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1 Introduction

For general references about convex bodies, see P.M. Gruber [13] or R. Schnei-
der [25], and for a survey on related geometric inequalities, see E. Lutwak
[19]. We write 0 to denote the origin of Rn, 〈·, ·〉 to denote the standard scalar
product, | · | to denote the corresponding l2-norm, and V (·) to denote volume
(Lebesgue-measure). Let Bn be the unit Euclidean ball, and let Sn−1 = ∂Bn.
A convex body K in Rn is a compact convex set with non–empty interior. If
z ∈ intK, then the polar of K with respect to z is the convex body

Kz = {x ∈ Rn : 〈x− z, y − z〉 ≤ 1 for any y ∈ K}.

From Hahn-Banach’s theorem in Rn, (Kz)z = K. According to L.A. Santaló
[24] (see also M. Meyer and A. Pajor [20]), there exists a unique z ∈ intK
minimizing the volume product V (K)V (Kz), which is called the Santaló
point of K. In this case z is the centroid of Kz. The Blaschke-Santaló
inequality states that if z is the Santaló point (or centroid) of K, then

V (K)V (Kz) ≤ V (Bn)2, (1)

with equality if and only if K is an ellipsoid. The inequality was proved by
W. Blaschke [6] (available also in [7]) for n ≤ 3, and by L.A. Santaló [24]
for all n. The case of equality was characterized by J. Saint-Raymond [23]
among o-symmetric convex bodies, and by C.M. Petty [22] among all convex
bodies (see also D. Hug [14], E. Lutwak [18], M. Meyer and A. Pajor [20],
and M. Meyer and S. Reisner [21] for simpler proofs).

To state functional versions of the Blaschke-Santaló inequality, let us
first recall that the usual definition of the Legendre transform of a function
ϕ : Rn → R ∪ {+∞} at z ∈ Rn is defined by

Lzϕ(y) = sup
x∈Rn

{〈x− z, y − z〉 − ϕ(x)}, for y ∈ Rn

and that the function Lzϕ : Rn → R ∪ {+∞} is always convex and lower
semicontinuous. If ϕ is convex, lower semicontinuous and ϕ(z) < +∞ then
LzLzϕ = ϕ.

Subsequent work by K.M. Ball [2], S. Artstein-Avidan, B. Klartag, V.D. Mil-
man [1], M. Fradelizi, M. Meyer [12] and J. Lehec [16, 17] lead to the func-
tional version of the Blaschke-Santaló inequality (see [2] and [1] for the re-
lation between the functional version and the original Blaschke-Santaló in-
equality).
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Theorem [2, 1, 12, 16, 17] Let % : R→ R+ be a log-concave non-increasing
function and ϕ : Rn → R be measurable then

inf
z∈Rn

∫
Rn

%(ϕ(x)) dx

∫
Rn

%(Lzϕ(x)) dx ≤
(∫

Rn

%(|x|2/2) dx

)2

.

If % is decreasing there is equality if and only if there exist a, b, c ∈ R, a < 0,
z ∈ Rn and a positive definite matrix T : Rn → Rn, such that

ϕ(x) =
|T (x+ z)|2

2
+ c for x ∈ Rn,

and moreover either c = 0, or %(t) = eat+b for t > −|c|.

Here we prove a stability version of this inequality.

Theorem 1.1 Let % : R → R+ be a log-concave and decreasing function
with

∫
R+
% < +∞. Let ϕ : Rn → R be measurable. Assume that for some

ε ∈ (0, ε0) and for all z ∈ Rn, the following inequality holds:∫
Rn

%(ϕ(x)) dx

∫
Rn

%(Lzϕ(x)) dx > (1− ε)
(∫

Rn

%(|x|2/2) dx

)2

1. If ϕ is convex, then there exist some z ∈ Rn, c ∈ R and a positive
definite matrix T : Rn → Rn, such that∫

R(ε)Bn

∣∣∣∣ |x|22
+ c− ϕ(Tx+ z)

∣∣∣∣ dx < ηε
1

129n2 ,

where limε→0R(ε) = +∞, and ε0, η, R(ε) depend on n and %.

2. If ϕ is only assumed to be measurable then a weaker version holds:
There exists z, c, T as above and Ψ ⊂ R(ε)Bn such that∫

R(ε)Bn\Ψ

∣∣∣∣ |x|22
+ c− ϕ(Tx+ z)

∣∣∣∣ dx < ηε
1

129n2 ,

and V (Ψ ∩ RBn) ≤ η
√
εRn for any R ∈ [R0, R(ε)], where R0 > 0

depends only on %.

Remark 1.2 One cannot expect the L1-distance between ϕ and |T (x+z)|2
2

+ c
to be small on the whole Rn. For instance, if %(t) = e−t, and for small ε > 0,
ϕ(x) = |x|2/2 if |x| ≤ | log ε|, and ϕ(x) = +∞ if |x| > | log ε|, then, of
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course, for any c and T the function x 7→ |T (x+z)|2
2

+ c − ϕ(x) is not in L1,
but∫

Rn

%(ϕ(x)) dx

∫
Rn

%(Lzϕ(x)) dx > (1−O(ε| log ε|n−1))

(∫
Rn

%(|x|2/2) dx

)2

for all z ∈ Rn.
In addition, if ϕ is only assumed to be measurable, then we may choose

it to be infinity on a ball of small enough measure, and set ϕ(x) = |x|2/2 on
the complement.

On the other hand, most probably the exponent 1
129n2 in Theorem 1.1 can

be exchanged into some positive absolute constant.

As a matter of fact, the above functional form of the Blaschke-Santaló
inequality deduces from the following more general inequality, which is the
result of different contributions as explained below

Theorem [2, 1, 12, 16, 17] For any measurable f : Rn → R+ with positive
integral there exists a particular point z ∈ Rn attached to f such that if
measurable functions % : R+ → R+ and g : Rn → R+ with positive integrals
satisfy

f(x)g(y) ≤ %2(〈x− z, y − z〉),

for every x, y ∈ Rn with 〈x− z, y − z〉 > 0, then∫
Rn

f(x) dx

∫
Rn

g(x) dx ≤
(∫

Rn

%(|x|2) dx

)2

.

Equality holds for this z if and only if there exist %̃ : R+ → R+, ξ > 0 and a
positive definite matrix T : Rn → Rn, such that %̃(et) is log-concave, and for
a.e. x ∈ Rn and s ∈ R+, we have

%(s) = %̃(s), f(x) = ξ %̃(|T (x− z)|2) and g(x) = ξ−1%̃(|T−1(x− z)|2).

