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Remarks on the equality case of the Bonnesen inequality

Károly J. Böröczky and Oriol Serra

Abstract. An argument is provided for the equality case of the high dimen-
sional Bonnesen inequality for sections. The known equality case of the
Bonnesen inequality for projections is presented as a consequence.

1. Introduction. We write μd for the d-dimensional Lebesgue measure. Let
Sd−1 be the unit sphere in R

d. For a linear subspace Π of R
d, the orthogonal

projection into Π is denoted by pΠ. In the special case when Π = u⊥ for a
u ∈ Sd−1, the orthogonal projection into u⊥ is denoted by πu. In addition, the
convex hull of x1, . . . , xk is denoted by [x1, . . . , xk].

The results in this note belong to the very heart of the Brunn–Minkowski
theory, so any of the monographs Bonnesen and Fenchel [3], Gruber [7], and
Schneider [10], or the survey paper Gardner [6] provide the sufficient back-
ground.

Let A and B be convex bodies (compact convex sets with non-empty inte-
riors) in R

d for this section. The Brunn–Minkowski inequality states

Theorem 1.1 (Brunn–Minkowski). If α, β > 0, then

μd(αA+ β B) ≥
(
αμd(A)

1
d + β μd(B)

1
d

)d

,

with equality if and only if A and B are homothetic.

According to the Hölder inequality, if M,N > 0, then
(
αM

1
d−1 + β N

1
d−1

)d−1
(
α
μd(A)
M

+ β
μd(B)
N

)
≥

(
αμd(A)

1
d + β μd(B)

1
d

)d

,

with equality if and only if μd(A)
1
d

M
1

d−1
= μd(B)

1
d

N
1

d−1
. Therefore the following result

due to Bonnesen [2] strengthens the Brunn–Minkowki inequality.
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190 K. J. Böröczky and O. Serra Arch. Math.

Theorem 1.2 (Bonnesen I). If for a linear (d − 1)-space L in R
d, M and N

are the maximal (d − 1)-volumes of the sections of A and B, respectively, by
hyperplanes parallel to L, then

μd(αA+ β B) ≥
(
αM

1
d−1 + β N

1
d−1

)d−1
(
α
μd(A)
M

+ β
μd(B)
N

)
.

Theorem 1.2 has the following consequence about projections (see also
Sect. 4).

Theorem 1.3 (Bonnesen II). For u ∈ Sd−1, if M = μd−1(πuA) and N =
μd−1(πuB), then

μd(αA+ β B) ≥
(
αM

1
d−1 + β N

1
d−1

)d−1
(
α
μd(A)
M

+ β
μd(B)
N

)
.

The goal of this note is to characterize the equality cases in Bonnesen’s
inequalities Theorems 1.2 and 1.3. We use the notations of these theorems.
We note that Theorem 1.5, and the two dimensional case of Theorem 1.4 are
proved by Freiman et al. [4].

For u ∈ Sd−1, we say that a convex body K is obtained from a convex
body C by stretching along u, if there exist λ ≥ 0 and w ∈ R

d such that
K = C + [w,w + λu]. In particular K = C + w if λ = 0.

Theorem 1.4. Equality holds in Theorem 1.2 if and only if either A and B are
homothetic, or there exist v ∈ Sd−1, homothetic convex bodies A′ and B′, and
a hyperplane H parallel to L, such that πv(A′) = πv(A′ ∩ H), and A and B
are obtained from A′ and B′, respectively, by stretching along v.

We note that the condition πv(A′) = πv(A′ ∩ H) is equivalent to saying
that A′ ⊂ (A′ ∩H)+Rv. Convex bodies for which there exist such hyperplane
H and unit vector v are characterized in Meyer [9].

As we discuss in Sect. 4, the following is a simple consequence of Theo-
rem 1.4 via Steiner symmetrization.

Theorem 1.5 (Freiman, Grynkiewicz, Serra, Stanchescu). Equality holds in
Theorem 1.3 if and only if there exist homothetic convex bodies A′ and B′

such that A and B are obtained from A′ and B′, respectively, by stretching
along u.

