ(x)

d+2
d+1 dx

with probability 1.

2. Some general estimates about the mean width of a random polytope

WewriteHd−1 for the (d−1)-dimensional Hausdorff measure. The scalar product is denoted by 〈·, ·〉, the Euclidean unit
ball in Rd centred at the origin is Bd, and ∂Bd is denoted by Sd−1.
For any convex body K inRd, integrationwith respect to the (d−1)-dimensional Hausdorff measure on ∂K is denoted by∫

∂K · · · dx. We say ∂K is twice differentiable in the generalized sense at an x ∈ ∂K if there exists a quadratic form Q onRd−1
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with the following property: If K is positioned in a way such that x = o and Rd−1 is a tangent hyperplane to K from below,
then a neighbourhood of o on ∂K is the graph of a convex function f over a (d− 1)-dimensional ball in Rd−1 satisfying

f (z) =
1
2
Q (z)+ o(‖z‖2) (4)

as z tends to zero. In this case the generalized Gaussian curvature at x is κ(x) = detQ . According to the Alexandrov theorem
(see Schneider [25] or Gruber [26]), the boundary ∂K is twice differentiable in the generalized sense almost everywhere.
For any compact convex set M in Rd, we write hM to denote its support function; namely, hM(u) = maxx∈M〈u, x〉. In

particular, the width ofM in the direction u ∈ Sd−1 iswM(u) = hM(u)+ hM(−u), and the mean width is

W (M) =
1
dκd

∫
Sd−1

wM(u) du =
2
dκd

∫
Sd−1
hM(u) du.

Let K be a convex body in Rd with volume one. We remark that the implied constant in O(·) in the formulas below
depends on K .
We start with examining the expectation of the mean width following ideas set forth in Schneider, Wieacker [10]. For

t ≥ 0 and u ∈ Sd−1, let C(u, t) = {x ∈ K : 〈u, x〉 ≥ hK (u)− t}. For x1, . . . , xn ∈ K , we usually write Xn = (x1, . . . , xn) and
Kn = [x1, . . . , xn], and we define the function

ϕ(t, u, Xn) =
{
1 if 0 ≤ t < hK (u)− hKn(u)
0 otherwise .

In particular, for fixed t and u, ϕ(t, u, Xn) = 1 if and only if none of x1, . . . , xn lie in C(u, t). We deduce, using the Fubini
theorem, that

E(W (K)−W (Kn)) =
2
dκd

∫
Kn

∫
Sd−1
hK (u)− hKn(u) du dXn

=
2
dκd

∫
Kn

∫
Sd−1

∫ wK (u)

0
ϕ(t, u, Xn) dt du dXn

=
2
dκd

∫
Sd−1

∫ wK (u)

0
(1− V (C(u, t)))n dt du.

There exist γ0, n0 > 0 depending on K such that V (C(u, t)) > 3 ln n
n for any n > n0, u ∈ Sd−1 and t > γ0(

ln n
n )

1
d . Therefore, if

n > n0 then

E(W (K)−W (Kn)) =
2
dκd

∫
Sd−1

∫ γ0(
ln n
n )

1
d

0
(1− V (C(u, t)))n dt du+ O(n−3). (5)

Now, we are ready to substantiate the remark wemade earlier that Theorem 1.1 is of optimal order. We shall accomplish
this by way of constructing the following example.

Example 2.1. If K is a convex body inRd such that o ∈ ∂K , ∂K is C∞
+
on ∂K \o, and the graph of f (x) = ‖x‖

3d+1
3d onRd−1∩Bd

is part of ∂K , then E(W (K)−W (Kn)) ≥ γ n
−4d
3d2+1 , where γ > 0 depends on d and 4d

3d2+1
< 2
d+1 .

Proof. We write u0 to denote opposite of the dth basis vector, and γ1, γ2, . . . to denote positive constants depending on d.
As f (x) = ‖x‖1+α for α = 1

3d , simple calculations show that at all x− f (x)u0 for x ∈ Rd−1∩(Bd \o), the exterior unit normal u

at x− f (x)u0 to K satisfies γ1‖x‖α ≤ ‖u−u0‖ ≤ γ2‖x‖α , and each principal curvature is at least γ3‖x‖α−1 ≥ γ4‖u−u0‖
α−1
α .