K.M. Ball [2] initiated the study of such inequalities, established the case
of even functions f and proved that, in this case, z can be chosen to be the
origin. If %(t) = e−t, S. Artstein, B. Klartag, V.D. Milman [1] showed that
one can choose z to be the mean of f for any f . For any measurable % but for
log-concave functions f , M. Fradelizi, M. Meyer [12] constructed the suitable
z in the following way. For any z ∈ Rn, let

Kf,z =

{
x ∈ Rn :

∫ +∞

0

rn−1f(z + rx) dx ≥ 1

}
,
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which is convex according to K.M. Ball [3]. Actually, [3] only claims that
Kf,z is convex when f is even, but K.M. Ball first proves that the function

x 7→ ‖x‖ :=

(∫ +∞

0

f(z + rx)rn−1dr

)−1/n

is convex and homogeneous without assuming evenness of f , which is only
used to state that the function ‖x‖ is symmetric (see also J. Bourgain, B.
Klartag and V.D. Milman [11], or B. Klartag [15]).

M. Fradelizi and M. Meyer [12] proved that there exists a z ∈ Rn, such
that the centre of mass of Kf,z is the origin and that this z works. Finally
J. Lehec gave a direct and different proof of the general theorem in [17]. He
established the existence of a so-called Yao-Yao center for any measurable f
and that this point z works also.

We also give a stability version of this more general form of the Blaschke-
Santaló inequality.

Theorem 1.3 If some log-concave functions % : R+ → R+ and f, g : Rn →
R+ with positive integrals satisfy that % is non-increasing, the centre of mass
of Kf,z is the origin for some z ∈ Rn, and

f(x)g(y) ≤ %2(〈x− z, y − z〉)

for every x, y ∈ Rn with 〈x− z, y − z〉 > 0, if moreover for ε > 0,

(1 + ε)

∫
Rn

f(x) dx

∫
Rn

g(x) dx ≥
(∫

Rn

%(|x|2) dx

)2

,

then there exist ξ > 0 and a positive definite matrix T : Rn → Rn, such that∫
Rn

∣∣%(|x|2)− ξ f(Tx+ z)
∣∣ dx < γε

1
32n2 ·

∫
R+

rn−1%(r2) dr∫
Rn

∣∣%(|x|2)− ξ−1g(T−1x+ z)
∣∣ dx < γε

1
32n2 ·

∫
R+

rn−1%(r2) dr,

where γ depends only on n.

We strongly believe that the power 1
32n2 occurring in Theorem 1.3 can be

chosen to be a positive absolute constant.
In this note, the implied constant in O(·) depends only on the dimension

n.
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2 Stability of the Borell and the Blaschke-

Santaló inequalities

C. Borell [9] pointed out the following version of the Prékopa-Leindler in-
equality:

Theorem 2.1 (Borell) If M,F,G : R+ → R+ are integrable functions with
positive integrals, and M(

√
rs) ≥

√
F (r)G(s) for r, s ∈ R+, then∫

R+

F ·
∫
R+

G ≤
(∫

R+

M

)2

.

Recently the following stability estimate has been obtained in K.M. Ball,
K.J. Böröczky [5]. We note that if M : R+ → R+ is log-concave and non-
increasing, then M(et) is log-concave on R.

Theorem 2.2 (Ball, Böröczky) There exists a positive absolute constant
c with the following property: If M,F,G : R+ → R+ are integrable functions
with positive integrals such that M(et) is log-concave, M(

√
rs) ≥

√
F (r)G(s)

for r, s ∈ R+, and (∫
R+

M

)2

≤ (1 + ε)

∫
R+

F ·
∫
R+

G,

for some ε > 0, then there exist a, b > 0, such that∫
R+

|aF (bt)−M(t)| dt ≤ c · ε
5
16 ·
∫
R+

M(t) dt∫
R+

|a−1G(b−1t)−M(t)| dt ≤ c · ε
5
16 ·
∫
R+

M(t) dt.

For a stability version of the Blaschke-Santaló inequality, we use the
Banach-Mazur distance of two convex bodies M and K, which is defined
by

δBM(K,M) = min{lnλ : K−x ⊂ Φ(M) ⊂ λ(K−x) for Φ ∈ GL(n), x ∈ Rn}.

Improving on K.J. Böröczky [10], the paper [5] also established the following.

Theorem 2.3 (Ball,Böröczky) If K is a convex body in Rn, n ≥ 3, with
centroid z, and

V (K)V (Kz) > (1− ε)V (Bn)2 for some ε ∈ (0, 1
2
),

then for some γ > 0 depending only on n, we have

δBM(K,Bn) < γ ε
1
5n .
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We note that according to K.M. Ball [2], Borell’s inequality Theorem 2.1
can be used to prove the Blaschke-Santaló inequality. In particular, [5] proves
Theorem 2.3 via Theorem 2.2.

3 Proof of Theorem 1.3

Before proving Theorem 1.3, we verify first a simple property of log-concave
functions, then show that the centroid is a reasonable centre for the Banach-
Mazur distance from ellipsoids.

Proposition 3.1 If h, ω : R→ R+ are log-concave, ω is even, and∫
R
|r|n−1|h(r)− ω(r)| dr ≤ ε

∫
R
|r|n−1ω(r) dr

for some ε ∈ (0, (250n)−(n+1)), then |h(0)− ω(0)| ≤ 250nε
1

n+1 · ω(0).

Proof: We may assume that ω(0) = 1 and
∫
R ω(r) dr = 1, and hence ω(r) ≤ 1

for all r. First, we put forward a few useful facts about the function ω.
Following ideas from K.M. Ball and K.J. Böröczky [4], let us prove first

that there exists some r0 ≥ 1
2

such that ω(r) ≥ e−2|r| if |r| ≤ r0, and ω(r) ≤
e−2|r| if |r| ≥ r0. For this, notice that since

∫
R+
ω(r)dr = 1

2
=
∫
R+
e−2rdr

and logω is concave there exists r0 > 0 satisfying the required property (and
r0 is unique unless ω(r) = e−2|r| for all r. In this very specific case, we set
arbitrarily r0 = 1/2).

Now let us prove that r0 ≥ 1/2. We define ω−1(t) = sup{r ≥ 0;ω(r) ≥ t}.
The hypotheses on ω imply that the support of ω−1 is [0, 1] and

∫ 1

0
ω−1(t)dt =

1/2. From Jensen’s inequality one deduces that

ω

(
1

2

)
= ω

(∫ 1

0

ω−1(t)dt

)
≥ e

∫ 1
0 log(t)dt = e−1.

Since ω(0) = 1, it follows from the log-concavity of ω that ω(r) ≥ e−2r, if
|r| ≤ 1/2. This proves the claim.

