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1 Introduction

For general references about convex bodies, see P.M. Gruber [13] or R. Schnei-
der [25], and for a survey on related geometric inequalities, see E. Lutwak
[19]. We write 0 to denote the origin of R™, (-, -) to denote the standard scalar
product, |-| to denote the corresponding ly-norm, and V'(-) to denote volume
(Lebesgue-measure). Let B" be the unit Euclidean ball, and let "~ = B".
A convex body K in R" is a compact convex set with non—empty interior. If
z € int K, then the polar of K with respect to z is the convex body

K={zeR": (x —z,y—2) <1foranyyec K}.

From Hahn-Banach’s theorem in R", (K*)* = K. According to L.A. Santald
[24] (see also M. Meyer and A. Pajor [20]), there exists a unique z € intK
minimizing the volume product V(K)V(K?), which is called the Santal6
point of K. In this case z is the centroid of K?. The Blaschke-Santal6
inequality states that if z is the Santal6 point (or centroid) of K, then

V(K)V(K*) <V(B")?, (1)

with equality if and only if K is an ellipsoid. The inequality was proved by
W. Blaschke [6] (available also in [7]) for n < 3, and by L.A. Santal6 [24]
for all n. The case of equality was characterized by J. Saint-Raymond [23]
among o-symmetric convex bodies, and by C.M. Petty [22] among all convex
bodies (see also D. Hug [14], E. Lutwak [18], M. Meyer and A. Pajor [20],
and M. Meyer and S. Reisner [21] for simpler proofs).

To state functional versions of the Blaschke-Santal6é inequality, let us
first recall that the usual definition of the Legendre transform of a function
¢ :R" - RU{+o0} at z € R" is defined by

Lop(y) = sup{(z — 2,y —2) —p(a)}, fory €R”
zeR"
and that the function £,¢ : R* — R U {+o0} is always convex and lower
semicontinuous. If ¢ is convex, lower semicontinuous and ¢(z) < +oo then
L.L.o=p.

Subsequent work by K.M. Ball [2], S. Artstein-Avidan, B. Klartag, V.D. Mil-
man [1], M. Fradelizi, M. Meyer [12] and J. Lehec [16, 17] lead to the func-
tional version of the Blaschke-Santal6 inequality (see [2] and [1] for the re-
lation between the functional version and the original Blaschke-Santal6 in-
equality).



Theorem (2, 1, 12, 16, 17] Let o : R — R, be a log-concave non-increasing
function and ¢ : R — R be measurable then

i [ etenas [ oeotonars ([ serrar)

z€RM

If o0 1s decreasing there is equality if and only if there exist a,b,c € R, a < 0,
z € R"™ and a positive definite matriz T : R™ — R", such that

Tz + 2)|”

5 +c forx eR",

() =
and moreover either ¢ = 0, or o(t) = e fort > —|c|.

Here we prove a stability version of this inequality.

Theorem 1.1 Let p : R — R, be a log-concave and decreasing function
with fR+ 0 < +oo. Let ¢ : R" — R be measurable. Assume that for some
e € (0,e9) and for all z € R™, the following inequality holds:

[ ettenas [ ateiptana> oo ([ olerrar)

1. If ¢ is convex, then there exist some z € R, ¢ € R and a positive
definite matriz T : R™ — R", such that

/R(E)B"

where lim._,o R(e) = 400, and €g,n, R(€) depend on n and p.

2
T
u—l—c—go(Tm—i—z)

1
5 dr < nem?,

2. If ¢ is only assumed to be measurable then a weaker version holds:
There exists z,¢,T as above and W C R(e)B™ such that

/R(E)B"\\Il

and V(¥ N RB™) < ny/e R" for any R € [Ry, R(¢)], where Ry > 0
depends only on o.

2
x
u%—c—go(Tx—I—z)

1
5 dx < ne 12902 |

Remark 1.2 One cannot expect the Li-distance between ¢ and M +c

to be small on the whole R™. For instance, if o(t) = €™, and for small e > 0,
o(z) = |oP/2 if 2] < logz], and w(z) = +00 if |o| > |logel, then, of



course, for any ¢ and T the function x +— M + ¢ — @(x) is not in Ly,

but

[ etetnas [ ocaotenas > (1 0telionep = [ ottt

for all z € R™.

In addition, if ¢ is only assumed to be measurable, then we may choose
it to be infinity on a ball of small enough measure, and set p(x) = |x|?/2 on
the complement.

On the other hand, most probably the exponent
be exchanged into some positive absolute constant.

1
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As a matter of fact, the above functional form of the Blaschke-Santal6
inequality deduces from the following more general inequality, which is the
result of different contributions as explained below

Theorem [2, 1, 12, 16, 17] For any measurable f : R™ — R with positive
integral there exists a particular point z € R™ attached to f such that if
measurable functions o : R, — Ry and g : R — R, with positive integrals
satisfy

f@)gly) < o*((w = 2,y — 2)),

for every x,y € R™ with (x — z,y — z) > 0, then

[ @) d:v/ng(as) dr < (/ ollz]?) dx>2.

