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Abstract

We characterize the duality of convex bodies in d-dimensional Euclidean vec-
tor space, viewed as a mapping from the space of convex bodies containing the
origin in the interior into the same space. The question for such a characteriza-
tion was posed by Vitali Milman. Sufficient for a characterization, up to a trivial
exception and the composition with a linear transformation, is the property that
the duality interchanges pairwise intersections and convex hulls of unions.
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1 Introduction

By Rd we denote the d-dimensional real Euclidean vector space, equipped with its
standard scalar product 〈·, ·〉. We assume throughout that d ≥ 2. The set of convex
bodies (compact convex subsets) in Rd which contain 0 is denoted by Kd

0, and the
subset of bodies containing 0 in the interior by Kd

(0). For K ∈ Kd
(0), the dual or polar

body is defined by

K∗ := {x ∈ Rd : 〈x, y〉 ≤ 1 for all y ∈ K}.

It is again in Kd
(0). The duality mapping K 7→ K∗ has a number of remarkable proper-

ties, of which we list the following (see, for example, [4, Sect. 1.6]); they are valid for
all K,L ∈ Kd

(0).

(D1) (K∗)∗ = K.

(D2) K ⊂ L implies K∗ ⊃ L∗.

(D3) (K ∩ L)∗ = conv(K∗ ∪ L∗).
(D4) [conv(K ∪ L)]∗ = K∗ ∩ L∗.
(D5) If K ∪ L is convex, then (K ∩ L)∗ = K∗ ∪ L∗ and (K ∪ L)∗ = K∗ ∩ L∗.

This work was supported by the EU-project DiscConvGeo (MTKD-CT-2005-014333). The first
author was supported by OTKA grant 049301.
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(D6) Continuity with respect to the Hausdorff metric.

(D7) If g ∈ GL(d), then (gK)∗ = g−tK∗.

Of course, the listed properties of a mapping K 7→ K∗ are not independent. For
example, (D3) implies (D2); (D1) and (D3) imply (D4) and (D5).

The question, which properties of the duality mapping are sufficient to characterize
it, has been posed to the authors by Vitali Milman. A complete characterization would
definitely require additional assumptions, since also the map K 7→ −K∗ satisfies (D1)
– (D7). Note also that a constant map K 7→ B (with B ∈ Kd

(0) fixed), as well as a map

K 7→ gK∗ (with g ∈ GL(d) fixed), satisfies satisfies (D2) – (D6). On the other hand,
when we are prepared to accept such modifications, then characterizations by a few of
the above properties are possible. Here, the following result will be proved.

We write A∨B := conv(A∪B) for A,B ⊂ Rd and x1∨· · ·∨xk := conv{x1, . . . , xk}
for x1, . . . , xk ∈ Rd.

Theorem. Let ψ : Kd
(0) → Kd

(0) be a mapping satisfying

ψ(K ∩ L) = ψ(K) ∨ ψ(L), (1)

ψ(K ∨ L) = ψ(K) ∩ ψ(L) (2)

for all K,L ∈ Kd
(0). Then either ψ is constant, or there exists a linear transformation

g ∈ GL(d) such that ψ(K) = gK∗ for all K ∈ Kd
(0).

Note, in particular, that no continuity assumption is required.

If ψ satisfies (1) and (2), and if we define

ψ∗(K) := ψ(K)∗ for K ∈ Kd
(0), (3)

then the mapping ψ∗ : Kd
(0) → Kd

(0) satisfies

ψ∗(K ∩ L) = ψ∗(K) ∩ ψ∗(L), ψ∗(K ∨ L) = ψ∗(K) ∨ ψ∗(L). (4)

Thus, ψ∗ is an endomorphism of the lattice (Kd
(0),∩,∨). Gruber [1] has explicitly

determined all endomorphisms of the lattice (Kd,∩,∨), where Kd is the system of
all compact convex subsets of Rd (including the empty set). In [2], Gruber has also
completely classified the endomorphisms of the lattice (Bd,∩,∨), where Bd is the system
of all unit balls of norms on Rd, that is, of all convex bodies having 0 as interior point
and center of symmetry. From the latter result, one obtains the version of the theorem
above where Kd

(0) is replaced by Bd. The proof in [2] uses the central symmetry of the
images in several crucial ways, therefore the general case requires a different proof.