In particular, the latter exponential lower bound on ω implies that

ω(r) ≥ 1− 2|r| if |r| ≤ 1

2
. (2)

The fact that the graphs of ω and r 7→ e−2|r| cross only once on R+ implies
the following useful bound∫

R
rn−1ω(r) dr ≤ 2

∫
R+

rn−1e−2r dr =
(n− 1)!

2n−1
≤ nn+1. (3)
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Next, we study the function h. Let ai = inε
1

n+1 for i ∈ Z. We claim that
there exist two ind ices i ∈ {1, . . . , 5}, such that

1− 11nε
1

n+1 ≤ h(ai) ≤ 1 + nε
1

n+1 . (4)

Suppose that (4) does not hold. Since h is non-decreasing and then non-
increasing, there exists k ∈ {1, 2, 3, 4} such that h is monotone on [ak, ak+1],
and h(ak) and h(ak+1) are outside and on the same side of the interval [1−
11nε

1
n+1 , 1 + nε

1
n+1 ]. Consequently, for this value of k, either h(r) < 1 −

11nε
1

n+1 for r ∈ [ak, ak+1], or h(r) > 1 +nε
1

n+1 for r ∈ [ak, ak+1]. In any case,
using respectively (2) and ω ≤ 1, it follows that∫ ak+1

ak

rn−1|h(r)− ω(r)| dr >
∫ ak+1

ak

rn−1nε
1

n+1 dr > nn+1ε,

which from (3) contradicts the condition on h, and hence proves (4).
Since e−2t < 1− t and et < 1 + 2t for t ∈ (0, 1

2
), (4) yields that

e−22nε
1

n+1 ≤ 1− 11nε
1

n+1 ≤ h(ai), h(aj) ≤ 1 + nε
1

n+1 ≤ enε
1

n+1
,

thus h(ai) < h(aj)e
23(aj−ai), and h(0) < h(aj)e

23aj by the log-concavity of h.

Using the bounds on h(aj) and aj, we get h(0) < e116nε
1

n+1
< 1 + 250nε

1
n+1 .

On the other hand, the argument leading to (4) yields some integer m ∈ [1, 5]

such that h(a−m) ≥ 1−11nε
1

n+1 . We conclude by the log-concavity of h that

h(0) ≥ min{h(a−m), h(aj)} ≥ 1− 11nε
1

n+1 . 2

Proposition 3.2 If the origin 0 is the centroid of a convex body K in Rn,
and E ⊂ K−w ⊂ (1 +µ)E for an 0-symmetric ellipsoid E and w ∈ K, then

(1− µ
√
n+ 1)E ⊂ K ⊂ (1 + 2µ

√
n+ 1)E,

holds whenever µ ∈ (0, 1/(n+ 1)).

Proof: We may assume that E = Bn and w 6= 0. Let w0 = w/|w|, and let
B+ be the half-ball {x ∈ Bn : 〈x,w0〉 ≥ 0}. If µ < 1

n+1
, then (1 + µ)n+1 <

eµ(n+1) < 1 + 2µ(n+ 1), thus

0 =

∫
K

〈x,w〉 dx = V (K)〈w,w〉+

∫
K−w
〈x,w〉 dx

> V (Bn)〈w,w〉+

∫
B+

〈x,w〉 dx− (1 + µ)n+1

∫
B+

〈x,w〉 dx

> V (Bn)|w|2 − 2(n+ 1)

(∫
B+

〈x,w0〉 dx
)
µ · |w|.
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Therefore

|w| ≤ (n+ 1)µ

∫
Bn |〈x,w0〉| dx

V (Bn)
≤ (n+ 1)µ

(∫
Bn〈x,w0〉2 dx
V (Bn)

) 1
2

= (n+ 1)µ

(∫
Bn |x|2 dx
nV (Bn)

) 1
2

≤ µ
√
n+ 1.

Combining this with our hypothesis w + Bn ⊂ K ⊂ w + (1 + µ)Bn readily
gives the claim. 2

Now let us prove Theorem 1.3. It is sufficient to consider the case ε ∈
(0, ε0) where ε0 > 0 depends on n. Replacing also f(x) by f(x+ z) and g(y)
by g(y + z) we may assume that z = 0. For suitable ν, µ, λ > 0, replacing
%(r) by ν%(λ2r), f(x) by µνf(λx) and g(x) by (ν/µ)g(λx), we may assume
that ∫

R+

rn−1%(r2) dr = 1 and %(0) = f(0) = 1.

Consider the body

Kf =

{
x ∈ Rn :

∫ +∞

0

rn−1f(rx) dr ≥ 1

}
,

which is convex since f is log-concave [3]. Its radial function

‖x‖−1
Kf

= ρKf
(x) := sup

{
t ≥ 0; tx ∈ Kf

}
, x ∈ Sn−1

is equal to
(∫

R+ r
n−1f(rx) dr

)1/n
. Hence, using polar coordinates shows that∫

Rn

f(x) dx = nV (Kf ). (5)

For x ∈ Rn\{0}, let fx, gx : R → R+ be defined by fx(r) = |r|n−1f(rx)
and gx(r) = |r|n−1g(rx). If 〈x, y〉 > 0, then the condition on f, g, % yields
that fx(r) · gy(s) ≤ mxy(

√
rs)2 for mxy(r) = rn−1%(r2〈x, y〉) and r, s ∈ R+.

We deduce by the Borell-Prékopa-Leindler inequality Theorem 2.1 that∫
R+

fx(r) dr ·
∫
R+

gy(r) dr ≤
(∫

R+

rn−1%(r2〈x, y〉) dr
)2

= 〈x, y〉−n,

and hence
Kg ⊂ K◦f . (6)
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The hypothesis of the theorem translated in terms of Kf gives

n2V (Bn)2 =

(∫
Rn

%(|x|2) dx

)2

≤ (1 + ε)

∫
Rn

f(x) dx

∫
Rn

g(x) dx

= (1 + ε)n2V (Kf )V (Kg) ≤ (1 + ε)n2V (Kf )V (K◦f ). (7)

From the stability version Theorem 2.3 of the Blaschke-Santaló inequality, for
some γ > 0, δBM(Kf , B

n) < γ ε
1
5n . Thus replacing f(x) by f(Tx) and g(y)

by g(T−1y) for a suitable positive definite matrix if necessary, and applying
Proposition 3.2, we may assume that

Bn ⊂ Kf ⊂ (1 +O(ε
1
5n ))Bn. (8)

Using (6) we get Kg ⊂ K◦f ⊂ Bn and (7) yields

V (Kg) ≥ (1 + ε)−1V (Bn)2V (Kf )
−1 ≥ (1 +O(ε

1
5n ))−1V (Bn). (9)

For x ∈ Sn−1, ρKf
(x) = (

∫
R+
fx(r) dr)

1
n ≥ 1 and ρKg(x) = (

∫
R+
gx(r) dr)

1
n ≤

1. We define

ϕ(x) :=

∫
R
fx(r) dr − 2 = ρKf

(x)n + ρKf
(−x)n − 2 ≥ 0,

ψ(x) := 2−
∫
R
gx(r) dr = 2− ρKg(x)n − ρKg(−x)n ≥ 0.