Equality holds for this z if and only if there exist o : R, — Ry, £ >0 and a
positive definite matriz T : R™ — R™, such that o(e') is log-concave, and for
a.e. v € R" and s € Ry, we have

o(s) =o(s), f(z)=&a(T(x—2)") and g(z) =& "o(IT" (z — 2)]").

K.M. Ball [2] initiated the study of such inequalities, established the case
of even functions f and proved that, in this case, z can be chosen to be the
origin. If o(t) = e, S. Artstein, B. Klartag, V.D. Milman [1] showed that
one can choose z to be the mean of f for any f. For any measurable ¢ but for
log-concave functions f, M. Fradelizi, M. Meyer [12] constructed the suitable
z in the following way. For any z € R", let

+oo
Kf,z:{xe]R":/ r”_lf(z—l—rx)del},
0
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which is convex according to K.M. Ball [3]. Actually, [3] only claims that
Ky . is convex when f is even, but K.M. Ball first proves that the function

+oo —1/n
x> ||z] = ( flz+ Ta:)rn_ldr)
0

is convex and homogeneous without assuming evenness of f, which is only
used to state that the function ||z| is symmetric (see also J. Bourgain, B.
Klartag and V.D. Milman [11], or B. Klartag [15]).

M. Fradelizi and M. Meyer [12] proved that there exists a z € R™, such
that the centre of mass of Ky, is the origin and that this z works. Finally
J. Lehec gave a direct and different proof of the general theorem in [17]. He
established the existence of a so-called Yao-Yao center for any measurable f
and that this point z works also.

We also give a stability version of this more general form of the Blaschke-
Santalé inequality.

Theorem 1.3 If some log-concave functions o : Ry — Ry and f,g: R* —
R, with positive integrals satisfy that o is non-increasing, the centre of mass
of Ky is the origin for some z € R", and

f(@)gly) < *((x— 2,y — 2))

for every x,y € R™ with (x — z,y — z) > 0, if moreover for e > 0,

o) [ i [ o= ([ oep d)

then there exist € > 0 and a positive definite matriz T : R™ — R", such that

1

/ }Q(]xP) —&f(Tx + z)| dr < ~yesn? / " Lo(r?) dr
/ lo(|z?) = ¢ g(T ™z + 2)| dz < 7632171“/ r"lo(r?) dr,
R» R+

where v depends only on n.

We strongly believe that the power ﬁ occurring in Theorem 1.3 can be
chosen to be a positive absolute constant.
In this note, the implied constant in O(-) depends only on the dimension



2 Stability of the Borell and the Blaschke-
Santalé inequalities

C. Borell [9] pointed out the following version of the Prékopa-Leindler in-
equality:

Theorem 2.1 (Borell) If M, F,G : R, — R, are integrable functions with
positive integrals, and M(\/rs) > \/F(r)G(s) for r,s € Ry, then

Lrfes(f)

Recently the following stability estimate has been obtained in K.M. Ball,
K.J. Boroczky [5]. We note that if M : R, — R, is log-concave and non-
increasing, then M (e') is log-concave on R.

Theorem 2.2 (Ball, Boroczky) There exists a positive absolute constant
¢ with the following property: If M, F,G : Ry — R are integrable functions
with positive integrals such that M (e') is log-concave, M (\/rs) > \/F(r)G(s)

forr;s e Ry, and
2
(/ M) S(l—l—a)/ F/ G,
R, R, R,

for some € > 0, then there exist a,b > 0, such that

/ laF(bt) — M(t)|dt < c-eio- [ M(t)dt
R4 R+

/ 0 'G(b ) — M(t)|dt < c-et- | M(t)dt.
Ry

R4

For a stability version of the Blaschke-Santalé inequality, we use the
Banach-Mazur distance of two convex bodies M and K, which is defined

by
Opm(K, M) =min{ln\: K—x C ®(M) C A(K—xz) for ® € GL(n),z € R"}.
Improving on K.J. Béréezky [10], the paper [5] also established the following.

Theorem 2.3 (Ball,Boroczky) If K is a convex body in R™, n > 3, with
centroid z, and

V(K)V(K?) > (1 —¢)V(B")?* for some e € (0, 1),

12
then for some v > 0 depending only on n, we have

Sm(K, B") < yen.



We note that according to K.M. Ball [2], Borell’s inequality Theorem 2.1
can be used to prove the Blaschke-Santal6 inequality. In particular, [5] proves
Theorem 2.3 via Theorem 2.2.

3 Proof of Theorem 1.3

Before proving Theorem 1.3, we verify first a simple property of log-concave
functions, then show that the centroid is a reasonable centre for the Banach-
Mazur distance from ellipsoids.