Our proofs of the two inequalities by Bonnesen and the characterizations
of the equality cases are based on the (d − 1)-dimensional Brunn–Minkowski
inequality and its equality case.

As related results, a true discrete analogue of the Bonnesen inequality in
the plane is proved by Grynkiewicz and Serra [8], and the equality conditions
are clarified by Freiman et al. [5]. In addition, Meyer [9] proves a crucial prop-
erty of a given convex body’s sections of maximal (d− 1)-volume parallel to a
hyperplane.

2. Minkowski linear combinations. In this section we recall some well-known
simple but useful observations about Minkowski linear combinations of convex
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bodies (see Gruber [7] or Schneider [10]). If X is a compact convex set in R
d,

then its support function is

hX(v) = max
x∈X

〈v, x〉 for v ∈ R
d.

Then hX is a positive homogeneous and convex function on R
d, which deter-

mines X uniquely. In addition, if Y is another compact convex set, Π is a
linear subspace, and α, β > 0, then

hαX+βY = αhX + β hY (1)
pΠ(αX + βY ) = αpΠX + β pΠY. (2)

We note that v ∈ Sd−1 is an exterior unit normal vector to a convex body K
in R

d at x ∈ K if and only if 〈v, x〉 = hK(v). The following is a simple but
useful consequence of (1).

Claim 2.1. Let C = αA+ β B for convex bodies A,B in R
d and α, β > 0, and

let z0 = αx0 + β y0 for z0 ∈ C, x0 ∈ A, y0 ∈ B.
(i) If x0 ∈ ∂A and y0 ∈ ∂B with exterior unit normal vector v, then z0 ∈ ∂C

with exterior unit normal vector v.
(ii) If z0 ∈ ∂C with exterior unit normal vector v, then x0 ∈ ∂A and y0 ∈ ∂B

with exterior unit normal vector v.

Our first application of Claim 2.1 is about planar convex bodies.

Claim 2.2. Let l be a line in R
2 with 0 ∈ l, and let C = αA+ β B for convex

bodies A,B in R
2 and α, β > 0 with α+ β = 1. In addition, we assume that

(i) for any z ∈ C, z+ l intersects A and B, and C ∩ [z+ l] = α(A∩ [z+ l])+
β(B ∩ [z + l]),

(ii) there exists z ∈ C such that C ∩ [z + l] = A ∩ [z + l] = B ∩ [z + l].
Then A = B.

Proof. Let l = Ru for the unit vector u, and let v ∈ u⊥ be a unit vector. In
this case πuA = πuB = πuC = [av, bv] for some a < b. There exist convex
functions f, g, ϕ, ψ on [a, b] such that

A = {tv + su : a ≤ t ≤ b and − g(t) ≤ s ≤ f(t)}
B = {tv + su : a ≤ t ≤ b and − ψ(t) ≤ s ≤ ϕ(t)}.

It follows from condition (i) and from Claim 2.1 that f ′(t) = ϕ′(t) and g′(t) =
ψ′(t) wherever the derivatives exist, thus there exist constants γ, δ such that
f(t) = ϕ(t) + γ and g(t) = ψ(t) + δ for t ∈ [a, b]. However condition (ii) yields
that γ = δ = 0, therefore A = B. �

Let K be a convex body in R
d, and let u ∈ Sd−1. For each line l parallel

with u and intersecting intK, we translate the segment l ∩K along l into the
position where the midpoint of the translated segment lies in u⊥. The closure
of the union of these translated segments is the Steiner symmetrical SuK of K.
For another representation of the Steiner symmetrization, we note that there
exist concave functions f and g on πu(K) such that

K = {x+ λu : x ∈ πuK and − g(x) ≤ λ ≤ f(x)}.
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Then

SuK =
{
x+ λu : x ∈ πu(K) and

−f(x) − g(x)
2

≤ λ ≤ f(x) + g(x)
2

}
. (3)

It follows that SuK is a convex body symmetric through u⊥, and μd(SuK) =
μd(K).