In particular (8) and (9) yield∫
Sn−1

ϕ(x) dx = 2n(V (Kf )− V (Bn)) = O(ε
1
5n )∫

Sn−1

ψ(x) dx = 2n(V (Bn)− V (Kg)) = O(ε
1
5n ),

(10)

where the integration is with respect to the Hausdorff measure on the sphere.
To estimate ϕ pointwize from above, we use the inclusion (8). In order to
estimate ψ, we use (10) and the fact that a cap of Bn of height h ≤ 1 is of

volume larger than h
n+1
2 V (Bn−1)/n (which forces the convex subset Kg of

the unit ball, with almost the same volume, to have a radial function close to
1 pointwize). More precisely, we obtain that there exists γ0 > 0 depending
only on n, such that

ϕ(x) ≤ γ0ε
1
5n for any x ∈ Sn−1,

ψ(x) ≤ γ0ε
2

5n(n+1) for any x ∈ Sn−1.
(11)
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If ε0 is chosen small enough (depending on n), then (11) yields that both
ϕ(x) < 1

2
and ψ(x) < 1

2
for any x ∈ Sn−1.

Let x ∈ Sn−1, and hence∫
R+

fx(r) dr ≥ 1 and

∫
R+

gx(r) dr ≥ 1− ψ(x) ≥ (1 + 2ψ(x))−1.

We define m(r) = rn−1%(r2), which satisfies that m(et) is log-concave, and
fx(r) · gx(s) ≤ m(

√
rs)2 for r, s ∈ R+. Since(∫

R+

m(r) dr

)2

= 1 ≤ (1 + 2ψ(x))

∫
R+

fx(r) dr ·
∫
R+

gx(r) dr,

it follows from Theorem 2.2 that there exists α(x), β(x) > 0 and an absolute
constant c0 > 0 such that∫

R+

|α(x) fx(β(x)r)−m(r)| dr ≤ c0ψ(x)
5
16 (12)∫

R+

|α(x)−1gx(β(x)−1r)−m(r)| dr ≤ c0ψ(x)
5
16 . (13)

Using 1 ≤
∫
R+
fx(r) dr < 1 + ϕ(x) and (12), we deduce that

α(x)

β(x)
≤ α(x)

β(x)
·
∫
R+

fx(r) dr =

∫
R+

α(x) fx(β(x)r) dr

≤
∫
R+

m(r) dr + c0ψ(x)
5
16 = 1 + c0ψ(x)

5
16

α(x)

β(x)
≥ α(x)

β(x)
· (1− ϕ(x))

∫
R+

fx(r) dr

= (1− ϕ(x))

∫
R+

α(x) fx(β(x)r) dr

≥ (1− ϕ(x))

(∫
R+

m(r) dr − c0ψ(x)
5
16

)
≥ 1−O

(
max{ϕ(x), ψ(x)

5
16}
)
.

For a(x) = α(x)−1 and b(x) = β(x)−1, we have

1− c0ψ(x)
5
16 ≤ a(x)

b(x)
≤ 1 +O

(
max{ϕ(x), ψ(x)

5
16}
)
. (14)
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Since ϕ(x) and ψ(x) are even, (12) can be written in the form∫
R
|r|n−1|f(xr)− a(x)b(x)n−1 %(b(x)2r2)| dr ≤ c0ψ(x)

5
16
a(x)

b(x)
. (15)

Thus the hypotheses of Proposition 3.1 are satisfied for the log-concave func-
tions h(r) = f(rx) and ω(r) = a(x)b(x)n−1%(b(x)2r2) because

∫
R |r|

n−1ω(r)dr =
a(x)
b(x)

. As %(0) = f(0) = 1 we get that (using n+ 1 ≤ 2n)∣∣a(x)b(x)n−1 − 1
∣∣ = O

(
ψ(x)

5
32n

)
. (16)

We deduce by comparing (14) and (16) that

|a(x)− 1| = O
(

max{ϕ(x), ψ(x)
5

32n}
)

and |b(x)− 1| = O
(

max{ϕ(x), ψ(x)
5

32n}
)
.

We claim that for any x ∈ Sn−1, we have∫
R+

rn−1|f(xr)− %(r2)| dr ≤ O
(

max{ϕ(x), ψ(x)
5

32n}
)

(17)∫
R+

rn−1|g(xr)− %(r2)| dr ≤ O
(

max{ϕ(x), ψ(x)
5

32n}
)
. (18)

To prove (17), we observe∫
R+

rn−1|f(xr)− %(r2)| dr ≤
∫
R+

rn−1|f(xr)− a(x)b(x)n−1%(b(x)2r2)| dr

+

∫
R+

rn−1a(x)b(x)n−1|%(b(x)2r2)− %(r2)| dr

+

∫
R+

rn−1%(r2)|a(x)b(x)n−1 − 1| dr.

Here the first term is O(ψ(x)
5
16 ) by (15), and the third term is O(ψ(x)

5
32n ) by

(16). To bound the second term, we first use (16) to get rid of a(x)b(x)n−1.
To simplify the notations, we put M = |b(x)2−1|. Since 1−M ≤ b2 ≤ 1+M
and % is non-increasing, we obtain

|%(b(x)2r2)− %(r2)| ≤ %((1−M)r2)− %((1 +M)r2).

Thus ∫
R+

rn−1|%(b(x)2r2)− %(r2)| dr

≤
∫
R+

rn−1%((1−M)r2) dr −
∫
R+

rn−1%((1 +M)r2) dr

= (1−M)−
n
2 − (1 +M)−

n
2 = O

(
max{ϕ(x), ψ(x)

5
32n}

)
,
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which in turn yields (17). The proof of (18) is similar.
Now using Hölder’s inequality and (10), we deduce that∫
Sn−1

(
ϕ(x) + ψ(x)

5
32n

)
dx ≤

∫
Sn−1

ϕ(x) dx+O

(∫
Sn−1

ψ(x) dx

) 5
32n

≤ O(ε
1

32n2 ).

Therefore integrating (17) and (18) over x ∈ Sn−1, we have∫
Rn

|f(x)− %(|x|2)| dx ≤ O(ε
1

32n2 )∫
Rn

|g(x)− %(|x|2)| dx ≤ O(ε
1

32n2 ).