LetΞ(n) = Sd−1 ∩ (u0+ n
−α
d+α Bd). In particular if n is large, u ∈ Ξ(n) and t ≤ n−

1+α
d+α , then C(u, t) is contained in a cylinder

of height t whose base is of circumradius at most
√
γ5t/n

1−α
d+α . Therefore

V (C(u, t)) ≤ γ6t
d+1
2 n−

1−α
d+α ·

d−1
2 ≤ γ6n−1,

and in turn (5) yields E(W (K)−W (Kn)) ≥ γ7
∫
Ξ(n) n

−
1+α
d+α du ≥ γ8n−

dα+1
d+α . �

Now we get back to making preparations for proving the upper bound on the variance of W (Kn). According to the
Efron–Stein jackknife inequality (see Reitzner [20]), we have that

VarW (Kn) ≤ (n+ 1)E(W (Kn+1)−W (Kn))2. (6)

We write f � g if f ≤ γ g for a constant γ > 0 depending only on K . For t ≥ 0, u ∈ Sd−1 and x1, . . . , xn+1 ∈ K , let
Xn+1 = (x1, . . . , xn+1), Kn+1 = [x1, . . . , xn+1] and Kn = [x1, . . . , xn]. Further, we define the function

ϕ̄(t, u, Xn+1) =
{
1 if hKn(u) ≤ t ≤ hKn+1(u)
0 otherwise .
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We set the volume of the empty set to be zero. It follows from the Efron–Stein jackknife inequality and the Fubini theorem
that

VarW (Kn) � n
∫
Kn+1

(∫
Sd−1
hKn+1(u)− hKn(u) du

)2
dXn+1

= n
∫
Kn+1

∫
Sd−1

∫
Sd−1

(hKn+1(u)− hKn(u))(hKn+1(v)− hKn(v)) dv du dXn+1

= n
∫
Kn+1

∫
Sd−1

∫
Sd−1

∫ wK (v)

0

∫ wK (u)

0
ϕ̄(t, u, Xn+1)ϕ̄(s, v, Xn+1) ds dt dv du dXn+1

= n
∫
Sd−1

∫
Sd−1

∫ wK (v)

0

∫ wK (u)

0
V (C(u, t) ∩ C(v, s))(1− V (C(u, t) ∪ C(v, s)))nds dt dv du.

For any u ∈ Sd−1 and s, t ≥ 0, let

Σ(u, t; s) = {v ∈ Sd−1 : C(u, t) ∩ C(v, s) 6= ∅},

and for v ∈ Σ(u, t; s), let

V+(u, t; v, s) = max{V (C(u, t)), V (C(v, s))}.

Therefore our estimate of the variance yields that if n > n0, then

VarW (Kn)� n
∫
Sd−1

∫ γ0(
ln n
n )

1
d

0

∫ t

0

∫
Σ(u,t;s)

V+(u, t; v, s)(1− V+(u, t; v, s))ndv ds dt du+ O(n−2). (7)

3. Proof of Theorem 1.1

Let K be a convex body inRd with a rolling ball of radius % > 0.Wewrite ux to denote the exterior unit normal at x ∈ ∂K .
In particular, if f is measurable on Sd−1 then by formula (2.5.30) in [25]∫

Sd−1
f (u) du =

∫
∂K
f (ux)κ(x) dx. (8)

Let x ∈ ∂K . The existence of the rolling ball yields that

V (C(ux, t)) ≥
2κd−1%

d−1
2 t

d+1
2

d+ 1
for t ∈ [0, %]. (9)

In addition, if κ(x) exists and positive then we deduce by (4) that

lim
t→0
t−

d+1
2 V (C(ux, t)) =

2
d+1
2 κd−1

(d+ 1)κ(x)
1
2
. (10)

We will need the following asymptotic formula using the gamma function (see Artin [27]). First we note that for α > 0,
the representation of the beta function by the gamma function and the Stirling formula imply

lim
n→∞

nα
∫ 1

0
τ α−1(1− τ)ndτ = lim

n→∞
nα
Γ (α)Γ (n+ 1)
Γ (α + n+ 1)

= Γ (α).

Now if (α+1) ln nn ≤ τ < 1, then (1− τ)n < e−nτ ≤ n−(α+1). Therefore, if f (n) ∈ (0, 1) satisfies f (n) ≥ (α+1) ln n
n for large

n, then∫ f (n)

0
τ α−1(1− τ)ndτ ∼ Γ (α)n−α

as n tends to infinity. For β ≥ 0 and ω > 0, it follows using the substitution τ = ωt
d+1
2 that∫ g(n)

0
tβ(1− ωt

d+1
2 )ndt ∼

2

(d+ 1)ω
2(β+1)
d+1

· Γ

(
2(β + 1)
d+ 1

)
n−

2(β+1)
d+1 , (11)

assuming that g(n) ∈ (0, ω−
2
d+1 ) for all n, and g(n) ≥ ( (α+1) ln n

ω n )
2
d+1 for large n, where α = 2(β+1)

d+1 .
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Proof of Theorem 1.1. For the n0 coming from (5), we define