Claim 2.3. For convex bodies A and B in R
d, u ∈ Sd−1, and α, β > 0, we have

αSuA+ β SuB ⊂ Su(αA+ β B).

In addition, if equality holds, and a and b are lines parallel to u intersecting
intA and intB, and there exist parallel supporting hyperplanes at the top end-
points of a ∩ SuA and b ∩ SuB to SuA and to SuB, respectively, then there
exist parallel supporting hyperplanes at the top endpoints of a ∩ A and b ∩ B,
and parallel supporting hyperplanes at the bottom endpoints of a∩A and b∩B
to A and to B, respectively.

Proof. Let l be a line parallel with u and intersecting int(αA+ β B), and let
z0 be one of the endpoints of l ∩ (αSuA+ β SuB). It follows by Claim 2.1 (ii)
that z0 = αx0 + β y0, where x0 and y0 are boundary points of SuA and SuB,
sharing a common exterior unit vector with z0. Therefore a = x0 + Ru and
b = y0 + Ru satisfy l = αa+ β b and

l ∩ (αSuA+ β SuB) = α (a ∩ SuA) + β (b ∩ SuB).

In particular

μ1 (l ∩ Su(αA+ β B)) = μ1 (l ∩ (αA+ β B))
≥ αμ1(a ∩A) + β μ1(b ∩B)
= αμ1(a ∩ SuA) + β μ1(b ∩ SuB)
= μ1 (l ∩ [αSuA+ β SuB]) , (4)

which in turn yields αSuA+ β SuB ⊂ Su(αA+ β B).
Assume now that αSuA+β SuB = Su(αA+β B), and hence equality holds

in (4) for any line l parallel with u and intersecting int(αA+ β B). It follows
that

l ∩ (αA+ β B) = α(a ∩A) + β(b ∩B). (5)

Writing x1, y1, z1 to denote the top endpoint, and x2, y2, z2 to denote the bot-
tom endpoint of a ∩ A, b ∩ B and l ∩ (αA + β B), we deduce zi = αxi + β yi

for i = 1, 2, from (5). Therefore Claim 2.1 (ii) completes the argument. �
To introduce another method of symmetrization, let K be a convex body in

R
d, and let l be a line. For each hyperplane H orthogonal to l and intersecting

intK, consider the (d−1)-ball in H with the same (d−1)-volume as H∩K and
centred at H ∩ l. The closure of the union of these (d − 1)-balls centred on l
is a convex body RlK by the Brunn–Minkowski inequality, and RlK is called
the Schwarz-rounding of K. Readily μd(RlK) = μd(K). A similar argument
to the one for Claim 2.3 (or using the fact that the Schwarz-rounding can be
obtained as the limit of repeated Steiner symmetrizations through hyperplanes
containing l) yields
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Claim 2.4. For convex bodies A and B in R
d, line l, and α, β > 0, we have

αRlA+ βRlB ⊂ Rl(αA+ β B).

Schwarz-rounding will be a basic tool for our proof of Theorem 1.4. It was
Blaschke who gave a simple proof of the Brunn–Minkowski inequality using
Schwarz rounding in [1].

3. Proof of Theorem 1.4. If the conditions stated in Theorem 1.4 hold, then we
readily have equality in Theorem 1.2. For the reverse statement, we subdivide
the argument into three sections.

3.1. A little preparation. First we introduce some notation. Let u ∈ Sd−1 be
orthogonal to L, let K be a convex body in R

d , and let Q be the maximal
(d−1)-volume of the sections of K by hyperplanes parallel to L. For s ∈ [0, Q],
let

k−(s) = min {p : K ∩ (pu+ L) 	= ∅ and μd−1(K ∩ (pu+ L)) ≥ s}
k+(s) = max {p : K ∩ (pu+ L) 	= ∅ and μd−1(K ∩ (pu+ L)) ≥ s} .