Corollary. Let ψ : Kd
(0) → Kd

(0) be a mapping satisfying

ψ(ψ(K)) = K, (5)

ψ(K ∩ L) = ψ(K) ∨ ψ(L) (6)
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for all K,L ∈ Kd
(0). Then there exists a selfadjoint linear transformation g ∈ GL(d)

such that ψ(K) = gK∗ for all K ∈ Kd
(0).

In fact, (5) and (6) give

ψ(ψ(K) ∩ ψ(L)) = ψ(ψ(K)) ∨ ψ(ψ(L)) = K ∨ L,

hence

ψ(K ∨ L) = ψ(K) ∩ ψ(L).

Thus, the theorem can be applied. Condition (5) excludes a constant map and forces
the linear map appearing in the theorem to be selfadjoint.

The classification can be further narrowed down if (D7) is added to the assumptions
of the theorem. If the map in the theorem additionally satisfies ψ(hK) = h−tψ(K)
for all K ∈ Kd

(0) and all h ∈ GL(d), then there exists a real number c such that

ψ(K) = cK∗ for all K ∈ Kd
(0). Also a mapping ψ satisfying (D5) and (D7) must be of

this form, as can be shown with the methods of [3]. This was kindly pointed out to us
by Monika Ludwig. We gratefully acknowledge the helpful conversations with her. We
also thank Peter Gruber for useful hints.

2 Proof of the theorem

Suppose ψ : Kd
(0) → Kd

(0) is a mapping satisfying (1) and (2), and define ψ∗ by (3). It

is important to notice that, by (4), ψ∗ is inclusion preserving, that is, K ⊂ L implies
ψ∗(K) ⊂ ψ∗(L).

Our first aim is to define a mapping ϕ with similar properties which is defined on
the set Kd

0 of convex bodies containing the origin, but not necessarily in the interior.
Let K ∈ Kd

0 be given. We choose a sequence (Ki)i∈N in Kd
(0) with K ∈ intKi for all i

and with Ki ↓ K, that is, satisfying Ki+1 ⊂ Ki for all i and K =
⋂

i∈NKi. Put

ϕ(K) :=
⋂
i∈N

ψ∗(Ki).

It is easy to see (using a compactness argument) that this definition is independent
of the choice of the sequence (Ki)i∈N. Clearly ϕ(K) ∈ Kd

0. We show that properties
(4) carry over to ϕ, for K,L ∈ Kd

0. Let K,L ∈ Kd
0 be given, and choose decreasing

sequences (Ki)i∈N, (Li)i∈N in Kd
(0) with K ∈ intKi, L ∈ intLi, K =

⋂
i∈NKi, L =⋂

i∈N Li. Then K ∩ L ⊂ int (Ki ∩ Li), Ki ∩ Li ↓ K ∩ L, and hence ϕ(K ∩ L) =⋂
i ψ

∗(Ki∩Li) =
⋂

i ψ
∗(Ki)∩

⋂
i ψ

∗(Li) = ϕ(K)∩ϕ(L). Clearly, K ∨L ⊂
⋂

i(Ki∨Li).
If x ∈ Rd\(K∨L), there exists an open halfspaceH containingK∨L and not containing
x. For all sufficiently large i we have Ki ⊂ H and Li ⊂ H, hence Ki ∨ Li ⊂ H. This
shows that x /∈

⋂
i(Ki ∨ Li) and hence that

K ∨ L =
⋂
i

(Ki ∨ Li). (7)

3



By definition then, and applying (7) with Ki, Li replaced by ψ∗(Ki), ψ
∗(Li), we obtain

ϕ(K ∨ L) =
⋂
i

ψ∗(Ki ∨ Li) =
⋂
i

[ψ∗(Ki) ∨ ψ∗(Li)]

=

(⋂
i

ψ∗(Ki)

)
∨

(⋂
i

ψ∗(Li)

)
= ϕ(K) ∨ ϕ(L).