Proposition 3.1 If h,w: R — R, are log-concave, w is even, and

L) et dr < [ ot dr

for some e € (0, (250n) =) then |h(0) — w(0)] < 250ne - w(0).

Proof: We may assume that w(0) = 1 and [, w(r) dr = 1, and hence w(r) < 1
for all r. First, we put forward a few useful facts about the function w.

Following ideas from K.M. Ball and K.J. Béroczky [4], let us prove first
that there exists some ro > 1 such that w(r) > 6_2|T if |r| < ro and w(r) <
e~ 2"l if |r| > ro. For this, notice that since Jo, wr)dr = 5 =[5 e dr
and logw is concave there exists ry > 0 satisfying the requlred property (and
7o is unique unless w(r) = e~ 2"l for all r. In this very specific case, we set
arbitrarily ro = 1/2).

Now let us prove that 1o > 1/2. We define w™ (t) = sup{r > 0;w(r) > t}.
The hypotheses on w imply that the support of w™! is [0, 1] and fo w(t)dt =
1/2. From Jensen’s inequality one deduces that

1
w (%) =w (/ w_l(t)dt) > elo los(dt — =1,
0

Since w(0) = 1, it follows from the log-concavity of w that w(r) > e, if
|r| < 1/2. This proves the claim.
In particular, the latter exponential lower bound on w implies that
1

wr)>1=2r] if |r|< 5 (2)

The fact that the graphs of w and r — e~2"! cross only once on R, implies
the following useful bound

—1)!
/r”_lw(r) dr < 2/ e dr = (n — ) < n"t (3)
R R
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Next, we study the function h. Let a; = inew+1 for i € Z. We claim that
there exist two ind ices ¢ € {1,...,5}, such that

1 — 1lnewt < ha;) <1+ new, (4)

Suppose that (4) does not hold. Since h is non-decreasing and then non-
increasing, there exists k € {1,2,3,4} such that h is monotone on [ay, a1,
and h(ax) and h(ag,1) are outside and on the same side of the interval [1 —

11n5ﬁ+1,1 + nsn%l] Consequently, for this value of k, either h(r) < 1 —
1 1

11nen+t for r € [ag, agy1], or h(r) > 1+ nentt for r € [ax, ar41]. In any case,

using respectively (2) and w < 1, it follows that

A1 A1 1
/ " (r) — w(r)| dr > / " new dr > n" e,
ag ag

which from (3) contradicts the condition on h, and hence proves (4).
Since e <1 —tand ¢! <1+ 2t for t € (0,3), (4) yields that

o 1 1 T
o~ 22ne <1—1lnentt < h(ai),h(aj) <14 nentt <e™ +17

thus h(a;) < h(a;)e? @) and h(0) < h(a;)e*% by the log-concavity of h.

_1_
Using the bounds on h(a;) and a;, we get h(0) < e 6™ < 1 + 250ne .
On the other hand, the argument leading to (4) yields some integer m € [1, 5]
such that h(a_,,) > 1— 11ne+1. We conclude by the log-concavity of h that

h(0) > min{h(a_n), h(a;)} > 1 — llpewt. O

Proposition 3.2 If the origin 0 is the centroid of a convex body K in R",
and E C K —w C (14 p)E for an 0-symmetric ellipsoid E and w € K, then

1-u/nt DECKC (1+2u/nt1)E,
holds whenever p € (0,1/(n 4+ 1)).

Proof: We may assume that £ = B" and w # 0. Let wy = w/|w|, and let
B be the half-ball {z € B" : (z,wo) > 0}. If p < =5, then (1 + p)"*' <
et < 1 4 2p(n + 1), thus

0 = /K(x,w>d:n:V(K)<w,w)+/ (x,w) dx

K—w

> VW) +

B

= V(B = 20+ 1) (/B

+<a:, w) dz — (14 p)™*! / (x,w) dx

Bt

() ) - ol

+
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Therefore

= e < Ly

Combining this with our hypothesis w + B C K C w + (1 + p)B" readily
gives the claim. O

Now let us prove Theorem 1.3. It is sufficient to consider the case € €
(0,e0) where €9 > 0 depends on n. Replacing also f(z) by f(x+ z) and g(y)
by g(y + z) we may assume that z = 0. For suitable v, u, A > 0, replacing

o(r) by vo(A\*r), f(z) by pvf(Az) and g(z) by (v/u)g(Az), we may assume
that

/ r"Yo(r*)dr =1 and 0(0) = f(0) = 1.
R4
Consider the body
+o00
Kf:{xGR”: / r"_lf(rx)dr21},
0
which is convex since f is log-concave [3]. Its radial function
Hx||;(ic = pi,(z) ==sup{t > 0; to € K;}, xS
is equal to (fR+ " f(rz) d?“) Yn Hence, using polar coordinates shows that
f(x)de = nV (Ky). ()
R”
For z € R™\{0}, let f,, g, : R — R, be defined by f.(r) = |r[""'f(rz)

and g,(r) = |r|"tg(rz). If (z,y) > 0, then the condition on f,g, ¢ yields

that £,(r) - gy(5) < May(y75)? for mey(r) = ™ 1o(r*(z,9)) and 1,5 € R,.
We deduce by the Borell-Prékopa-Leindler inequality Theorem 2.1 that