θn(u) = n
2
d+1

2
dκd

∫ γ0(
ln n
n )

1
d

0
(1− V (C(u, t)))n dt

for n > n0 and u ∈ Sd−1. According to (5), we have

lim
n→∞

n
2
d+1E(W (K)−W (Kn)) = lim

n→∞

∫
∂K
θn(ux)κ(x) dx. (12)

Since for largen, θn(u) < γ for someγ depending only onK by (9) and (11) (withβ = 0) for anyu ∈ Sd−1, andκ(x) ≤ %−(d−1)
for any x ∈ ∂K , we may apply the Lebesgue dominated convergence theorem.
Let x ∈ ∂K such that κ(x) exists and positive. Now for any ε ∈ (0, 1), (10) yields that there exists a tε > 0 such that

(1− ε) ·
2
d+1
2 κd−1

(d+ 1)κ(x)
1
2
· t
d+1
2 ≤ V (C(ux, t)) ≤ (1+ ε) ·

2
d+1
2 κd−1

(d+ 1)κ(x)
1
2
· t
d+1
2

for t ∈ (0, tε). Therefore (11) (with β = 0) implies

lim
n→∞

θn(ux) =
2κ(x)

1
d+1Γ ( 2

d+1 )

(d+ 1)
d−1
d+1 dκdκ

2
d+1
d−1

.

In turn, we conclude Theorem 1.1 by (12). �

4. Proof of the upper bound in Theorem 1.2

To prove Theorem 1.2, we observe that if a ∈ (0, 1) then

(1− a
2 )
n

(1− a)n
>
(
1+

a
2

)n
>
an
2
,

which in turn yields

a(1− a)n <
2
n

(
1−

a
2

)n
. (13)

Since our estimate on the variance depends on (7), we estimate the size ofΣ(u, t; s) for u ∈ Sd−1. The existence of the rolling
ball of radius % at x ∈ C(u, t) ∩ ∂K shows that ‖ux − u‖ ≤

√
2t
%
for t ≤ %. In particular, let 0 < s ≤ t ≤ %. If v ∈ Σ(u, t; s)

then ‖v− u‖ < 4%−
1
2 t
1
2 , and hence the (d− 1)-measure ofΣ(u, t; s) is at most γ t

d−1
2 for some γ > 0 depending on d. We

set γ ∗ = κd−1%
d−1
2

d+1 , and simplify (7) by applying first (13) and (9), and secondly the formula (11) to obtain

VarW (Kn) � n
∫
Sd−1

∫ γ0(
ln n
n )

1
d

0

∫ t

0

t
d−1
2

n

(
1− γ ∗t

d+1
2

)n
ds dt du+ O(n−2)

�

∫ γ0(
ln n
n )

1
d

0
t
d+1
2

(
1− γ ∗t

d+1
2

)n
dt + O(n−2)� n−

d+3
d+1 .

5. Proof of the lower bound in Theorem 1.2

The idea of the proof is similar to the one in Reitzner [22]; namely, VarW (Kn) is at least the sum of the variances
inside ‘‘independent caps’’. First we separate the part of ∂K where reasonably sized caps are contained in touching balls
of fixed radius. Next we verify the technical estimates (15) and (18), which lead to the estimates (20) and (21) ensuring the
independence of the caps in the final argument. In addition, we need Lemma 5.1 to estimate the ‘‘variance inside a cap’’.
For any polytope P and vertex z of P , we write NP(z) to denote the exterior normal cone to z. We recall the Alexandrov

theorem (see Schneider [25] or Gruber [26]) that the boundary ∂K of a convex body K is twice differentiable in the
generalized sense almost everywhere with respect toHd−1. We deduce by (8) that the (d−1)-measure of the points x ∈ ∂K
with κ(x) > 0 is positive. Therefore there exists R > 0 and a Ξ ′ ⊂ ∂K with Hd−1(Ξ ′) > 0 such that each principal
curvature at all x ∈ Ξ ′ is at least 2R . For any x ∈ Ξ

′ there exists a maximal σx ∈ (0,
%

8d2
] such that C(ux, σx) ⊂ x−Rux+R Bd,

and σx, being lower semi-continuous, is a measurable function of x ∈ Ξ ′. Therefore there exists σ ∈ (0,
%

8d2
] such that ifΞ
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denotes the family of x ∈ ∂K such that C(ux, σ ) ⊂ x− Rux + R Bd then

Hd−1(Ξ) > 0. (14)

For u ∈ Sd−1 and t > 0, we define H(u, t) = {z : 〈z, u〉 = hK (u)− t}.
Let x ∈ Ξ , and let t ∈ (0, σ ). The existence of the rolling ball and the definition ofΞ imply

(x− tux +
√
%tBd) ∩ H(ux, t) ⊂ H(ux, t) ∩ K ⊂ x− tux +

√
2RtBd ∩ K . (15)

Letw1, . . . , wd be the vertices of a regular (d−1)-simplex inH(ux, t)whose circumcentre is x−tux, andwhose circumradius
is
√
%t , and hence(
x− tux +

√
%t
d
Bd
)
∩ H(ux, t) ⊂ [w1, . . . , wd] ⊂ K .