We have shown that the mapping ϕ is an endomorphism of the lattice (Kd
0,∩,∨). Of

course, K ⊂ L with K,L ∈ Kd
0 implies ϕ(K) ⊂ ϕ(L). As mentioned, Gruber [1] has

determined all endomorphisms of the lattice (Kd,∩,∨). We took Gruber’s proof as a
model for obtaining a classification of all endomorphisms of the lattice (Kd

0,∩,∨).

For x ∈ Rd, we write x̄ for the closed segment x ∨ 0 with endpoints x and 0; in
particular, 0̄ = {0}. If one tries to adapt Gruber’s [1] approach from Kd to Kd

0, the first
thing to do is to replace the empty set ∅ by 0̄ and any point x ∈ Rd by the segment
x̄. In pursuing this for the cases 2.1 to 2.6 considered by Gruber, we found a shorter
proof for his cases 2.4 and 2.5, and we present this here for our case of the lattice
(Kd

0,∩,∨). This is still more complicated than the elegant argument used by Gruber
in [2] (to prove the implication (8) ⇒ (13) in [2]), but the latter depends on the fact
that the images, being 0-symmetric, contain 0 in their relative interiors. The final case
2.6 considered by Gruber [1] also needs a different and more elaborate argument in our
situation.

Case 1: ϕ(x̄) = ϕ(0̄) for all x ∈ Rd.

For given K ∈ Kd
0, choose points x1, . . . , xd+1 with K ⊂ x̄1 ∨ · · · ∨ x̄d+1 =: P . Then

ϕ(0̄) ⊂ ϕ(K) ⊂ ϕ(P ) = ϕ(x̄1) ∨ · · · ∨ ϕ(x̄d+1) = ϕ(0̄), hence

ϕ(K) = ϕ(0̄) for K ∈ Kd
0. (8)

Case 2: ϕ(x̄) = ϕ(0̄) for at least one point x 6= 0, but not for all x ∈ Rd.

Let A := {y ∈ Rd : ϕ(ȳ) = ϕ(0̄)}, then A is convex. Let x ∈ A \ {0} and
put y := x/2, then also y ∈ A. Since the convex set A is different from Rd, there
are points u, v, w ∈ Rd \ A such that ū ∩ v̄ = 0̄ and w ∈ (x ∨ u) ∩ (y ∨ v). Then
ϕ(0̄) ⊂ ϕ(w̄) ⊂ (ϕ(x̄) ∨ ϕ(ū)) ∩ (ϕ(ȳ) ∨ ϕ(v̄)) = ϕ(ū) ∩ ϕ(v̄) = ϕ(0̄) and hence
ϕ(w̄) = ϕ(0̄), a contradiction.

Gruber’s [1] treatment of his Case 2.4 starts with the following proposition (though
formulated differently):

(P1) In an n-dimensional affine space, let M be a fixed convex body and let F be a
family of n-dimensional convex bodies such that K 6= M for all K ∈ F and K1 ∩K2 =
M whenever K1, K2 ∈ F and K1 6= K2. Then F is at most countable.

In fact, choosing a dense sequence in the space and associating with each set K ∈ F
the first term of the sequence contained in the set K \M (which has interior points), we
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construct an enumeration of F . We will use Proposition (P1) to exclude the following
two cases.

Case 3: ϕ(x̄) 6= ϕ(0̄) for all x ∈ Rd \ {0}, ϕ(0̄) 6= 0̄.

Case 4: ϕ(x̄) 6= ϕ(0̄) for all x ∈ Rd \ {0}, ϕ(0̄) = 0̄; there exists a point p ∈ Rd with
dimϕ(p̄) ≥ 2.