In turn we conclude Theorem 1.3.

4 Proof of Theorem 1.1 (ϕ convex)

During the proof of Theorem 1.1, γ1, γ2, . . . denote positive constants that
depend only on n. We always assume that ε ∈ (0, ε0), where ε0 > 0 depends
on n and %, and is small enough for the argument to work.

We start with some simplification. We may assume that %(0) = 1 =
∫
R+
%.

Using the same argument on % that the one that we used on ω in the beginning
of the proof of Proposition 3.1, there exists some t0 ≥ 1 such that %(t) ≤ e−t

if t ≥ t0, and %(t) ≥ e−t if t ∈ (0, t0). It follows that %′(0) ≥ −1, and∫
R+

rn−1%(r2) dr ≤
∫
R+

rn−1e−r
2

dr =
Γ(n/2)

2
.

For the log-concave function f(x) = %(ϕ(x)), we may assume that the
origin 0 is the centre of mass of Kf,0, and hence we only check the condition
in Theorem 1.1 at z = 0. For ψ(x) = L0ϕ(x), let g(x) = %(ψ(x)). It follows
from the definition of the Legendre transform that

ϕ(x) + ψ(y) ≥ 〈x, y〉 for all x, y ∈ Rn. (19)

In particular

f(x)g(y) = %(ϕ(x))%(ψ(y)) ≤ %2

(
ϕ(x) + ψ(y)

2

)
≤ %2

(
〈x, y〉

2

)
.
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Thus we may apply Theorem 1.3, which yields the existence of ξ > 0 and a
positive definite matrix T : Rn → Rn, such that∫

Rn

∣∣%(|x|2/2)− ξ %(ϕ(Tx))
∣∣ dx < γ1ε

1
32n2∫

Rn

∣∣%(|x|2/2)− ξ−1%(ψ(T−1x))
∣∣ dx < γ1ε

1
32n2 ,

where γ1 depends on n. Since L0(ϕ ◦ T ) = ψ ◦ T−1, we may assume that T
is the identity matrix. We choose R(ε) in a way such that

%(R(ε)2) = ε
1

64n2 .

As %(t) ≤ e−t for t ≥ t0, it follows that provided ε0 is small enough,

30 < R(ε) ≤
√
| log ε|/(8n). (20)

Let c = − log ξ and α(x) = − log %(x). Hence α is convex and increasing with
α(0) = 0, α′(0) ≤ 1, where α′(x) denotes the right-derivative. We deduce∫

√
2R(ε)Bn

e−α(|x|2/2)
∣∣∣eα(|x|2/2)−α(ϕ(x))−c − 1

∣∣∣ dx < γ1ε
1

32n2∫
√

2R(ε)Bn

e−α(|x|2/2)
∣∣∣eα(|x|2/2)−α(ψ(x))+c − 1

∣∣∣ dx < γ1ε
1

32n2 ,

which in turn yields by the definition of R(ε) that∫
√

2R(ε)Bn

∣∣∣eα(|x|2/2)−α(ϕ(x))−c − 1
∣∣∣ dx < γ1ε

1
64n2 (21)∫

√
2R(ε)Bn

∣∣∣eα(|x|2/2)−α(ψ(x))+c − 1
∣∣∣ dx < γ1ε

1
64n2 . (22)

Next we plan to get rid of the exponential function in (21) and (22).
Define α̃(x) = α(|x|2/2). Then for all x ∈ 1.3R(ε)Bn,

|∇α̃(x)| = |x|α′(|x|2/2) ≤ 1.3R(ε)α′
(
0.845R2(ε)

)
.

Using, for s, t ≥ 0, the convexity bound α′(s) ≤ α((1+t)s)−α(s)
ts

≤ α((1+t)s)
ts

together with the relation α(R(ε)2) = | log ε|/(64n2), we deduce that the
function α̃ satisfies

|∇α̃(x)| ≤ γ2| log ε| for x ∈ 1.3R(ε)Bn. (23)
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We claim that the convex function ϕ̃ = α ◦ ϕ satisfies

|∇ϕ̃(x)| ≤ 32γ2| log ε| for x ∈ 1.2R(ε)Bn. (24)

Suppose, to the contrary, that there exists x0 ∈ 1.2R(ε)Bn such that the
vector w := ∇ϕ̃(x0) satisfies |w| > 32γ2| log ε|. Since R(ε) > 30, it follows
by (23) that

|α̃(x)− α̃(x0)| ≤ 3γ2| log ε| if |x− x0| ≤ 3. (25)

We define

Ξ =
{
x ∈ Rn : |x−x0| ≤ 1 and 〈w, x−x0〉 ≥

1

2
|w| · |x−x0|

}
⊂ 1.3R(ε)Bn.

If ϕ̃(x) ≤ α̃(x0)− c− 4γ2| log ε| for all x ∈ Ξ, then (25) yields∫
√

2R(ε)Bn

∣∣∣eα(|x|2/2)−α(ϕ(x))−c − 1
∣∣∣ dx > ∫

Ξ

|eγ2| log ε| − 1| dx > γ1ε
1

64n2 ,

provided that ε0 is small enough. This contradiction to (21) provides a y0 ∈ Ξ
such that ϕ̃(y0) ≥ α̃(x0)− c− 4γ2| log ε|. For v = ∇α̃(y0), we have

〈v, x0 − y0〉 ≤ ϕ̃(x0)− ϕ̃(y0) ≤ 〈w, x0 − y0〉

≤ −1

2
|w| |x0 − y0| ≤ −16γ2| log ε| · |x0 − y0|.

In particular |v| ≥ 16γ2| log ε|. Next let

Ξ′ =
{
x ∈ Rn : 1 ≤ |x−y0| ≤ 2 and 〈v, x−y0〉 ≥

1

2
|w|·|x−y0|

}
⊂ 1.3R(ε)Bn.

Combining the above definitions and (25) yields for any x ∈ Ξ′,

ϕ̃(x) ≥ ϕ̃(y0) + 〈x− y0, v〉

≥ α̃(x0)− c− 4γ2| log ε|+ 1

2
|w| |x− y0|

≥ α̃(x0)− c+ 4γ2| log ε|
≥ α̃(x)− c+ γ2| log ε|.

Consequently,∫
√

2R(ε)Bn

∣∣∣eα(|x|2/2)−α(ϕ(x))−c − 1
∣∣∣ dx > ∫

Ξ′
|eγ2| log ε| − 1| dx > γ1ε

1
64n2 ,
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provided that ε0 is small enough. This contradicts (21), hence we may con-
clude (24).