In addition, we setw0 = x, and for j = 0, . . . , d,

∆j(x, t) = wj +
1
4d
([w0, . . . , wd] − wj).

In particular, (15) yields

V (∆j(x, t))� t
d+1
2 for j = 0, . . . , d. (16)

If zj ∈ ∆j(x, t), j = 0, . . . , d, and v ∈ u⊥x then
√
%t/(2d) ≤ h[z1,...,zd](v)− 〈z0, v〉 ≤ 2

√
%t

t/2 ≤ 〈z0, ux〉 − h[z1,...,zd](ux) ≤ t,
(17)

and hence on the one hand, the tangent of the angle of ux and any u ∈ N[z0,...,zd](z0) is at most
2d
√
t

√
%
, and on the other hand,

if the tangent of the angle of ux and any u ∈ Sd−1 is at most
√
t

4
√
%
then u ∈ N[z0,...,zd](z0). Therefore defining

Σ1(x, t) = Sd−1 ∩

(
ux +

√
t

8
√
%
Bd
)
,

Σ2(x, t) = Sd−1 ∩

(
ux +

2d
√
t

√
%
Bd
)
,

we have

Σ1(x, t) ⊂ Sd−1 ∩ N[z0,...,zd](z0) ⊂ Σ2(x, t). (18)

For j = 1, 2, we consider the dual cones

Σ∗j (x, t) = {y ∈ Rd : 〈y, v〉 ≤ 0 for all v ∈ Σj(x, t)},

which satisfy

Σ∗2 (x, t) ⊂ {t(y− z0) : t ≥ 0 and y ∈ [z0, z1, . . . , zd]} ⊂ Σ
∗

1 (x, t). (19)

Let γ = 29d2R/%, σ0 = σ/γ and γ̃ = 2
√
Rγ . If x ∈ Ξ and t ∈ (0, σ0) then it follows by (15) that

C(x, γ t) ⊂ x+ γ̃
√
tBd. (20)

Next, if z0 ∈ ∆0(x, t) and y ∈ H(ux, γ t) ∩ K then (15) yields that the tangent of the angle of −ux and y − z0 is at most
2
√
2Rγ t

(γ /2)t =
√
%

4d
√
t
, therefore y− z0 ∈ Σ∗2 (x, t). In particular,

K \ C(x, γ t) ⊂ z0 +Σ∗2 (x, t). (21)

If A is an event in some probability space then we write I(A) to denote the indicator function. In addition for x ∈ Ξ , t ∈
(0, σ0), and zi ∈ ∆i(x, t), i = 0, . . . , d, writing F = [z1, . . . , zd]we define

W F (z0) =
2
dκd

∫
Σ2(x,t)

h[z0,F ](u) du.

Naturally,W F (z0) depends on x and t as well but it will always be clear from the context what x and t are.
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Lemma 5.1. If Z is a random point chosen uniformly from∆0(x, t) for x ∈ Ξ and t ∈ (0, σ0), and zi ∈ ∆i(x, t) for i = 1, . . . , d;
then

VarW [z1,...,zd](Z)� t
d+1.

Proof. We define F = [z1, . . . , zd]. Let w be the centroid of the facet of ∆0(x, t) opposite to x, let w1 = 2
3 x +

1
3 w and

w2 =
1
3 x+

2
3 w. In addition, we define (compare (19))

Ψ1 = (w1 −Σ
∗

2 (x, t)) ∩∆0(x, t),
Ψ2 = (w2 +Σ

∗

2 (x, t)) ∩∆0(x, t).

In particular, there exists some γ0 > 0 depending on K such that

V (Ψj) ≥ γ0V (∆0(x, t)). (22)

Moreover, for any Z1 ∈ Ψ1 and Z2 ∈ Ψ2, if v ∈ Sd−1 then

h[Z1,F ](v)− h[Z2,F ](v) ≥ 0

by [Z2, z1, . . . , zd] ⊂ [Z1, z1, . . . , zd], and if even v ∈ Σ1(x, t) (compare (18)) then

h[Z1,F ](v)− h[Z2,F ](v) = 〈v, Z1〉 − 〈v, Z2〉 ≥ 〈v,w1〉 − 〈v,w2〉 � t.