Assume, first, that Case 4 holds with d = 2. Let x1, y1 ∈ R2 be linearly independent,
and choose points x′±1 ∈ ϕ(±x̄1) \ {0}, y′±1 ∈ ϕ(±ȳ1) \ {0}. Let a, b, c be any three
of the points x1,−x1, y1,−y1, and let a′, b′, c′ be the corresponding points chosen in
their ϕ-images. Then (ā ∨ b̄) ∩ c̄ = 0̄, hence (ϕ(ā) ∨ ϕ(b̄)) ∩ ϕ(c̄) = 0̄. Thus, c′

cannot be in the positive hull of a′ and b′. Since this holds for all choices of a, b, c,
the set {x′1, x′−1, y

′
1, x

′
−1} must be of the form {u,−λu, v,−µv} with u, v ∈ R2 \ {0}

and λ, µ > 0. But then the set ϕ(x1), for example, cannot be two-dimensional, since
otherwise a choice of x′1 violating the latter condition would be possible. Since we may
choose x1 = p, Case 4 cannot occur for d = 2.

Now we show (simultaneously) that Case 3 cannot occur and that Case 4 cannot
occur if d ≥ 3. In Case 4, assume that d ≥ 3 and let p be as described there; in Case
3, we set p = 0.

Put B := ϕ(p̄) and b := dimB, then b ≥ 1 in Case 3 and b ≥ 2 in Case 4.

By a sheet we understand a set {λp + µu : λ ∈ R, µ > 0}, where u is a vector
linearly independent from p (thus, for p = 0, a sheet is just a ray without its endpoint
0). A sheet is called bad if it contains a point x with ϕ(x̄ ∨ p̄) ⊂ linB. Let x be in a
sheet. Then ϕ(x̄)∩ϕ(p̄) = ϕ(x̄∩ p̄) = ϕ(0̄). If ϕ(x̄∨ p̄) = B, then ϕ(x̄)∨ϕ(p̄) = ϕ(p̄),
thus ϕ(x̄) ⊂ ϕ(p̄) and hence ϕ(x̄) ∩ ϕ(p̄) = ϕ(x̄) 6= ϕ(0̄), a contradiction. This shows
that ϕ(x̄ ∨ p̄) 6= B. If x, y are in different sheets, then (x̄ ∨ p̄) ∩ (ȳ ∨ p̄) = p̄, hence
ϕ(x̄∨ p̄)∩ ϕ(ȳ ∨ p̄) = B. It follows from (P1) (applied in linB) that there are at most
countably many bad sheets. The other sheets are called good.

Suppose that b ≥ d − 1. We want to apply (P1) in Rd, with M = B and with F
defined as follows. Let the set S contain precisely one point from every good sheet, and
no other elements, and put F := {ϕ(x̄ ∨ p̄) : x ∈ S}. If x ∈ S, then ϕ(x̄ ∨ p̄) 6⊂ linB,
hence dimϕ(x̄ ∨ p̄) = d. Thus the conditions of (P1) are satisfied. It follows that F
is countable. This is a contradiction, since there are uncountably many good sheets
(here d ≥ 3 is used for p 6= 0). This shows that b ≤ d− 2. In particular, d ≥ 3 also in
Case 3.

Let k ∈ {1, . . . , d− b}. A set {x1, . . . , xk} of k points in Rd, briefly a k-set, is called
full if dimϕ(x̄1 ∨ · · · ∨ x̄k ∨ p̄) ≥ b + k. A k-flat E ⊂ Rd is called general if 0 /∈ E in
Case 3, and if dim aff(E ∪ lin{p}) = k + 2 in Case 4.

If x1 is contained in a good sheet, then B ⊂ ϕ(x̄1 ∨ p̄) 6⊂ linB, hence {x1} is a full
1-set. We assert the following.