Next we prove that

α
(
|x|2/2

)
− α(ϕ(x))− c > −1 if x ∈ 1.1R(ε)Bn. (26)

Otherwise suppose that x1 ∈ 1.1R(ε)Bn and α̃(x1) − ϕ̃(x1) − c ≤ −1. If
|x − x1| ≤ (96γ2| log ε|)−1 and ε0 is small enough, then (23) and (24) imply
that α̃(x)− ϕ̃(x)− c ≤ −1/3. Therefore∫
√

2R(ε)Bn

∣∣∣eα(|x|2/2)−α(ϕ(x))−c − 1
∣∣∣ dx ≥ ∫ ∣∣∣e− 1

3 − 1
∣∣∣ 1|x−x1|≤(96γ2| log ε|)−1 dx

≥ γ3| log ε|−n > γ1ε
1

64n2 ,

provided that ε0 is small enough. This is a contradiction, hence (26) holds.

Since |t| < 2|et − 1| if t ≥ −1, combining (21) and (22) with (26) and its
analogue for ψ, we deduce∫

R(ε)Bn

∣∣α(ϕ(x))− α(|x|2/2) + c
∣∣ dx < 2γ1ε

1
64n2 (27)∫

R(ε)Bn

∣∣α(ψ(x))− α(|x|2/2)− c
∣∣ dx < 2γ1ε

1
64n2 . (28)

For x ∈ Rn, we define C(x) = ϕ(x)− |x|
2

2
, C̃(x) = ψ(x)− |x|

2

2
and

F (x) = C(x) + C̃(x) ≥ 0, (29)

where the inequality is a consequence of (19). Summing up (27) and (28),
and using the convexity of α in the form α(b) − α(a) ≥ (b − a)α′(a) yields
that

4γ1ε
1

64n2 ≥
∫
R(ε)Bn

(
α(ϕ(x))− α(|x|2/2) + α(ψ(x))− α(|x|2/2)

)
dx

≥
∫
R(ε)Bn

α′(|x|2/2)
(
ϕ(x)− |x|2/2 + ψ(x)− |x|2/2

)
dx

=

∫
R(ε)Bn

α′(|x|2/2)F (x) dx

This is the point where α influences the estimates. Using (29), we get that∫
R(ε)Bn

F (x) dx <
4γ1

α′(0)
· ε

1
64n2 . (30)
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Observe that with our notation, (19) reads as C(y)+C̃(x)+|x−y|2/2 ≥ 0
or equivalently C(x) ≤ C(y) +F (x) + |x− y|2/2. Since F takes non-negative
values, we get that for all x, y ∈ Rn,

|C(x)− C(y)| ≤ F (x) + F (y) +
|x− y|2

2
· (31)

For t ∈ R, we write dte for the smallest integer not smaller than t, which
satisfies dte+ 1 ≤ 2t if dte ≥ 3. Set

k =

⌈√
4V (Bn)

2n+1

(∫
R(ε)Bn

F (z) dz

)− 1
2

·R(ε)
n+2
2

⌉
, (32)

which is at least 3 if ε0 is chosen small enough by (20) and (30). Let us
denote σ := V (R(ε)Bn)−1

∫
R(ε)Bn C(y) dy. Taking advantage of (31), we get

that∫
R(ε)Bn

|C(x)− σ| dx ≤ V (R(ε)Bn)−1

∫
R(ε)Bn

∫
R(ε)Bn

|C(x)− C(y)| dxdy

≤ V (R(ε)Bn)−1

k∑
i=1

∫
R(ε)Bn

∫
R(ε)Bn∣∣C ( i

k
x+ (1− i

k
)y
)
− C

(
i−1
k
x+ (1− i−1

k
)y
)∣∣ dxdy

≤
k∑
i=0

2

V (R(ε)Bn)

∫
R(ε)Bn

∫
R(ε)Bn

F
(
i
k
x+ (1− i

k
)y
)
dxdy

+
1

V (R(ε)Bn)

k∑
i=1

∫
R(ε)Bn

∫
R(ε)Bn

|x− y|2

k2
dxdy. (33)

For i ∈ {0, . . . , k} in (33), we claim that∫
R(ε)Bn

∫
R(ε)Bn

F
(
i
k
x+ (1− i

k
)y
)
dxdy ≤ 2nV (R(ε)Bn)

∫
R(ε)Bn

F (z) dz.

(34)
If i ≥ k/2, then for fixed y, using the substitution z = i

k
x + (1 − i

k
)y, we

have∫
R(ε)Bn

∫
R(ε)Bn

F
(
i
k
x+ (1− i

k
)y
)
dxdy =

kn

in

∫
R(ε)Bn

∫
i
k
R(ε)Bn+(1− i

k
)y

F (z) dzdy

≤ 2nV (R(ε)Bn)

∫
R(ε)Bn

F (z) dz.
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If i < k/2, then for fixed y, we obtain (34) using the substitution z =
i
k
x+ (1− i

k
)y for fixed x.

In (33), we use the rough estimate |x − y| ≤ 2R(ε), and obtain by (34),
(32) and k + 1 ≤ 2k that∫

R(ε)Bn

|C(x)− σ| dx ≤ (k + 1)2n+1

∫
R(ε)Bn

F (z) dz +
4V (Bn)R(ε)n+2

k

≤ 3c0

(∫
R(ε)Bn

F (z) dz

) 1
2

R(ε)
n+2
2

where c0 > 0 is an absolute constant such that
√

2n+14V (Bn) < c0 for n ≥ 2.

Since R(ε) ≤
√
| log ε| by (20), we deduce by the definition of C(x) and (30)

that ∫
R(ε)Bn

|ϕ(x)− |x|
2

2
− σ| dx < 3c0

√
4γ1

α′(0)
· ε

1
128n2 · | log ε|

n+2
4 ,

completing the proof the first part of Theorem 1.1.

5 Proof of Theorem 1.1 (ϕ measurable)

In this section, η1, η2, . . . denote positive constants that depend only on n and
%. Since

∫
Rn %(Lzϕ(x)) dx > 0 for all z, the function Lzϕ cannot be identically

infinite. Hence we may consider the lower convex hull ϕ∗ = LzLzϕ of ϕ. It
follows that Lzϕ∗ = Lzϕ. We may assume as in the proof of Theorem 1.1
that %(0) = 1 =

∫
R+
%, and hence %′(0) ≥ −1. Let again α(t) = − log %(t),

which is convex, increasing, and satisfies α(0) = 0 and 0 < α′(0) ≤ 1, where
α′(x) denotes the right-derivative.

For t ∈ R, we also introduce

α∗(t) =

{
α(t) if t ≥ 0

α′(0) · t if t ≤ 0.