Therefore if Z1 ∈ Ψ1 and Z2 ∈ Ψ2 then

W F (Z1)−W F (Z2)� t ·Hd−1(Σ1(x, t))� t
d+1
2 .

In turn, we deduce (compare (22))

VarW F (Z) =
1
2

E(W F (Z1)−W F (Z2))2

≥
1
2

E[(W F (Z1)−W F (Z2))2 I(Z1 ∈ Ψ1, Z2 ∈ Ψ2)]

� td+1E[I(Z1 ∈ Ψ1, Z2 ∈ Ψ2)] � td+1. �

It is sufficient to prove the lower bound in Theorem 1.2 for large enough n. We fix

tn = n−
2
d+1 , (23)

and hence V (C(ux, tn)) ≈ 1/n for all x ∈ Ξ . We choose a maximal family of points y1, . . . , ym ∈ Ξ such that for i 6= j, we
have (compare (20))

‖yi − yj‖ ≥ 2γ̃
√
tn.

In particular, (14) yields

m� n
d−1
d+1 . (24)

For j = 1, . . . ,m, let Aj denote the event that each ∆i(yj, tn), i = 0, . . . , d contains exactly one random point out of
x1, . . . , xn, and C(yj, γ tn) contains no other random point (compare (21)). We note that there exist positive α, β depending
only on K such that for i = 0, . . . , d, we have

V (∆i(yj, tn)) ≥ α/n and V (C(yj, γ tn)) ≤ β/n.

Thus for j = 1, . . . ,m, we have

P{Aj} ≥
(
n
d+ 1

)(α
n

)d+1 (
1−

β

n

)n−d−1
� 1. (25)

If Aj holds then we write Zj to denote the random point in ∆0(yj, tn), and Fj to denote the convex hull of the random
points in∆i(yj, tn) for i = 1, . . . , d. Hence for any u ∈ Σ2(yj, tn), (21) yields

hKn(u) = h[Zj,Fj](u) (26)

given Aj. In particular, if 1 ≤ i < j ≤ m and Ai, Aj hold, thenW Fi(Zi) andW Fj(Zj) are independent according to (18).
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Next, we introduce the sigma algebra F that keeps track of everything except the location of Zj ∈ ∆0(yj, tn) for which Aj
occurs. We decompose the variance by conditioning on F :

VarW (Kn) = EVar(W (Kn) | F )+ VarE(W (Kn) | F )
≥ E(VarW (Kn) | F ).

The independence structure mentioned above implies that

Var(W (Kn) | F ) =
∑
I(Aj)=1

VarZjW (Kn)

=

∑
I(Aj)=1

VarZjW Fj(Zj),

where the variance is taken with respect to the random point Zj ∈ ∆0(yj, tn), and we sum over all j = 1, . . . ,m with
I(Aj) = 1. Combining this with Lemma 5.1, (23), (24) and with (25) implies

VarW (Kn) � E

 ∑
I(Aj)=1

td+1n

� n−2E( m∑
j=1

I(Aj)

)

� n−2m� n−
d+3
d+1 .

6. Proof of Theorem 1.3

First, we deduce by Chebyshev’s inequality that

P
(
|W (K)−W (Kn)− E(W (K)−W (Kn))| n

2
d+1 ≥ ε

)
≤ ε−2n

4
d+1 VarW (Kn)

� n−
d−1
d+1 .

Since the sum
∑
∞

k=2 n
−
d−1
d+1

k is finite for nk = k4, the sum of the probabilities

P
(∣∣W (K)−W (Knk)− E(W (K)−W (Knk))

∣∣ n 2
d+1
k ≥ ε

)
for k ≥ 2 is finite as well. Therefore the Borel–Cantelli lemma and Theorem 1.1 yield that

lim
k→∞

(W (K)−W (Knk))n
2
d+1
k =

2Γ ( 2
d+1 )

d(d+ 1)
d−1
d+1 κdκ

2
d+1
d−1

∫
∂K
κ(x)

d+2
d+1 dx (27)

with probability 1. Now,W (K)−W (Kn) is decreasing, and hence

(W (K)−W (Knk−1))n
2
d+1
k−1 ≤ (W (K)−W (Kn))n

2
d+1 ≤ (W (K)−W (Knk))n

2
d+1
k

holds for nk−1 ≤ n ≤ nk. As limk→∞
nk
nk−1
= 1, the subsequence limit (27) yields Theorem 1.3.
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