(P2) Let k ∈ {2, . . . , d− b}. In every general (k − 1)-flat E ⊂ Rd there is a full k-set.
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We prove this by induction with respect to k. Let k = 2. Let E ⊂ Rd be a general
1-flat. Since E is general, each of its points, with at most countably many exceptions,
is contained in a good sheet, and different points of E are in different sheets. Choose
a point x1 ∈ E in a good sheet. Then {x1} is a full 1-set. If there exists y ∈ E \ {x1}
such that {x1, y} is a full 2-set, we are done. Otherwise, for each y ∈ E \ {x1}, the
2-set {x1, y} is not full. This implies that A := linϕ(x̄1 ∨ p̄) is of dimension b+ 1 and
that ϕ(ȳ ∨ p̄) ⊂ A. Since ϕ(ȳ1 ∨ p̄) ∩ ϕ(ȳ2 ∨ p̄) = B for different y1, y2 ∈ E \ {x1}, this
contradicts (P1).

Let k ∈ {2, . . . , d − b − 1} and suppose (P2) has been proved for this number.
Let E ⊂ Rd be a general k-flat. Choose a general (k − 1)-flat F ⊂ E and a full k-set
{x1, . . . , xk} in F . If there exists y ∈ E \F such that {x1, . . . , xk, y} is a full (k+1)-set,
we are done. Otherwise, for each y ∈ E \ F , the (k + 1)-set {x1, . . . , xk, y} is not full.
This implies that A := linϕ(x̄1 ∨ · · · ∨ x̄k ∨ p̄) is of dimension b+ k and that ϕ(ȳ) ⊂ A.
For any (k − 1)-flat F ′ ⊂ E which is parallel to F (but different from it) and hence
also general, we choose a full k-set {y1, . . . , yk} in F ′ and put KF ′ := ȳ1 ∨ · · · ∨ ȳk ∨ p̄.
Then ϕ(KF ′) ⊂ A and dimϕ(KF ′) = b + k. We can choose uncountably many such
flats F ′ such that any two of them, say F1 and F2, satisfy KF1 ∩KF2 = p̄ (observe that
d− b−1 ≤ d−2 in Case 3 and d− b−1 ≤ d−3 in Case 4), thus ϕ(KF1)∩ϕ(KF2) = B.
Since dimA = b + k, (P1) yields a contradiction. This completes the induction and
thus the proof of (P2).

The case k = d − b yields uncountably many convex bodies KF such that
dimϕ(KF ) = d and ϕ(KF1) ∩ ϕ(KF2) = B for F1 6= F2. By (P1), this is a contra-
diction.

Case 5: ϕ(0̄) = 0̄, and dimϕ(x̄) = 1 for all x ∈ Rd \ {0}.

For every x ∈ Rd \ {0}, the image ϕ(x̄) is a nondegenerate segment containing 0;
let x′ 6= 0 be one of its endpoints (arbitrarily chosen should 0 not be an endpoint). We
shall first show that 0 is always one of the endpoints. Let x1, . . . , xd+1 ∈ Rd be the
vertices of a simplex containing 0 in its interior. The set {x′1, . . . , x′d+1, 0} has a Radon
partition, that is, a decomposition into two subsets whose convex hulls have nonempty
intersection.

First case: The only Radon partition is that into the sets {0} and {x′1, . . . , x′d+1}.
In that case, x′1, . . . , x

′
d+1 are affinely independent and are the vertices of a simplex

containing 0 in its interior. If now 0 were not an endpoint of, say, ϕ(x̄1), then ϕ(x̄1) ∩
(ϕ(x̄2) ∨ · · · ∨ ϕ(x̄d+1)) 6= 0̄, in contradiction to x̄1 ∩ (x̄2 ∨ · · · ∨ x̄d+1) = 0̄.

Second case: There exists a different Radon partition, say

conv{x′1, . . . , x′m} ∩ conv{x′m+1, . . . , x
′
d+1, 0} 6= ∅

without loss of generality, where m ∈ {1, . . . , d}. The only possibility for the intersec-
tion is the set {0}, since

(x̄1 ∨ · · · ∨ x̄m) ∩ (x̄m+1 ∨ · · · ∨ x̄d+1) = 0̄.