In addition we define

K−(s) = K ∩ (k−(s)u+ L) and K+(s) = K ∩ (k+(s)u+ L).

We observe that K ∩ (pu + L) 	= ∅ if and only if p ∈ [k−(0), k+(0)], possibly
k−(Q) = k+(Q), but k−(s) < k+(s) if s < Q. It follows from the (d − 1)-
dimensional case of the Brunn–Minkowski inequality that

μd−1(K ∩ (pu+ L)) ≥ s for s ∈ (0, Q] if and only if p ∈ [k−(s), k+(s)]. (6)

We observe that if the “top” and “bottom” sections of K parallel to L are of
zero μd−1-measure, then μd−1(K+(s)) = μd−1(K−(s)) = s for s ∈ [0, Q]. In
general, we have

if μd−1(K−(s)) > s, then k−(s) = k−(0) (7)
if μd−1(K+(s)) > s, then k+(s) = k+(0). (8)

Calculating the integral of f(p) = μd−1(K∩(pu+L)) for p ∈ [k−(0), k+(0)]
by calculating the area of the part of R

2 between the graph of f and the first
axis using Fubini’s theorem, and after that using (6) yield

μd(K) =

k+(0)∫

k−(0)

μd−1(K ∩ (pu+ L)) dp

=

Q∫

0

μ1({p ∈ R : μd−1(K ∩ (pu+ L)) ≥ s}) ds

=

Q∫

0

(k+(s) − k−(s)) ds. (9)
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As the final part of our preparation, we discuss the case k−(Q) < k+(Q).
We have equality in (6) for s = Q, therefore the equality case of the Brunn–
Minkowski inequality implies that K ∩ (pu + L) is a translate of K−(Q) for
p ∈ [k−(Q), k+(Q)]. Let K+(Q) = K−(Q) + λv for v ∈ Sd−1 and λ > 0. It
follows by the convexity of K that k−(Q) < k+(Q) implies

{x ∈ K : [k−(Q) ≤ 〈x, u〉 ≤ k+(Q)} = K−(Q) + [0, λv]
and K ⊂ K−(Q) + Rv, (10)

and in turn

πv(K) = πv(K−(Q)), (11)

and that K is obtained from the convex body

K ′ =
⋃

s∈[0,Q]

((K+(s) − λv) ∪K−(s)) (12)

by stretching along v.

3.2. A proof of Theorem 1.2. Replacing A and B by M
−1

d−1 A and N
−1

d−1 B, if
necessary, we may assume that

M = N = 1. (13)

Let C = αA + βB, and we write a−(s), a+(s), A−(s), A+(s), or b−(s), b+(s),
B−(s), B+(s), or c−(s), c+(s), C−(s), C+(s) to denote k−(s), k+(s),K−(s),
K+(s) if K = A, or K = B, or K = C, respectively. We observe that if
t ∈ (0, 1], then

αA+(t) + βB+(t) ⊂ C ∩ ([αa+(t) + βb+(t)]u+ L].

Therefore (6), the analogous relation for A−(t) and B−(t), and the (d − 1)-
dimensional case of the Brunn–Minkowski inequality yield that

c+([α+ β]d−1t) ≥ αa+(t) + βb+(t) (14)

c−([α+ β]d−1t) ≤ αa−(t) + βb−(t). (15)

We deduce by (9) that

μd(C) ≥
(α+β)d−1∫

0

(c+(s) − c−(s)) ds (16)

≥ (α+ β)d−1

1∫

0

[αa+(t) + βb+(t)] − [αa−(t) + βb−(t)] dt (17)

= (α+ β)d−1 [αμd(A) + β μd(B)] . (18)
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3.3. Analyzing the equality case. To simplify the formulae, in addition to (13),
we also assume

α+ β = 1. (19)

Let us assume that

μd(C) = αμd(A) + β μd(B), (20)

and hence equality holds in (14) and (15) for t ∈ (0, 1]. In particular, there
exists no p > αa+(t) + βb+(t) such that

μd−1(C ∩ [pu+ L]) ≥ t.