[ rar- / ) dr < ( / R dr)2 — (5™,

and hence
K, C K]‘?. (6)



The hypothesis of the theorem translated in terms of K gives

2
(e = ([ sePras) <) [ feds [ g
n Rn n
= (1+en’V(Ky)V(K,y) < (1 +e)n’V(Kp)V(KF).  (7)
From the stability version Theorem 2.3 of the Blaschke-Santalé inequality, for
some v > 0, dopm (K, B") < vsﬁ. Thus replacing f(z) by f(Tz) and g(y)

by g(T~'y) for a suitable positive definite matrix if necessary, and applying
Proposition 3.2, we may assume that

B" C K; C (1+O(e%))B". (8)
Using (6) we get K, C K} C B" and (7) yields
V(Ky) = (142) 'V(B"V(K;) ™ = (1+0(5))'V(B").  (9)

For z € 8", pk,(z) = (fR+ fo(r)dr)s > 1 and PK,(T) = (fR+ gu(r) dr)w <
1. We define

plx) = /fo(r) dr —2 = pg,(2)" + pr;(—2)" =2 >0,
vw) = 2= [ gulr)dr =2 = pre )" = e (~a)" 20,
In particular (8) and (9) yield

/Sn_l@(x) dr = 2n(V(K;)—V(B")) = 0(6%)

Sn_l¢(x) dr = 2n(V(B") - V(K,)) = O(en),

(10)

where the integration is with respect to the Hausdorff measure on the sphere.
To estimate ¢ pointwize from above, we use the inclusion (8). In order to
estimate v, we use (10) and the fact that a cap of B" of height h < 1 is of
volume larger than k"2 V(B"')/n (which forces the convex subset K, g of
the unit ball, with almost the same volume, to have a radial function close to
1 pointwize). More precisely, we obtain that there exists 79 > 0 depending
only on n, such that

voesn for any z € S,

5
&
A

(11)

2
P(x) < yed eI for any x € S7L

10



If ¢ is chosen small enough (depending on n), then (11) yields that both
¢(z) < 1 and Y(z) < 5 for any z € S*1.
Let x € S !, and hence

. fe(r)dr > 1 and /R Ge(r)dr > 1 —p(x) > (1 4+ 2¢(z)) "

We define m(r) = r"'o(r?), which satisfies that m(e’) is log-concave, and
f2(1) - go(s) < m(y/rs)? for r;s € R,. Since

it follows from Theorem 2.2 that there exists a(z), f(x) > 0 and an absolute
constant ¢y > 0 such that

() fo(B(x)r) —m(r)|dr < coo(z)s

Ry

() g, (B(2) i) —m(r)|dr < cqpp(x). (13)

Ry

(12)

Using 1 < [, fu(r)dr <1+ ¢(z) and (12), we deduce that

~—

(x
(z)
m(r)dr + cow(g;)% =14+ Cow(w)%

z)

(2)
1— go(x))/R a(x) fo(B(x)r)dr

o) _

()

Q

[ trar - / o(z) fo(B(a)r) dr

™

<

9\%\»

L
—~
=

> (1= () : fa(r) dr

=
&
=

—~

> (- st ([ min)ar - i)
> 10 (max{p(a), v(x)F}).

For a(z) = a(z)™! and b(z) = B(z)~!, we have

L= o) < 50 <140 (max{e(e), v(2)5}) (14)

11



Since ¢(x) and ¢ (z) are even, (12) can be written in the form

[ 15er) — alwple) bl dr < covla) .

Thus the hypotheses of Proposition 3.1 are satisfied for the log-concave func-
tions h(r) = f(rz) and w(r) = a(z)b(z)" ' o(b(x)*r?) because [ |r|" w(r)dr =
%. As 0(0) = f(0) =1 we get that (using n + 1 < 2n)

a(@)b(@)" ! = 1] = 0 (w(2)%). (16)
We deduce by comparing (14) and (16) that
a(@) 1] = O (max{p(x), p(2)77}) and |p(x) = 1] = O (max{p(x), ()7 })

We claim that for any x € S !, we have

|t - el < 0 (maxfete). viwEY) 7

(15)

/ lgter) —oldr <0 (maxtple) v ). (8)
To prove (17), we observe
/ S an) - o < / ) — ety olb@)s ) o
¥ A+r"-1a<x>b<x>"-l|g<b< 2)%1%) — ()] dr
- e a1l dr