It follows that 0 ∈ conv{x′1, . . . , x′m}. Therefore, 0 is contained in the relative interior
of the convex hull of less than d + 1 affinely independent points among x′1, . . . , x

′
d+1,
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say 0 ∈ relint conv{x′1, . . . , x′k} with 2 ≤ k ≤ d. As in the first case, each image ϕ(x̄i),
i ∈ {1, . . . , k}, is the segment with endpoints x′i and 0. Let a := (x1 + · · · + xk)/k.
Then ā ⊂

∨k
i=1 x̄i and ā ∩

∨
i6=j x̄i = 0̄ for j = 1, . . . , k, hence ϕ(ā) ⊂

∨k
i=1 ϕ(x̄i) and

ϕ(ā) ∩
∨

i6=j ϕ(x̄i) = 0̄ for j = 1, . . . , k. Since ϕ(ā) 6= 0̄, this is impossible.

We have proved that, for each x ∈ Rd, the image ϕ(x̄) is a segment with endpoints 0
and x′; thus we can define a mapping f : Rd → Rd by f(x) := x′. It satisfies f(0) = 0.
The next steps serve to show, finally, that f is a linear map.

In the following, we continue to denote f(x) by x′, and we write x̃ := 0 ∨ x′; thus
ϕ(x̄) = x̃. By Rx := {λx : λ > 0} we denote the ray (without its endpoint) spanned
by x 6= 0. Rays Rx, Ry are called opposite if Rx = −Ry. Vectors x, y 6= 0 are called
opposite if their spanned rays are opposite. For vectors x, y 6= 0 we write y � x and
x ≺ y if y = λx with λ > 1.

First we show that f maps rays into subsets of rays. Let x ∈ Rd \ {0}, then x′ 6= 0.
Let y ∈ Rx. If x � y, then ϕ(ȳ) ⊂ ϕ(x̄) = x̃, hence y′ ∈ Rx′ . If y � x, then x̃ ⊂ ỹ,
hence again y′ ∈ Rx′ . Thus, f(Rx) ⊂ Rf(x). If x̄∩ ȳ = 0̄, then x̃∩ ỹ = 0̄, hence different
rays are mapped into different rays.

Let S ⊂ Rd be a two-dimensional linear subspace. Let x, y ∈ S be linearly inde-
pendent. Then x̄ ∩ ȳ = 0̄, hence x̃ ∩ ỹ = 0̄. If y′ is opposite to x′, we choose z ∈ S
linearly independent from x and with ȳ ∩ z̄ = 0̄. Then z′ cannot be opposite to x′,
since otherwise z̃ ∩ ỹ 6= 0̄. Hence, we can assume without loss of generality that x′

and y′ are linearly independent. Let S ′ be the subspace spanned by x′ and y′. Then
f(Rx), f(Ry) ⊂ S ′. If a, b ∈ S, z ∈ a ∨ b and a′, b′ ∈ S ′, then z̄ ⊂ ā ∨ b̄, hence
z̃ ⊂ ã ∨ b̃ ⊂ S ′ and thus z′ ∈ S ′. This yields, first, that z′ ∈ S ′ for z ∈ pos{x, y}. Let
z ∈ pos{x,−y}\R−y. Choose a ∈ Rx and b ∈ Ry with a ∈ z∨ b. Then ã ⊂ z̃∨ b̃. Since
ã 6= 0̄, this is only possible if z′ ∈ S ′. Similarly, each z ∈ pos{y,−x} \ R−x is mapped
into S ′. For each of the remaining points z ∈ S we can choose points a, b ∈ S with
z ∈ a∨ b and a′, b′ ∈ S ′, hence z′ ∈ S ′. We have proved that f(S) ⊂ S ′, thus the image
of any two-dimensional subspace under f is contained in a two-dimensional subspace.

With the same notations as before, suppose the vector (−x)′ were opposite to y′.
Choose points a ∈ R−x and b ∈ Ry and set c := (a+b)/2. Then ã ⊂ R(−x)′ and b̃ ⊂ Ry′ .