As we shall see shortly, we can replace α by α∗ in the inequalities. Observe
first that α∗ ≤ α and that

α′∗(t) ≥ α′(0) = α′∗(0) for all t ∈ R.

18



Let %∗(t) = e−α∗(t). As %∗(t) ≥ %(t), ϕ∗(x) ≤ ϕ(x) and Lzϕ∗ = Lzϕ, we have∫
Rn

%∗(ϕ∗(x)) dx

∫
Rn

%∗(Lzϕ∗(x)) dx ≥
∫
Rn

%∗(ϕ(x)) dx

∫
Rn

%∗(Lzϕ(x)) dx

≥ (1− ε)
(∫

Rn

%(|x|2/2) dx

)2

= (1− ε)
(∫

Rn

%∗(|x|2/2) dx

)2

(35)

for any z. We may assume that the origin 0 is the centre of mass of Kf,0 for
the log-concave function f = %∗ ◦ ϕ∗. Therefore∫

Rn

%∗(ϕ∗(x)) dx

∫
Rn

%∗(L0ϕ∗(x)) dx ≤
(∫

Rn

%∗(|x|2/2) dx

)2

. (36)

We have proved in the course of the argument for Theorem 1.1 that possibly
after a positive definite linear transformation, there exists σ ∈ R such that∫

R∗(ε)Bn

∣∣∣∣ϕ∗(x)− σ − |x|
2

2

∣∣∣∣ dx < η1ε
1

129n2 (37)

where

α∗(R∗(ε)
2) =

| log ε|
64n2

. (38)

In particular limε→0R∗(ε) = +∞ and 30 < R∗(ε) ≤
√
| log ε|/(8n). Set

R(ε) := 1
2
R∗(ε).

Proposition 5.1 If ε > 0 is small enough, then∣∣∣∣ϕ∗(x)− σ − |x|
2

2

∣∣∣∣ < η2ε
2

129n2(n+2) < 1 for all x ∈ 5
3
R(ε)Bn.

Proof: Let us denote by c the convex function ϕ∗−σ and f(x) = c(x)−|x|2/2.
Set δ = η1ε

1/(129n2). Assume that ε is small enough so that δ < 1. Our
starting point is (37) which reads as

∫
R∗(ε)Bn

∣∣f | ≤ δ.

Let r ∈ (0, 1) and x ∈ Rn with |x| ≤ R∗(ε) − 1. If v(x) is a subgradient
of c at x, we get by convexity of c that for all y,

f(y) ≥ f(x) + 〈v(x)− x, y − x〉 − |y − x|
2

2
·
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Since the ball B(x, r) of center x and radius r is included in B(0, R∗(ε)) =
R∗(ε)B

n, we deduce that

δ ≥
∫
B(x,r)

|f | ≥
∫
B(x,r)

f(y) dy

≥ f(x)V (B(x, r))−
∫
B(x,r)

|y − x|2

2
dy = vnr

nf(x)− cnrn+2

for suitable quantities vn, cn depending only on n. Rearranging, f(x) ≤
(δ+ cnr

n+2)/(vnr
n). Choosing r = δ1/(n+2) < 1, we obtain that for all x with

|x| ≤ R∗(ε)− 1,

f(x) ≤ dnδ
2

n+2 . (39)

In order to establish the proposition, it remains to prove a similar lower
bound on f . Consider x ∈ Rn with |x| ≤ R∗(ε) − 2. Let r ∈ (0, 1) to be
specified later. Consider a point y ∈ B(x, r) \ {x}. It can be written as
y = x+ su with s ∈ (0, r] and u ∈ Rn, |u| = 1. By convexity,

c(y) ≤ s

r
c(x+ ru) +

(
1− s

r

)
c(x)

=
s

r

(
f(x+ ru) +

|x+ ru|2

2

)
+
(

1− s

r

)(
f(x) +

|x|2

2

)
.

Rearranging the squares and using the upper bound (39) gives

−f(y) =
|y|2

2
− c(y) ≥ −1

2
s(r − s)− s

r
f(x+ ru)−

(
1− s

r

)
f(x)

≥ −1

2
s(r − s)− s

r
dnδ

2
n+2 −

(
1− s

r

)
f(x).

Integrating in y = x + su in spherical coordinates of origin x, and changing
variables s = rt, t ∈ (0, 1] gives for suitable positive numbers depending only
on the dimension

δ ≥
∫
R∗(ε)Bn

|f | ≥
∫
B(x,r)

|f | ≥
∫
B(x,r)

−f(y) dy

≥ −1

2

∫ r

0

s(r − s)nV (Bn)sn−1ds− dnδ
2

n+2

∫ r

0

s

r
nV (Bn)sn−1ds

−f(x)

∫ r

0

(
1− s

r

)
nV (Bn)sn−1ds

= −cnrn+2 − d′nδ
2

n+2 rn − c′nf(x)rn.

Choosing r = δ1/(n+2) < 1 and rearranging yields f(x) ≥ −c′′nδ
2

n+2 , provided
|x| ≤ R∗(ε)− 2. Since R∗(ε) > 30, the claim follows. 2
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We now estimate how close the weight function %∗ ◦ϕ∗ is to be a constant
function on R(ε)Bn. We claim that

%∗ ◦ ϕ∗(x)

%∗ ◦ ϕ∗(y)
≥ ε

1
16n2 for all x, y ∈ R(ε)Bn. (40)

Since the function α∗ = − log ρ∗ is increasing, we deduce from Proposition 5.1
that

|α∗(ϕ(x))−α∗(ϕ(y))| ≤ α∗

(
R(ε)2

2
+ 1 + σ

)
−α∗(σ−1) for x, y ∈ R(ε)Bn.

Therefore it is sufficient to prove that

Ω := α∗

(
R(ε)2

2
+ 1 + σ

)
− α∗(σ − 1) ≤ | log ε|

16n2
. (41)

It follows by (27) and (28) that∫
R∗(ε)Bn

(
α∗
(
ϕ∗(x)

)
+ α∗

(
L0ϕ∗(x)

)
− 2α∗

(
|x|2/2

))
dx < η8ε

1
64n2 .

We note that by definition ϕ∗(x) +L0ϕ∗(x) ≥ |x|2 for all x ∈ Rn. Hence the
monotonicity of α∗ yields∫

R∗(ε)Bn

(
α∗
(
ϕ∗(x)

)
+ α∗

(
|x|2 − ϕ∗(x)

)
− 2α∗

(
|x|2/2

))
dx < η8ε

1
64n2 . (42)

Next, we bound from below the three terms appearing inside the above in-
tegral, when the variable is in the smaller domain 5

3
R(ε)Bn\(4

3
R(ε)Bn).

Observe that if x ∈ 5
3
R(ε)Bn\(4

3
R(ε)Bn), then by Proposition 5.1

ϕ∗(x) ≥
(4

3
R(ε))2

2
+ σ − 1 ≥ R(ε)2

2
+ σ + 1.