Here the first term is O(¢)(2)16) by (15), and the third term is O (v ()32 ) by
(16). To bound the second term, we first use (16) to get rid of a(x)b(x)" .
To simplify the notations, we put M = |b(z)>—1|. Since 1 =M <> <1+ M
and o is non-increasing, we obtain

lo(b(2)*r?) = o(r*)] < o((1 = M)r?) — o((1 + M)r?).
Thus

/R"w@(()“) o(r®)] dr
/T”_lg((l— %) dr — o((1+ M)r?)dr

R+

— (1—M)"3—(14M)3 O(maxm)w(x)w%}),

IN

12



which in turn yields (17). The proof of (18) is similar.
Now using Holder’s inequality and (10), we deduce that

/Sn—l (90(1:) + 1#(:70)32%) dr < /Sn_l (@) dz + O ( B o) d$>325"
< Omn).

Therefore integrating (17) and (18) over z € S"!, we have

[ @) = e(aP)lde < Ofw2)

l9(@) = o(|z|*)|dz < O(ewn?).

Rn

In turn we conclude Theorem 1.3.

4 Proof of Theorem 1.1 (¢ convex)

During the proof of Theorem 1.1, 71,72, ... denote positive constants that
depend only on n. We always assume that € € (0,q), where €y > 0 depends
on n and p, and is small enough for the argument to work.

We start with some simplification. We may assume that o(0) = 1 = fR+ 0.
Using the same argument on p that the one that we used on w in the beginning
of the proof of Proposition 3.1, there exists some tq > 1 such that o(t) < e™*
if t > tg, and o(t) > e " if t € (0,%y). It follows that ¢'(0) > —1, and

2 I'(n/2
/ r”’lg(rQ)dr g/ e dr = —(n/ )
R, R, 2

For the log-concave function f(z) = o(p(z)), we may assume that the
origin 0 is the centre of mass of K¢y, and hence we only check the condition
in Theorem 1.1 at z = 0. For ¢(x) = Lop(z), let g(x) = o(¢(x)). It follows
from the definition of the Legendre transform that

o(x) +Y(y) > (x,y) for all z,y € R™. (19)

In particular

13



Thus we may apply Theorem 1.3, which yields the existence of £ > 0 and a
positive definite matrix 7" : R™ — R"”, such that

/" lo(|2]*/2) — € o(p(T2))| dv < pem
/én ‘Q(’l"Z/Q) _fflg(w(Tflx))} dx < ngﬁ’

where 7, depends on n. Since Lo(¢ o T) =1 o T}, we may assume that T
is the identity matrix. We choose R(¢) in a way such that
1

o(R(e)?) = e,

As o(t) < e ! for t > tg, it follows that provided &y is small enough,

30 < R(e) < +/|loge|/(8n). (20)

Let ¢ = —log ¢ and a(x) = —log o(x). Hence « is convex and increasing with
a(0) =0, a/(0) < 1, where o/(z) denotes the right-derivative. We deduce

/ o—olll?/2)
V2R(¢)Bn

/ o—allz?/2)
V2R(¢) Bn

which in turn yields by the definition of R(e) that

/\/ER(E)B”
/\/iR(s)B"

Next we plan to get rid of the exponential function in (21) and (22).
Define &(z) = a(|z|*/2). Then for all z € 1.3R(¢) B",

collal?/2)—alp(@)—c _ 1’ dr < men?

6a<\x|2/2>—a(w(m>>+c_1‘dx < meme,

collzl?/2)—a(e(@)—c _ 1‘ dr < ~pean? (21)

1

ea<lwl2/2>—a<¢<x>>+c—1‘dm < yem, (22)

IVa(z)| = |z|/(|z[*/2) < 1.3R(g)d’ (0.845R*(¢)).

a((14t)s)—a(s) < a((14t)s)

Using, for s,t > 0, the convexity bound o/(s) < - < -
together with the relation a(R(¢)?) = |loge|/(64n?), we deduce that the
function & satisfies

|Va(z)] < vyalloge| for x € 1.3R(e)B™. (23)

14



We claim that the convex function ¢ = « o ¢ satisfies

IVo(z)| < 327s]loge| for x € 1.2R(e)B™. (24)
Suppose, to the contrary, that there exists o € 1.2R(e)B™ such that the
vector w 1= V(xp) satisfies |w| > 3272 loge|. Since R(e) > 30, it follows
by (23) that

|a(x) — a(xg)| < 3y2|loge]| if |[x — x| < 3. (25)
We define
== {x ER": |z —z| <1 and (w,x —x0) > |w| |x—x0|} C 1.3R(e)B".

If ¢(z) < a(xg) — ¢ — 42| loge| for all z € = then (25) yields

/ﬁR(a)B”

provided that gy is small enough. This contradiction to (21) provides a yg € =
such that ¢(yo) > a(xg) — ¢ — 4ys|loge|. For v = Va(yy), we have

collal2/2—alp(@)—c _ 1‘ dr > / e2lo8el 1) dy > ez,

(v, 20 —y0) < @(wo) — G(yo) < (w, 0 — o)
1
< —§Iw| |20 — yo| < —1672|loge] - |xo — wol.