From c̄ ⊂ ā ∨ b̄ and c̄ ∩ ā = c̄ ∩ b̄ = 0̄ it follows that c̃ ⊂ ã ∨ b̃ and c̃ ∩ ã = c̃ ∩ b̃ = 0̄,
a contradiction. Now the argument used above in the treatment of Case 4 for d = 2
shows that the two pairs of opposite vectors x,−x, y,−y must be mapped under f into
two pairs of opposite vectors and that, necessarily, (−x)′ is opposite to x′ and (−y)′ is
opposite to y′.

Let x and z be opposite vectors. Choose a two-dimensional linear subspace S
containing them. As shown, x′ and (−x)′ are opposite, and z′ ∈ R(−x)′ . Hence, the
images x′ and z′ are on a line through 0. If x, z, 0 are on a line, in this order, then
z̃ ⊂ x̃, hence x′, z′ and 0 are on a line. Now it follows that the images of any three
points on a line through 0 are on a line.

We want to show that f maps points on an arbitrary line to points on a line.
It suffices to do this for points in a two-dimensional linear subspace, so we restrict
ourselves to the subspace S introduced above. To see that the images of three collinear
points on a line not passing through zero are collinear, is more difficult, for the reason
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that there seems to be no direct easy way of showing that the restriction of f to a ray
is injective.

A point x is called regular if there exists a point y � x with f(y) 6= f(x). Let
x, y, z be three different points that are, in this order, on a line not passing through
0. Suppose that y is a regular point. Choose w � y with f(w) 6= f(y). Suppose that
f(y) were not on the line through f(x) and f(z). From ȳ ⊂ x̄ ∨ z̄ we have ỹ ⊂ x̃ ∨ z̃.
Moreover, w̄ ∩ (x̄ ∨ z̄) = ȳ implies w̃ ∩ (x̃ ∨ z̃) = ỹ and hence w̃ = ỹ, a contradiction.
Thus, we have proved:

(P3) If the points x, y, z are, in this order, on a line not passing through 0 and if y is
regular, then the images f(x), f(y), f(z) are on a line.

Next we show that any ray contains regular points arbitrarily close to 0.

(P4) For any x 6= 0 there exists y with y ≺ x and f(y) 6= f(x).

If this is false for some x 6= 0, then f(y) = f(x) for all y ≺ x. By the definition of
the map ϕ,

ϕ(0̄) =
⋂
i

ψ∗(Ki)

for any sequence (Ki)i in Kd
(0) with 0 ∈ intKi and Ki ↓ 0̄. We choose the sequence so

that Ki+1 ⊂ intKi for all i; then ϕ(Ki+1) ⊂ ψ∗(Ki) (see (11) below). For each i, there
is yi ∈ Ki+1 with f(yi) = f(x). It follows that f(x) ∈ ϕ(0 ∨ yi) ⊂ ϕ(Ki+1) ⊂ ψ∗(Ki)
and hence that f(x) ∈ ϕ(0̄). Since ϕ(0̄) = 0̄ and f(x) 6= 0̄, this is a contradiction. This
proves (P4).

Now we can prove that any x 6= 0 is regular. Choose a regular point y independent
of x and let z := 2y − x, then z 6= 0. Define z0 := λ0z with

λ0 := inf{λ > 0 : f(λz) = f(z)}.

Then z0 6= 0, according to (P4). First case: f(z0) = f(z). Let w := z0 and let
y0 ∈ ȳ∩(x∨w). Choose any x0 � x, and let w0 ∈ w̄∩aff{x0, y0}. From the definition of
z0 it follows that f(w0) 6= f(z) = f(w). Second case: f(z0) 6= f(z). Then let w0 := z0.
By the definition of z0, any point w with w0 ≺ w ≺ z satisfies f(w) = f(z) 6= f(w0).
We may choose such a point w so that for y0 ∈ ȳ ∩ (x ∨ w), the line aff{w0, y0}
intersects the ray Rx in some point x0 � x. Now in both cases we have that y0 is
regular (since y0 ∈ ȳ), hence by (P3) the images f(w), f(y0), f(x) are collinear, and
f(w0), f(y0), f(x0) are collinear. Since f(w0) 6= f(w), we get f(x0) 6= f(x); thus x is
regular.