Since α∗ is convex, increasing and verifies α∗(0) = 0, α′∗(0) = α′(0) we get
that

α∗(ϕ∗(x)) ≥ α∗

(
R(ε)2

2
+ σ + 1

)
= Ω + α∗(σ − 1) ≥ Ω + α′(0)(σ − 1).

Still assuming that x ∈ 5
3
R(ε)Bn\(4

3
R(ε)Bn) and taking advantage of Propo-

sition 5.1, we obtain that

α∗(|x|2 − ϕ∗(x)) ≥ α∗(−σ − 1) ≥ α′(0)(−σ − 1).
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Eventually, Equation (38) gives for x ∈ 5
3
R(ε)Bn\(4

3
R(ε)Bn),

α∗(|x|2/2) ≤ α∗
(
(5R(ε)/3)2/2

)
≤ α∗(R∗(ε)

2) =
| log ε|
64n2

.

Since the integrand in (42) is always non-negative, the above three inequali-
ties together with (42) easily yield that∫

5
3
R(ε)Bn\( 4

3
R(ε)Bn)

(
Ω− 2α′(0)− | log ε|

32n2

)
dx < η8ε

1
64n2 .

From this, we conclude that (41) and thus (40) hold if ε is small enough.

Next, we define the set

Ψ =:
{
x ∈ R(ε)Bn : ϕ(x) > ϕ∗(x) + ε

1
128n2

}
.

Since the inequality ϕ(x) ≥ ϕ∗(x) is true for all x ∈ Rn, it follows from
equation (37) and the bound R(ε) <

√
| log ε| that∫

R(ε)Bn\Ψ

∣∣∣∣ |x|22
+ σ − ϕ(x)

∣∣∣∣ dx < η10ε
1

129n2 .

Therefore our final task is to provide a suitable upper bound on the volume
of the set Ψ.

Let R0 > 0 be defined by α′(0) · (R
2
0

2
− 2) = 1. Since α′(0) ∈ (0, 1],

R0 ≥
√

6. From now on we consider R ∈ [R0, R(ε)]. Since α′∗(t) ≥ α′(0) for
t ∈ R, we have for all x ∈ Ψ

%∗(ϕ(x)) = e−α∗(ϕ(x)) ≤ e
−α∗

(
ϕ∗(x)+ε

1
128n2

)

≤ e−α
′(0)ε

1
128n2

%∗(ϕ∗(x)) ≤
(

1− α′(0)ε
1

127n2

)
%∗(ϕ∗(x)),

where the last inequality is valid if ε is small enough. This improves on the
trivial estimate %∗ ◦ ϕ ≤ %∗ ◦ ϕ∗. Let us see how the improvement passes to
integrals: ∫

RBn

%∗ ◦ ϕ =

∫
Ψ∩RBn

%∗ ◦ ϕ+

∫
RBn\Ψ

%∗ ◦ ϕ

≤
(

1− α′(0)ε
1

127n2

)∫
Ψ∩RBn

%∗ ◦ ϕ∗ +

∫
RBn\Ψ

%∗ ◦ ϕ∗

=

∫
RBn

%∗ ◦ ϕ∗ − α′(0)ε
1

127n2

∫
Ψ∩RBn

%∗ ◦ ϕ∗.
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However, (40) readily gives∫
Ψ∩RBn

%∗ ◦ ϕ∗ ≥ ε
1

16n2
V (Ψ ∩RBn)

V (RBn)

∫
RBn

%∗ ◦ ϕ∗.

Hence, combining this with the former estimate, we deduce that∫
RBn

%∗ ◦ ϕ ≤

(
1− ε

1
16n2 V (Ψ ∩RBn)

V (RBn)
· α′(0)ε

1
127n2

)∫
RBn

%∗ ◦ ϕ∗.

Our goal is to draw information on the volume of Ψ from the above inequal-
ity and the almost equality in the functional Blaschke-Santaló inequality.
But this requires a similar inequality involving integrals on the whole space.
Building on the latter estimate,∫
Rn

%∗ ◦ ϕ =

∫
RBn

%∗ ◦ ϕ+

∫
Rn\RBn

%∗ ◦ ϕ

≤
(

1− ε
1

8n2α′(0)
V (Ψ ∩RBn)

V (RBn)

)∫
RBn

%∗ ◦ ϕ∗ +

∫
Rn\RBn

%∗ ◦ ϕ∗

=

∫
Rn

%∗ ◦ ϕ∗ − ε
1

8n2α′(0)
V (Ψ ∩RBn)

V (RBn)

∫
RBn

%∗ ◦ ϕ∗. (43)

If |x| = R0, then Proposition 5.1 and the properties of α∗ yield

α∗(ϕ∗(x))− α∗(ϕ∗(0)) ≥ α∗

(
R2

0

2
+ σ − 1

)
− α∗(σ + 1)

≥ α′∗(σ + 1)

(
R2

0

2
− 2

)
=
α′∗(σ + 1)

α′(0)
≥ 1,

thus the log-concave function %∗ ◦ϕ∗ verifies %∗(ϕ∗(x)) ≤ e−1%∗(ϕ∗(0)) when-
ever |x| = R0. Then, elementary estimates for one-dimensional log-concave
functions (applied on all radii) give∫

R0Bn %∗ ◦ ϕ∗∫
Rn %∗ ◦ ϕ∗

≥
∫
R0Bn e

−|x|/R0 dx∫
Rn e−|x|/R0 dx

·

Since the latter ratio depends only on n, we consider it as a constant. Hence
we deduce from (43) that for R ∈ [R0, R(ε)]∫

Rn %∗ ◦ ϕ∫
Rn %∗ ◦ ϕ∗

≤ 1− η11ε
1

8n2 V (Ψ ∩RBn)

V (RBn)
·
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On the other hand, (35) and (36) give
∫
Rn %∗◦ϕ∫
Rn %∗◦ϕ∗

≥ 1−ε. Comparing the latter

two estimates leads to

V (Ψ ∩RBn) ≤ η−1
11 ε

1− 1
8n2 V (RBn).

The proof of Theorem 1.1 is therefore complete.

Acknowledgement: We would like to thank the referee for helpful com-
ments.
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[6] W. Blaschke: Über affine Geometrie VII. Neue Extremeigenschaften von
Ellipse und Ellipsoid. Leipz. Ber., 69 (1917), 306–318.
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