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Let K ⊂ R
2 be an o-symmetric convex body. Then we have |K| ·

|K∗| ≥ 8, with equality if and only if K is a parallelogram. (| · |
denotes volume). If K ⊂ R

2 is a convex body, with o ∈ int K, then
|K| · |K∗| ≥ 27/4, with equality if and only if K is a triangle and
o is its centroid. If K ⊂ R

2 is a convex body, then we have |K| ·
|[(K−K)/2)]∗| ≥ 6, with equality if and only if K is a triangle. These
theorems are due to Mahler and Reisner, Mahler and Meyer, and to
Eggleston, respectively. We show an analogous theorem: if K has
n-fold rotational symmetry about o, then |K| · |K∗| ≥ n2 sin2(π/n),
with equality if and only if K is a regular n-gon of centre o. We
will also give stability variants of these four inequalities, both for the
body, and for the centre of polarity. For this we use the Banach-
Mazur distance (from parallelograms, or triangles), or its analogue
with similar copies rather than affine transforms (from regular n-gons),
respectively. The stability variants are sharp, up to constant factors.
We extend the inequality |K| · |K∗| ≥ n2 sin2(π/n) to bodies with
o ∈ int K, which contain, and are contained in, two regular n-gons,
the vertices of the contained n-gon being incident to the sides of the
containing n-gon. Our key lemma is a stability estimate for the area
product of two sectors of convex bodies polar to each other. To several
of our statements we give several proofs; in particular, we give a new
proof for the theorem of Mahler-Reisner.
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1 Notation

We write o for the origin, 〈·, ·〉 for the scalar product, ‖ · ‖ for the Euclidean
norm, [x1, . . . , xk] for the convex hull of {x1, . . . , xk}, and | · | for the volume.

A convex body in R
d is a compact convex set with non-empty interior. If

o ∈ int K, then its polar (w.r.t. the unit sphere with centre o) is

K∗ = {x ∈ R
d : ∀y ∈ K 〈x, y〉 ≤ 1}.

If A : R
d → R

d is a non-singular linear map, then (AK)∗ = (A−1)∗K∗,
where (A−1)∗ is the transpose of the inverse of A. It is known (Santaló [50],
or Meyer-Pajor [40]), that there exists a unique point s(K) ∈ int K, called
Santaló point of K, such that

| (K − s(K))∗ | = min {|(K − z)∗| : z ∈ int K}.

Additionally, the origin is the centroid of (K − s(K))∗. The uniqueness and
the affine invariance of the Santaló point yields that s(K) = o if K is o-
symmetric, or if d = 2 and K has n-fold symmetry about o for some n ≥ 3.

For convex bodies K, L ⊂ R
d, the Banach-Mazur distance δBM (K, L) is

min {λ2/λ1 | λ1, λ2 ∈ (0,∞), ∃ affinity A, ∃x ∈ R
d, λ1AK ⊂ L ⊂ λ2AK +

x}. If we allow for A only similarities, then we obtain the definition of
δs
BM(K, L). (Clearly, δBM(K, L) ≤ δs

BM (K, L). If both K, L are o-symmetric,
or d = 2 and both have n-fold rotational symmetry about o, with n ≥ 3 an
integer, then in the definition of δBM (K, L), or δs

BM (K, L), we may assume
x = o.) We will write T, P, Rn for a triangle, parallelogram, or regular n-gon,
respectively.

2 Introduction

Let K ⊂ R
d be a convex body, with o ∈ int K. Blaschke [5] was the first who

considered the so called volume product |K| · |K∗| of the body K, and proved
that for d ≤ 3, and o the barycentre of K, its maximum is attained, e.g., if K
is an ellipsoid. He was motivated by the investigation of the affine geometry
of convex bodies, e.g., of the so called affine surface area (a definition cf. in
[29], or [8]), that is intimately related to the volume product (cf. [29], [8]).
The volume product is invariant under non-singular linear transformations,
cf. [L], p. 109. The investigation of the question of the lower estimate
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of the volume product was initiated by Mahler [30], [31]. He had in view
applications in the geometry of numbers (i.e., investigation of the relation of
convex, or more generally, of star-bodies, and lattices, i.e., non-singular linear
images of Z

d in R
d). The volume product, in particular, for o-symmetric K,

is a basic quantity, that later has arisen in several branches of mathematics,
cf. later in this introduction.

For a while we suppose that K is o-symmetric. Mahler [31], for d ≥ 2,
conjectured the lower bound 4d/d!, and proved the lower bound 4d/(d!)2. It
is usually credited to Saint Raymond [49] that this conjectured lower bound
is attained not only for parallelepipeds and cross-polytopes. However, this
had already been observed by Guggenheimer [22] some years earlier, where
the way of obtaining all examples of [49] had already been described. These
examples are the following. Beginning with [−1, 1] ⊂ R, we define inductively
convex bodies in R

d, from examples in lower dimensions: if d = d1 + d2 is
an arbitrary decomposition of d as a sum of positive integers di, then for
the already defined bodies in R

di we take either their Minkowski sum, or
the convex hull of their union. (The Banach spaces with these unit balls
are called Hansen-Lima spaces.) It is conjectured that the volume product
attains its minimum exactly for these bodies. (Although the claim of [22]
that its author settled the 3-dimensional case is incorrect.)