In particular |v| > 167|loge|. Next let
== {:U ER": 1< |z—yo| <2 and (v,x—yo) > |w| |x— y0|} C 1.3R(e)B™.

Combining the above definitions and (25) yields for any z € Z’,

o(x) = &(yo) + {x — vo,v)
> d(xg)—c—4'yz|log5|+—|w| |z — yol
> a(zo) — ¢+ dysfloge]
> a(x) — ¢+ 1llogel.
Consequently,

e (le?/2)—alp(a))—e 1‘d$>/]ewlogs| 1\da:>71564n

/ﬂR(s)B"

15



provided that €y is small enough. This contradicts (21), hence we may con-
clude (24).

Next we prove that
a(|z]?/2) — a(p(z)) —c> —1 if z € 1.1R(¢) B™. (26)

Otherwise suppose that x; € 1.1R(e)B" and &(z1) — ¢(z1) — ¢ < —1. If
|z — 21| < (9672]loge])™! and &y is small enough, then (23) and (24) imply
that &(x) — ¢(x) — ¢ < —1/3. Therefore

/\@R(S)B”

provided that ¢q is small enough. This is a contradiction, hence (26) holds.

« $2 —Q T))—cC -1
el /2)-alpl@)—e _ 1‘ dr > /(6 5= 1‘ Lio—z1]< (96| loge))—1 4%

> slloge|™ > yem?,

Since [t| < 2|et — 1] if t > —1, combining (21) and (22) with (26) and its
analogue for v, we deduce

/R( - la(p(@)) — al|z[?/2) + ¢| dz < 2ypem (27)

[ Jat@) - alsP/2) e dv < 2em=, (28)
R(e)B™

For z € R™, we define C'(z) = ¢(z) — 2 C(x) = P(z) — 2 and

F(z) = C(z) + C(z) > 0, (29)

where the inequality is a consequence of (19). Summing up (27) and (28),
and using the convexity of « in the form «a(b) — a(a) > (b — a)d/(a) yields
that

4mm@z.AUW@wﬂwwﬂmwwm+awwn—amfm»dx
> [ (a2 (o) o 2+ 00a) = JoP2) da
R(e)B™
_ /R( e )

This is the point where « influences the estimates. Using (29), we get that

4’71 1
F(x)dr < —— - goan?. (30)
/R(E)Bn o’(0)
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Observe that with our notation, (19) reads as C(y)+C(z)+|z—y|2/2 > 0
or equivalently C(z) < C(y) + F(x) + |x —y|?/2. Since F takes non-negative
values, we get that for all z,y € R,

[z —y*

Cz) = Cly)l < Fz) + Fy) + —

(31)

For t € R, we write [t] for the smallest integer not smaller than ¢, which
satisfies [t] + 1 < 2t if [t] > 3. Set

k= { 4‘;5_?:) ( /R e dz)_é ~R(g)"§2-‘ , (32)

which is at least 3 if gy is chosen small enough by (20) and (30). Let us
denote o := V(R(e)B")™" [4pn C(y) dy. Taking advantage of (31), we get
that

a0~ < VRO / /, - () dvdy
R(e)B™ R(e)B" s)Bn
< V(R(e)B")™ / /
izl R(e)B™ J R(e)B"
O+ (- $) = C (o + (1= 5)y)]| dedy
k
2 / /
= F(fa+(1—1)y) dedy
;V(R(g)Bn) o Jrom ( (1-1)y)

For i € {0,...,k} in (33), we claim that

/ / F(tz+(1-1)y) dedy < Q"V(R(E)B”)/ F(z)dz.
R(e)B™ J R(e)B"™

R(e)B™

If i > k/2, then for fixed y, using the substitution z = ix + (1 - %)y, we
have

/ / Fiz+(1-1)y) dedy = / / F(z)dzdy
R(e)B™ J R(¢)B™ R(e)B R(e)B"+(1

(R(e)B" /R(E)B"F(Z> dz.

IN

2"V
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If i < k/2, then for fixed y, we obtain (34) using the substitution z =
tx+ (1 — 1)y for fixed z.

In (33), we use the rough estimate |x — y| < 2R(e), and obtain by (34),
(32) and k + 1 < 2k that

/ |C(z) —o|dx < (/{:—1-1)2"“/ F(z)dz +
R(e)B™ R(e)B™ k
1

< 3¢ (/ F(z) dz) ) R(e;)nTJr2
R(e)B™

where ¢y > 0 is an absolute constant such that /2"+14V(B") < ¢ for n > 2.
Since R(e) < /|loge| by (20), we deduce by the definition of C'(z) and (30)

that
/ |90(95)_@_0|d$<300 i-gﬁ.“ogd%”’
R(e)B™ Qa (O)

completing the proof the first part of Theorem 1.1.