Using the (d − 1)-dimensional Brunn–Minkowski inequality and its equality
case, and that μd−1(A+(t)) = t = μd−1(B+(t)) if a+(t) < a+(0) and b+(t) <
b+(0), we deduce

C+(t) = αA+(t) + β B+(t), and A+(t) and B+(t) are translates, (21)
C−(t) = αA−(t) + β B−(t), and A−(t) and B−(t) are translates (22)

for all t ∈ (0, 1]. Thus we may assume that

A−(1) = B−(1) ⊂ u⊥. (23)

We note that equality holds in (16), as well, therefore

C+(1) and C−(1) are sections of C of maximal (d− 1)-volume
among the ones parallel to L. (24)

For the final part of the argument, we distinguish cases depending on whether
the section of maximal (d− 1)-volume is unique.

Case 1 a+(1) = a−(1) and b+(1) = b−(1).
First we show that

a+(t) = b+(t) and a−(t) = b−(t) for t ∈ [0, 1]. (25)

We observe that a+(0) = a+(1) is equivalent to saying that the top section of
A parallel to L is a section of maximal (d−1)-volume. Possibly after reversing
u, we may assume that a+(0) > a+(1). Let t+ ∈ [0, 1) be the maximal t ∈ [0, 1)
such that a+(t) = a+(0), and let t− ∈ [0, 1] be the maximal t ∈ [0, 1] such that
a−(t) = a−(0).

Let Ã, B̃, and C̃ be the Schwarz rounding of A,B, and C with respect to
Ru. In particular, (13) yields that the maximal (d−1)-volumes of the sections
of Ã and B̃ parallel to L are 1. It follows from the Bonnesen inequality (18),
from the assumption of equality (20), and Claim 2.4 that

αμd(A) + β μd(B) = μd(C) = μd(C̃) ≥ μd(α Ã+ β B̃)

≥ αμd(Ã) + β μd(B̃) = αμd(A) + β μd(B).

Therefore μd(C̃) = μd(α Ã+ β B̃), and hence Claim 2.4 yields

C̃ = α Ã+ β B̃.

We define ã−(t), ã+(t), Ã−(t), Ã+(t), or b̃−(t), b̃+(t), B̃−(t), B̃+(t), or c̃−(t),
c̃+(t), C̃−(t), C̃+(t) to denote k−(t), k+(t),K−(t),K+(t) if K = Ã, or K = B̃,
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196 K. J. Böröczky and O. Serra Arch. Math.

or K = C̃, respectively. We observe that ã+(t) = a+(t) for t ∈ [0, 1], and
Ã+(t) is a (d − 1)-ball with μd−1(Ã+(t)) = t for t ∈ [t+, 1], and we have the
similar statements for the analogous quantities. Since μd(C̃) = μd(α Ã+β B̃),
the argument in the case of A and B yields the analogues of (21) and (22);
namely,

C̃+(t) = α Ã+(t) + β B̃+(t), and Ã+(t) and B̃+(t) are
(d− 1)-balls with (d− 1)-volume t for t ∈ [t+, 1], (26)

C̃−(t) = α Ã−(t) + β B̃−(t), and Ã−(t) and B̃−(t) are
(d− 1)-balls with (d− 1)-volume t for t ∈ [t−, 1]. (27)

Let Π be any two-dimensional linear subspace containing u. In particular,
Π ∩ Ã = pΠÃ,Π ∩ B̃ = pΠB̃ and Π ∩ C̃ = pΠC̃, and hence (2) implies

Π ∩ C̃ = α(Π ∩ Ã) + β(Π ∩ B̃). (28)