Mahler [30] proved the sharp lower bound 8 for d = 2. If K ⊂ R
2 is a

convex body, with o ∈ int K, then he [30] showed |K| · |K∗| ≥ 27/4, which
is sharp. Morerover he [30] showed that, for K a polygon, the lower bound
is attained, for the o-symmetric case, or for the case o ∈ int K, if and only if
K is a parallelogram, or a triangle with barycentre at o, respectively. Later
Meyer [38] showed that for the case d = 2 and o ∈ int K, the lower bound is
attained only for triangles, with barycentre at o. A simpler proof of this is
contained in Meyer-Reisner [42], Theorem 15.

The above lower estimate of [31] for R
d, for the o-symmetric case, was

sharpened to 2dκd/(d!dd)1/2 by Dvoretzky-Rogers [13], and to κ2
d/d

d/2 by
Bambah [2]. Then it became clear that the volume product is very important
in functional analysis, where it is just the product of the volumes of the unit
balls of a finite dimensional Banach space and its dual. This has importance
in the so called local theory of Banach spaces, i.e., the asymptotic study
of finite dimensional Banach spaces, of high dimension. A number of other
geometric characteristics of these Banach spaces have a connection to the
volume product. Therefore functional analysts became strongly interested in
the subject, which resulted in ever better lower estimates, namely constd ·
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(log d)−dd−d by Gordon-Reisner [20] and later by G. Kuperberg [26], and to
constd · d−d by Bourgain-Milman [11] (with an unspecified constant). Quite
recently κ2

d/2d was proved by G. Kuperberg [27]. Observe that the quotient
of G. Kuperberg’s estimate and the conjectured minimum is (π/4 + o(1))d.

A class of o-symmetric convex bodies in R
d, for which the lower bound

4d/d! is known, is the class of (non-singular) linear images of convex bodies
symmetric with respect to all coordinate hyperplanes (also called uncondi-
tional convex bodies), cf. Saint Raymond [49], with the equality cases clari-
fied by Meyer [37] and Reisner [47] — these are just the conjectured equality
cases; the description of the equality cases was obtained as a consequence of a
combinatorial theorem in Bollobás-Reader-Redcliffe [6]. Actually [49] proved
this inequality for a larger class of o-symmetric convex bodies. These are the
ones, for which the associated norm satisfies the following. There exists a
base, such that for the coordinates x1, . . . , xd w.r.t. this base, the projections
(x1, . . . , xd) → (x1, . . . xi−1, xi+1, . . . xd), where 1 ≤ i ≤ d, are contractions.
Moreover, [49] also extended his inequality, for unconditional convex bodies,
in the following way. Let k ≥ 2 be an integer, let an unconditional norm
‖ · ‖ on R

k be given (i.e., the unit ball is unconditional), and let d1, ..., dk ≥ 1
integers. Let Ki ⊂ R

di be o-symmetric convex bodies, which are the unit
balls of norms ‖ · ‖i. We consider

∏k
i=1 R

di , with the norm ‖(‖xi‖i)‖, where
we consider ‖ · ‖i as fixed, and ‖ · ‖ as variable. Then the volume product
of the unit ball of this norm attains its minimum, e.g., for the cases, when
‖(xi)‖ equals

∑
i |xi|, or maxi |xi|.

Mahler’s conjecture in the o-symmetric case, together with the conjecture
about the equality cases, is also proved for convex polytopes with (at most)
2d + 2 vertices or facets, for d ≤ 8, cf. Lopez-Reisner [28].

Mahler’s conjecture is also proved for zonoids K in R
d (i.e., limits in

the Hausdorff-metric of finite sums of segments), with centre at o, and with
int K 6= ∅. This is due to Reisner [45], [46], which papers also proved that the
lower bound is attained if and only if K is a parallelepiped. Later, a simpler
proof was given by Gordon-Meyer-Reisner [19]. Observe that this settles the
case of equality for o-symmetric convex bodies in R

2, since each such body is
a zonoid. Both [45], [46] use the connection of the volume product problem
with stochastic geometry (geometric probability), as is done also later in
Böröczky K. J.-Hug [9], in another context. Manifold other connections to
geometric probability are contained in Thompson’s book [52], in particular
in Ch. VI. [45] also gave an analogue of the last mentioned Saint Raymond’s
theorem: if each Ki, there considered, is either a zonoid, or the polar of a

7



zonoid, then |K| · |K∗| ≥ 4d/d!. [47] clarified the equality cases in the last
mentioned Saint Raymond’s theorem: this is the case if and only if ‖ · ‖ is a
norm of a Hansen-Lima space.

In the o-symmetric case, the upper bound is attained if and only if K is
an o-symmetric ellipsoid, which is due to Blaschke [5] (d ≤ 3) and Santaló
[50] (for general d), with the equality case proved in [49]. Ball [2] and Meyer-
Pajor [39] pointed out that a proof of the inequality can be given by Steiner
symmetrization: namely that Steiner symmetrization does not decrease |K| ·
|K∗|.