5 Proof of Theorem 1.1 (p measurable)

In this section, 1y, 7, . . . denote positive constants that depend only on n and
0. Since [, o(L.¢(x)) dz > 0 for all z, the function £.¢ cannot be identically
infinite. Hence we may consider the lower convex hull ¢, = L, L.¢ of p. It
follows that L,p, = L,0. We may assume as in the proof of Theorem 1.1
that o(0) =1 = [ o, and hence ¢'(0) > —1. Let again a(t) = —logo(?),
which is convex, increasing, and satisfies a(0) = 0 and 0 < &/(0) < 1, where
o/(z) denotes the right-derivative.
For t € R, we also introduce

alt) ift>0
a(t) = { o/(0)-¢  ift<0.

As we shall see shortly, we can replace a by a, in the inequalities. Observe
first that o, < « and that

a,(t) > d'(0) = o, (0) forall t € R.
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Let 0,(t) = e=*® . As 0,(t) > o(t), p.(7) < p(x) and L., = L., we have

[ ete@nds [ ottt = [ o)t [ ollp@)ds

> - ([ olels dx)2
= a=a ([ el da:)2 (3)

for any z. We may assume that the origin 0 is the centre of mass of Ky for
the log-concave function f = g, o ¢,. Therefore

[ et [ oty ([ atepma). oo

We have proved in the course of the argument for Theorem 1.1 that possibly
after a positive definite linear transformation, there exists o € R such that

2 1
/ oi(x) — 0 — i dx < myer2on? (37)
R.(c)B" 2
where loge
2y _ [10g¢€
a(Ru(e)) = =25 (38)

In particular lim._,o R.(¢) = 400 and 30 < R.(e) < +/|loge|/(8n). Set
R(e) := 3 R.(e).
Proposition 5.1 If ¢ > 0 is small enough, then

2 2
Pu(r) — 0 — % < e <1 for all x € 2 R(e) B,

Proof: Let us denote by ¢ the convex function ¢, —o and f(x) = c(x)—|z|*/2.
Set § = met/(129%) Assume that e is small enough so that § < 1. Our
starting point is (37) which reads as [; . |l <.

Let 7 € (0,1) and € R™ with |z| < R.(¢) — 1. If v(z) is a subgradient
of ¢ at x, we get by convexity of ¢ that for all y,

ly —

F) 2 F@) + (o) = 2,y —2) - L
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Since the ball B(z,r) of center z and radius r is included in B(0, R.(¢)) =
R.(¢) B", we deduce that

/ NE / S

> Ve - [ By e ) - e

J

v

for suitable quantities v,,c, depending only on n. Rearranging, f(z) <

(6 + ¢, 2) /(var™). Choosing r = §%/("+2) < 1, we obtain that for all 2 with
7] < Ru(e) — 1,
F@) < dpd7m. (39)
In order to establish the proposition, it remains to prove a similar lower
bound on f. Consider x € R" with |z| < R.(e) —2. Let r € (0,1) to be
specified later. Consider a point y € B(xz,7) \ {z}. It can be written as
y =z + su with s € (0,7] and v € R", |u| = 1. By convexity,

cly) < —clz+ru)+ (1 — ;) c(x)

(f(x+ru)+M) + (1—2) (f(x)+@).

Rearranging the squares and using the upper bound (39) gives

Sl I |lw

) = )z Lstr 9 - Ly — (1-2) @

1 S 2 S
> 23(7“ s) rdn5n+2 (1 r> f(z).
Integrating in y = x + su in spherical coordinates of origin x, and changing
variables s = rt, t € (0, 1] gives for suitable positive numbers depending only
on the dimension

5 z/ \f\Z/ mz/ —fly)dy
R.(g)B™ B(z,r) B(z,r)

1 [ 2 "
> —= / s(r — s)nV(B")s" tds — d,67+2 / an(B”)s”_lds
2 Jo o T

. " o f n\ ,n—1
f(x)/0 (1 r) nV (B")s" " ds
= —cr"T? - d;5n%2r" —c f(z)r™.

Choosing r = §/("*2) < 1 and rearranging yields f(z) > —c’,§5ni+2, provided
|z] < R.(g) — 2. Since R,(¢) > 30, the claim follows. O
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We now estimate how close the weight function o, o ¢, is to be a constant
function on R(¢)B™. We claim that

0:00:®) o oy all 4y € () B (40)
2 © pu(y)
Since the function o, = —log p, is increasing, we deduce from Proposition 5.1

that

R(e)*
2

| (p(z)) — au(e(y))] < au ( +1+ a) —a,(0—1) for z,y € R(e)B".

