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Notation

I G is a graph

I Drawing on a surface when each edge is represented by a
simple curve, and no three edges go through any point

I cr G is the minimal number of crossings in a planar drawing

I V (G ) is the set of vertices

I n is the cardinality of V (G )

I d(v) is the degree of a v ∈ V (G )

I ∆(G )= maxv∈V (G) d(v)

I σ(G )=
∑

v∈V (G) d(v)2

I χ(S) is the Euler characteristic of a compact surface S

I c is always some positive absolute constant
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Topic

Starting point

Theorem (J. Pach, G. Tóth (2005))

If G can be drawn without crossing on a compact oriented surface
S then

cr G ≤ c3−χ(S) ·∆(G ) · n.

Main result

Theorem (J. Pach, G. Tóth, K.B. (2006))

The above statement holds for any compact surface S.
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The above statement holds for any compact surface S.



Remarks

I The Euler characteristic χ of a compact surface is at most
two, and is even if the surface is orientable. Topologically the
surface is determined by the Euler characteristic and by
orientability. For example the surface with χ = 2 is a sphere,
with χ = 1 is a projective plane, and with χ = 0 is either a
torus (oriented) or a Klein bottle (non-oriented).

I The order of the main theorem is optimal apart from the value
of the factor.

I To have a non-trivial upper bound on the crossing number, it
is not enough to know that the graph G can be drawn crossing
free on a compact surface S different from a sphere. We do
need say an upper bound on the degrees of the vertices.
Specifically if G has e edges then clearly cr (G ) <

(e
2

)
. Define

G by taking five vertices, and connect any pair of them by e
20

vertex-disjoint paths of lengths two. This G can be embedded
into S , but the subdivisions of K5 yield cr (G ) ≥ e2

400 .
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Sum of the squared degrees

Theorem (General version)

If G can be drawn without crossing on a compact surface S then

cr G ≤ c
3−χ(S)
0 ·

∑
v∈V (G)

d(v)2

Remark Let G be connected, and let S be a compact surface of
maximal Euler characteristic containing a crossing free drawing of
G . Then G defines a CW-cell decomposition of S .
Proof of the Main Theorem based on the General version:∑

v∈V (G)

d(v) ≤ 6n − 6χ(S) by the Euler relation, therefore

∑
v∈V (G)

d(v)2 ≤ 12n∆(G ) if n ≥ |χ(S)|.
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Induction

σ(G ) =
∑

v∈V (G) d(v)2

Theorem (Core of Induction)

If G can be drawn without crossing on a compact surface S then it
can be drawn with at most c̃σ(G ) crossings on a compact surface
S̃ where χ(S̃) > χ(S).

Proof of the General version based on the above statement:
Reverse induction on χ = χ(S). Let c0 = 16c̃ + 2, and let G̃ be
the graph adding a vertex for any crossing in the drawing of G on
S̃ , hence

σ(G̃ ) ≤ σ(G ) + 42 · c̃σ(G ) = (c0 − 1)σ(G ).

Since the General version holds for G̃ by induction, we have

cr G ≤ cr G̃ + c̃σ(G ) ≤ c2−χ
0 (c0 − 1)σ(G ) + c̃σ(G ) ≤ c3−χ

0 σ(G ).
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Idea of the proof of the ”Core” theorem

Rough Plan We find a simple closed curve γ on S

I that is non-separating (S\γ is connected), and
I intersects only

√
σ(G ) edges of G .

Cutting S along γ yields S̃ , and the free ends of the
edges can be reconnected generating only at most
σ(G ) crossings.

How to find γ? We ”enlarge” G into a triangulation
G ′ with at most σ(G ) vertices whose degrees are at
most eight. Then γ is a shortest non-separating cycle
in the dual graph H of G ′.

Remark H has at most c∗σ(G ) vertices, and any cell determined
by H has at most eight sides
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Curves and orientation

Let γ be a simple closed path on a compact surface S . A small
neighbourhood of γ is topologically equivalent either to a strip or
to a Möbius strip. In the first case, we say that γ is orientation
preserving, and in the second case, it is orientation reversing.

Strip Möbius strip
γ orientation preserving γ orientation reversing

γ γ

The surface S is orientable if and only if it contains no orientation
reversing curve.
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Another way to get a Möbius strip

γ

γ

γ



Types of curves on a surface

γ is a simple closed path on a compact surface S .

I γ is separating if X\γ has two connected components.
Equivalently, if γ intersects any closed path on S in even
number of vertices.

I γ is non-separating and orientation preserving.
Cutting S along γ, and attaching a disk to each of the
resulting boundary curves, we obtain a compact surface S̃
with Euler characteristic χ(S) + 2.

I γ is orientation reversing. In this case γ is non-separating.
Cutting S along γ, and attaching a disk to the resulting
boundary curve, we obtain a compact surface X ′ with Euler
characteristic χ(S) + 1.