We plan to apply Claim 2.2 to Π ∩ Ã,Π ∩ B̃ and Π ∩ C̃ with l = Ru. Let
v ∈ Sd−1 ∩ u⊥ ∩ Π. We observe that for t+ < t ≤ 1, the radii of Ã+(t), B̃+(t)
and C̃+(t) coincide by (26), and if x ∈ Ã+(t), y ∈ B̃+(t), z ∈ C̃+(t) are relative
boundary points with exterior normal v, then there exists a common exterior
unit normal vector to Ã at x and to B̃ at y by Claim 2.1. Combining this with
the analogous properties of Ã−(t), B̃−(t), and C̃−(t) implies condition (i) of
Claim 2.2. In addition if z0 ∈ C̃+(1) is a relative boundary point with exterior
normal v, then (23) yields that z0 + l intersects all of Ã+(1), B̃+(1), and C̃+(1)
in {z0}. Therefore we may apply Claim 2.2 and deduce that Π ∩ Ã = Π ∩ B̃.
Therefore Ã = B̃, which in turn yields (25).

Next we claim that

hA(w) = hB(w) for w ∈ Sn−1. (29)

We may assume that w 	= ±u, and let Π be two-dimensional linear subspace
spanned by u and w. Again let v ∈ Sd−1 ∩u⊥ ∩Π. We plan to apply Claim 2.2
to pΠA, pΠB and pΠC with l = Rv. We deduce condition (i) by (21), (22) and
(25), and condition (ii) by (23). Therefore pΠA = pΠB, and hence hA(w) =
hpΠA(w) = hpΠB(w) = hB(w).

Finally (29) yields that A = B.

Case 2 Either a+(1) > a−(1), or b+(1) > b−(1).
We may assume that a+(1) − a−(1) ≥ b+(1) − b−(1), and hence a+(1) >

a−(1). It follows that A+(1) = A−(1) +λv for suitable v ∈ Sd−1 and λ > 0. It
follows by (11) that

πvA = πvA−(1). (30)

If b+(1) > b−(1), then B+(1) = B−(1) + τw for w ∈ Sd−1 and τ > 0.
If b+(1) = b−(1), then we set τ = 0 and w = v, and still have B+(1) =
B−(1) + τw. It follows from (21) and (22) that C+(1) = C−(1) + αλv + βτw.
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We deduce by (10) and (24) that

C−(1) + [0, αλv] + [0, βτw] = α (A−(1) + [0, λv]) + β (B−(1) + [0, τw])
⊂ {z ∈ C : [c−(1) ≤ 〈z, u〉 ≤ c+(1)}
= C−(1) + [0, αλv + βτw].

Since 〈v, u〉 > 0 and 〈w, u〉 > 0, we conclude that v = w also if b+(1) > b−(1).
We deduce by (10) that

A ⊂ A−(1) + Rv and C ⊂ C−(1) + Rv, (31)

and claim that

B ⊂ B−(1) + Rv. (32)

If τ > 0, then (32) also follows from (10). If τ = 0, then we should prove
that y0 + Rv is a supporting line to B for any relative boundary point y0
of B−(1). Now x0 = y0 is a relative boundary point of A−(1) = B−(1) [see
(23)], hence z0 = αx0 + β y0 = y0 is a relative boundary point of C−(1) =
αA−(1)+β B−(1) = B−(1) [compare (22)]. Thus (31) yields that there exists a
supporting hyperplane H containing z0 +Rv at z0 to C, and in turn Claim 2.1
(ii) implies that H is a supporting hyperplane at y0 to B. We conclude (32).

We define

A′ =
⋃

t∈[0,1]

((A+(t) − λv) ∪A−(t))

B′ =
⋃

t∈[0,1]

((B+(t) − τv) ∪B−(t))

C ′ =
⋃

t∈[0,1]

((C+(t) − αλv − βτv) ∪ C−(t)) .

We deduce by C = A+B, (31), and (32) that C ′ = A′ +B′. In addition

μd(C ′) = μd(C) − μd−1(C−(1)) · 〈(αλ+ βτ)v, u〉
= αμd(A) + βμd(B) − αμd−1(A−(1)) · 〈λv, u〉

−βμd−1(A−(1)) · 〈τv, u〉
= αμd(A′) + βμd(B′).