In view of (P3), this proves that f maps collinear points into collinear points.

To prove that f is injective, we only need to consider x 6= x0 with x ≺ x0. Choose
y0 ≺ y independent of x with f(y0) 6= f(y), and let z be the intersection point of x∨ y
and x0 ∨ y0. Since f(x), f(z), f(y) are collinear and f(x0), f(z), f(y0) are collinear, we
have f(x) 6= f(x0).

We can finally identify f . We have seen that f is injective, and maps collinear points
into collinear points. Its image is not contained in a line, because it maps different
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rays into different rays. Therefore, as in [1], f is a non-singular affine transformation.
Since f(0) = 0, we have f ∈ GL(d).

It remains to show that ϕ(K) = f(K) for K ∈ Kd
0. If x ∈ K ∈ Kd

0, then x̃ =
ϕ(x̄) ⊂ ϕ(K), hence f(K) ∈ ϕ(K). Suppose that x /∈ K. Then K ∩ x̄ = z̄ with z = λx
and 0 ≤ λ < 1. This gives ϕ(K)∩ x̃ = z̃ = (λx)∼ = λx̃ (since f is a linear map), hence
f(x) /∈ K, since f(x) 6= 0. Altogether this shows that ϕ(K) = f(K) for K ∈ Kd

0 and
finishes the consideration of Case 5.

Concluding, the only possible cases are those where either

ϕ(K) = B for K ∈ Kd
0 (9)

with B := ϕ(0̄), or

ϕ(K) = gK for K ∈ Kd
0, (10)

with a fixed linear transformation g ∈ GL(d).

We show now that these are also the only possibilities for the original map ψ∗. Let
K ′, K ∈ Kd

0 with K ′ ⊂ intK. In the defining relation

ϕ(K ′) =
⋂
i

ψ∗(Ki), Ki ↓ K ′, K ′ ⊂ intKi,

we may choose K for one of the Ki, hence

K ′ ⊂ intK ⇒ ϕ(K ′) ⊂ ψ∗(K). (11)

Let C be a convex body with ϕ(K) ⊂ intC. We have ϕ(K) =
⋂

i ψ
∗(Ki) for any

sequence (Ki)i in Kd
(0) with Ki ↓ K and K ⊂ intKi. Since ψ∗(Ki) ⊂ C for sufficiently

large i and ψ∗(K) ⊂ ψ∗(Ki), we conclude that

ϕ(K) ⊂ intC ⇒ ψ∗(K) ⊂ C. (12)

Assume, first, that ϕ(K) = B for K ∈ Kd
0. Let K ∈ Kd

(0). Choose a convex C body

with B ⊂ intC. Then (11) with K ′ = 0̄ and (12) give B ⊂ ψ∗(K) ⊂ C. Since this
holds for all C with B ⊂ intC, we conclude that ψ∗(K) = B.

Now let ϕ(K) = gK for K ∈ Kd
0, with a fixed g ∈ GL(d). Let K ∈ Kd

(0), and choose

K ′, K ′′ ∈ Kd
(0) such that

K ′ ⊂ intK, K ⊂ intK ′′. (13)

Then ϕ(K) = gK ⊂ int gK ′′, and (11) and (12) give gK ′ ⊂ ψ∗(K) ⊂ gK ′′. Since this
together with gK ′ ⊂ gK ⊂ gK ′′ holds for all K ′, K ′′ satisfying (13), we conclude that
ψ∗(K) = gK.

Finally, since ψ∗(K) = ψ(K)∗ for K ∈ Kd
(0), in case (9) we have B ∈ Kd

(0) and then

ψ(K) = B∗ for all K ∈ Kd
(0). In case (10), ψ(K) = g−tK∗ for K ∈ Kd

(0). This completes
the proof of the theorem.
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