Therefore it is sufficient to prove that

Q= a, (%@2+1+a>—a*(a—1)§

(41)
It follows by (27) and (28) that
/ (a* (¢:(2)) + (Lo () — 2a*(|x|2/2)> dr < nggﬁ.
R.(e)B™

We note that by definition ¢, (z) + Lop.(x) > |z|? for all z € R™. Hence the
monotonicity of a, yields

/R (B (e (0el@) + (0l = pu(@) = 20 (22/2) ) dov < i (42)

Next, we bound from below the three terms appearing inside the above in-
tegral, when the variable is in the smaller domain 2 R(e)B"\(3 R(¢)B").
Observe that if z € 2 R(¢)B™\(3 R(e)B"), then by Proposition 5.1

90*($)Z(§}%%)>2+0—12 R<26)2+0+1.

Since a is convex, increasing and verifies .. (0) = 0, o/,(0) = o/ (0) we get
that
R(e)*

o) 2 o (2

+a+1) =0+ a,(oc—1)> Q4 (0)(c —1).

Still assuming that = € 2 R(¢)B™\(3 R(¢)B") and taking advantage of Propo-
sition 5.1, we obtain that

a(|zl* = pu(x)) > au(—0 — 1) = '(0)(=0 — 1).
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Eventually, Equation (38) gives for z € 2 R(¢)B"\ (3 R(¢)B"),

~ |loge]
C 64n2

au(|2*/2) < 0 ((BR()/3)*/2) < au(Ri(e)?)

Since the integrand in (42) is always non-negative, the above three inequali-
ties together with (42) easily yield that
|loge|

Q —24/(0) ) dx < ngedin?.
/gR(s)Bn\( R(e)B™) ( 32n?

From this, we conclude that (41) and thus (40) hold if ¢ is small enough.

4
3

Next, we define the set
U= {x € R(e) B : o(z) > p.(2) +5*}

Since the inequality ¢(x) > ¢.(x) is true for all x € R", it follows from
equation (37) and the bound R(e) < 4/|loge| that

/ |z f?
R(e)Bm\¥

S TO~ o(x)
Therefore our final task is to provide a suitable upper bound on the volume
of the set W. ,

Let Ry > 0 be defined by o/(0) - (% —2) = 1. Since o/(0) € (0,1],
Ry > /6. From now on we consider R € [Ry, R(¢)]. Since o.(t) > o/(0) for
t € R, we have for all z € ¥

1
dr < M10€ 12902

1
0:(p(z)) = e ) Se_a*(¢*(r)+6128n2)

1
1

< @O (5 (7)) < (1 — o/ (0)eTam? ) 0+ (p(2)),

where the last inequality is valid if € is small enough. This improves on the
trivial estimate g, o ¢ < p, 0 ¢,. Let us see how the improvement passes to

integrals:
/ @*Osoz/ Q*O<P+/ 00
RBn UNR B" RB™\¥

< (1 - o/(())gﬁ> / 0x O P +/ 0x O P
WNRBn RB™W

— / 04 O Py — 0/(0)5 T2 / 0% O Py
R B" UNR Bn
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However, (40) readily gives

/ o V(\IfﬂRB")/
0x O Py = £1607 Ox © Py
UNR B" V(R B") RB"

Hence, combining this with the former estimate, we deduce that

cw?V(UNRBY) ,, .
o.o0p < 1— ' (0)e 12702 / 0« O Py
/RB” ( V(R B") RBn

Our goal is to draw information on the volume of ¥ from the above inequal-
ity and the almost equality in the functional Blaschke-Santalé inequality.
But this requires a similar inequality involving integrals on the whole space.
Building on the latter estimate,

/ Ox 0P = / Q*o§0+/ 0x 0 Y
n R B" R"\RB”
. V(¥NRBY
1 — e8n2 o/(O)—) / Ox O Vs +/ Ox © P«
( V(R B") R B R"\R B

-, V(\IfﬂRB”)/
= 050 —esn’ (0) —=—=—— O« O V. 43
/n (0) V(R B™) RBn (43)

If |z| = Ry, then Proposition 5.1 and the properties of «, yield

IA

(. (2)) — e (.(0)) > o, (— fo- 1) oo+ 1)

oo +1) (R?_z) %21,

thus the log-concave function g, o ¢, verifies g.(p.(x)) < e ' o,(p.(0)) when-
ever |z| = Ry. Then, elementary estimates for one-dimensional log-concave
functions (applied on all radii) give

fRo B O+ © Px S fRo Bn e~ lel/Ro d$.
Jen0s0@n T [ e lEl/Body

Since the latter ratio depends only on n, we consider it as a constant. Hence

we deduce from (43) that for R € [Ry, R(¢)]

Jen009 _ | mues?V(VNRB")
Jgnoiop. = V(R B")
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On the other hand, (35) and (36) give Janowoe 5 o Comparing the latter

fRn 0x0Px —
two estimates leads to

V(¥ NRB") < nile' s2V(RB").
The proof of Theorem 1.1 is therefore complete.

Acknowledgement: We would like to thank the referee for helpful com-
ments.
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