Since both A′ and B′ have a unique section parallel to L of maximal (d− 1)-
dimensional volume, we deduce by Case 1 that A′ = B′. We conclude Theo-
rem 1.4 by (30). �

4. Proof of Theorem 1.5. In this section, we assume

M = μd−1(πuA) = μd−1(πuB) = N = 1 and α+ β = 1. (33)

If the convex bodies A′ and B′ are homothetic, then (33) yields that A′ and
B′ are translates. If in addition A and B are obtained from A′B′, respectively,
by stretching along u, then readily

μd(αA+ βB) = αμd(A) + βμd(B).
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For the reverse direction, first we explain how Theorem 1.2 yields Theo-
rem 1.3 it via Steiner symmetrization. Let Ã, B̃, and C̃ be the Steiner sym-
metrials of A,B, and C = αA+ βB. In particular αÃ+ βB̃ ⊂ C̃ according to
Claim 2.3. We also observe that πuA = u⊥ ∩ Ã and πuB = u⊥ ∩ B̃ are sec-
tions of maximal (d−1)-measure of Ã and B̃, respectively, parallel to L = u⊥.
Therefore Theorem 1.2 and the conditions (33) yield

μd(αA+βB)=μd(C̃)≥μd(αÃ+βB̃) ≥ αμd(Ã)+βμd(B̃)=αμd(A)+βμd(B).

Next we assume that μd(αA+ βB) = αμd(A) + βμd(B), and hence

C̃ = αÃ+ βB̃ (34)

μd(αÃ+ βB̃) = αμd(Ã) + βμd(B̃). (35)

Combining (35) and Theorem 1.4 shows that there exist homothetic convex
bodies Ã′ and B̃′, and a v ∈ Sd−1 such that Ã and B̃ are obtained from Ã′ and
B̃′, respectively, by stretching along v. Since Ã and B̃ are symmetric through
u⊥, we deduce that v = ±u. Therefore we may assume that Ã′ and B̃′ are also
symmetric through u⊥. We deduce by the conditions (33) that actually Ã′ and
B̃′ are translates, therefore Ã′ = B̃′ can be assumed. Therefore there exists a
non-negative convex function ϕ on πuA = πuB, and a, b ≥ 0, such that

Ã′ = B̃′ = {x+ λu : x ∈ πuA and − ϕ(x) ≤ λ ≤ ϕ(x)}
Ã = {x+ λu : x ∈ πuA and − ϕ(x) − a ≤ λ ≤ ϕ(x) + a}
B̃ = {x+ λu : x ∈ πuA and − ϕ(x) − b ≤ λ ≤ ϕ(x) + b}.

We deduce by (3) that there exist functions θ and ψ on πuA such that

A = {x+ λu : x ∈ πuA and θ(x) − ϕ(x) − a ≤ λ ≤ θ(x) + ϕ(x) + a}
B = {x+ λu : x ∈ πuA and ψ(x) − ϕ(x) − b ≤ λ ≤ ψ(x) + ϕ(x) + b}.

It follows that θ(x)+ϕ(x)+a,−(θ(x)−ϕ(x)−a), ψ(x)+ϕ(x)+ b and ψ(x)−
ϕ(x)−b are convex. Since convex functions on a compact set are Lipschitz, both
ϕ and θ are almost everywhere differentiable on πuA. For each x ∈ πuintA,
there are parallel supporting hyperplanes to Ã at x + (ϕ(x) + a)u, and to B̃
at x+ (ϕ(x) + b)u, thus (34) and Claim 2.3 imply that

(θ(x) + ϕ(x) + a)′ = (ψ(x) + ϕ(x) + b)′ for almost all x ∈ πuA.

Therefore there exists some ω ∈ R such that ψ(x) = θ(x) +ω for x ∈ πuA. By
possibly interchanging the roles of A and B, we may assume that ω ≥ 0. In
particular defining

A′ = B′ = {x+ λu : x ∈ πuA and θ(x) − ϕ(x) ≤ λ ≤ θ(x) + ϕ(x)},
both A and B are obtained from A′ = B′ by stretching along u. �
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