Remark Any surface different from a sphere contains a
non-separating curve
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Separating curve

γ



Non-separating and orientation preserving curve

γ

γ

’

γ "



Orientation reversing curve 1

γ

γ

Obtaining the torus from the Euler characteristic −1 surface



Orientation reversing curve 2

Obtaining the projective plane from the Klein bottle
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Inserting a triangular grid instead of a vertex

v interchanged into ≈ d(v)2 vertices of degrees at most six



Shortest non-separating dual cycle
does not pass through the grid



The non-separating curve for the original graph

γ

γ



Triangulating a cell

I A large cell



Triangulating a cell

I The first layer



Triangulating a cell

I The number of vertices is multiplied by at most 36.

I The maximal degree of vertices is at most eight.
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The statement to prove

Theorem
If G can be drawn without crossing on a compact surface S then it
can be drawn with at most c̃σ(G ) crossings on a compact surface
S̃ where χ(S̃) > χ(S).



Separating vertices

H∗ is a graph drawn on a compact surface such that any cell
determined by H∗ has at most eight sides.

For vertices u and w , let m be the minimal number of vertices of
H∗ whose deletion separates u and w . Then

I H∗ contains a cycle of length at most 8m separating u and w .

I There exists a path of length at most #V (H∗)/m connecting
u and w because of the m (internally) vertex disjoint paths
between u and w provided by Menger’s theorem.
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γ is a shortest non-separating cycle of the graph H dual to G ′

k= length of γ

c denotes various positive absolute constants

Recall #V (H) ≤c∗σ(G ).
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Aiming at k ≤ c
√

σ(G )

Divide γ into four paths (arcs) of length k/4

γ

Claim Any path connecting the red and the gold arcs, or the blue
and the green arcs is of length at least k/4.
m= minimal number of vertices whose deletion separates the red
and the gold arcs.
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Proving k ≤ c
√

σ(G )

γ

I ∃ a cycle of H of length at most 8m separating the red and
the gold arcs, hence intersecting the blue and green arcs ⇒

I 8m ≥ k/4 ⇒
I ∃ a path of length at most 32c∗σ(G )/k connecting the red

and gold arcs ⇒
I k/4 ≤ 32c∗σ(G )/k
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Economic non-separating curve for G

Corollary

For any graph G drawn on some compact surface S different from
a sphere, there exists a non-separating curve on S that cuts only
c
√

σ(G ) edges.

Remark The bound cannot be improved in general.



Economic non-separating curve for G

Corollary

For any graph G drawn on some compact surface S different from
a sphere, there exists a non-separating curve on S that cuts only
c
√

σ(G ) edges.

Remark The bound cannot be improved in general.



γ is orientation reversing

γ

γ

I Connect the free ends of the edges cut by γ inside the
attached disk ⇒

I At most
(k
2

)
≤ cσ(G ) crossings are generated
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γ is orientation preserving - Preparation

γ ’

γ "

γ

m= minimal number of vertices separating γ′ and γ′′.

I ∃ a cycle on S̃ of length at most 8m separating γ′ and γ′′ ⇒
I 8m ≥ k ⇒
I ∃ a path ω of length at most cσ(G )/k connecting γ′ and γ′′
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γ is orientation preserving - Final touch

γ ’

γ "

γ

ω

I For each edge cut by γ, connect the free end on γ′ to the free
end on γ′′ along ω
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A gift from Csenge
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Summary

Theorem (J. Pach, G. Tóth, K.B. (2006))

If G can be drawn without crossing on a compact surface S then

cr G ≤ c3−χ(S) ·∆(G ) · n.

Theorem (L. Alexandrov, H. Djidjev, I. Vrt’o (2006))

If G can be drawn without crossing on a compact oriented surface
S of genus g (hence χ(S) = 2− 2g) then

cr G ≤ c · g ·∆(G ) · n.

Theorem (D.R. Wood, J.A. Telle (2006))

For every graph M there is constant C = C (M) such that every
M-minor free graph G satisfies

cr G ≤ C ·∆(G )2 · n.
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If G can be drawn without crossing on a compact surface S then

cr G ≤ c3−χ(S) ·∆(G ) · n.

Theorem (L. Alexandrov, H. Djidjev, I. Vrt’o (2006))

If G can be drawn without crossing on a compact oriented surface
S of genus g (hence χ(S) = 2− 2g) then

cr G ≤ c · g ·∆(G ) · n.

Theorem (D.R. Wood, J.A. Telle (2006))

For every graph M there is constant C = C (M) such that every
M-minor free graph G satisfies

cr G ≤ C ·∆(G )2 · n.


	Notation, backround and results
	Curves on surfaces
	Customizing the graph
	Proof of the ``Core'' Theorem