A number of simplifications of these proofs has appeared, as well as vari-
ants of this problem have been treated. E.g., functional forms of the inverse
Blaschke-Santaló inequality (i.e., of the lower estimate of the volume prod-
uct), cf. Meyer-Reisner [41] (which states in p. 219 that a special case of
its Theorem is the Mahler-Meyer theorem), functional forms of the Blaschke-
Santaló inequality, cf. Fradelizi-Meyer [17] (which states in pp. 386-387, 393-
394 that its results imply the Blaschke-Santaló theorem — with the equality
case for o-symmetry). [17] also considers the upper estimate for the volume
product for measures other than the Lebesgue measure. As an application
to the original volume product problem, [41] gives the following statement.
If all non-empty intersections of K with horizontal hyperplanes are positive
homothets of a given (n − 1)-dimensional convex body L, and these inter-
sections have their Santaló points (taken in their affine hull) on a line, then
|K| · |K − s(K)|/(|L| · |L− s(L)|) attains its minimum (n+1)n+1/nn+2 (that
is independent of L), if and only if K is a cone, with base a translate of
L. (Examples of such bodies are bodies rotationally symmetric about the
xd-axis.) Further a stability version of the Blaschke-Santaló inequality, for
d ≥ 3, is proved by K. J. Böröczky [8] (stability meant for the Banach-Mazur
distance). Cf., e.g., the recent papers [23], [42], [12], [17], [18], [8], and [9],
and the references therein.

For the case o ∈ int K it is conjectured that |K|·|K∗| ≥ (d+1)d+1/(d!)2 ∼
const · e2dd−d, where equality stands only for a simplex with barycentre at o.
The lower bound (d + 1)d+1/

(
dd(d!)2

)
is due to Mahler [32], that was sharp-

ened to κ2
d/(d!)2 by Bambah [2], while const · (πe/2)dd−d has been recently

proved by G. Kuperberg [27]. Observe that the quotient of this estimate
and the conjectured minimum is (π/(2e) + o(1))d. This analogue of Mahler’s
conjecture, for the asymmetric case, is proved for convex polytopes with at
most d + 3 vertices or facets, cf. Meyer-Reisner [42], Theorem 10.

One has for |K| · |[K−s(K)]∗| the upper estimate κ2
d, with equality if and
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only if K is an ellipsoid, cf. Blaschke [5], Santaló [50] for the inequality, and
Petty [44], Meyer-Pajor [40] for the cases of equality. Again, [40] used for
the proof, among others, Steiner’s symmetrization, but in a more involved
manner, than in the o-symmetric case. Actually the same upper estimate
holds for |K| · |[K − b(K)]∗|, where b(K) is the barycentre of K, and again
with equality if and only if K is an ellipsoid, cf. [29], p. 165. Actually, if
s(K), or b(K), is o, then b(K∗), or s(K∗), is o, respectively, cf. [29], p. 165,
which explains the symmetric role of the Santaló point, and the barycentre.

A general reference to these problems, and their connections to other
affine inequalities for convex bodies, is Lutwak [29]. A more recent survey
on the volume product is Thompson [53].

For another generalization of the volume product, from the o-symmetric
case to the general case, Eggleston [14] proved the following. If K ⊂ R

2 is a
convex body, then |K| · |[(K −K)/2]∗| ≥ 6, with equality if and only if K is
a triangle.

A generalization of this to R
d, however not for polar bodies, but for po-

lars of projection bodies, was given by Zhang [54]; his inequality is |K|d−1 ·
|(ΠK)∗)| ≥

(
2d
d

)
d−d, with equality if and only if K is a simplex. (The pro-

jection body Π(K) of a convex body K ⊂ R
d is the o-symmetric convex

body — actually a zonoid — whose support function at a point u ∈ Sd−1

is given as the (d − 1)-volume of the orthogonal projection of K to the lin-
ear subspace orthogonal to u. Observe that for d = 2 the bodies ΠK and
K−K can be obtained from each other by a rotation through π/2 about the
origin, hence their polars have equal areas.) Böröczky, K. J. [7], Theorem 3
proved an almost sharp stability version of this inequality: for S a simplex,
|K|d−1 · |(ΠK)∗)| ≤

(
2d
d

)
d−d(1+ε) implies δBM (K, S) ≤ 1+constd ·ε1/d, while

the actual error term cannot be less than constd · ε1/(d−1) ([7], Example 19),
which quantity is conjectured to be the exact order of the error term.

For the original question about the lower estimate of |K| · |[(K−K)/2]∗|,
for K ⊂ R

d a convex body, the sharp lower bound is conjectured to be
(d+1)2d/d! ∼ 2dedd−d (1 + o(1))d, with equality for K a simplex, cf. [33]. (A
calculation, that for K a simplex we have equality, cf. in [36].) This quantity
occurs in a number of problems of the theory of packings and coverings, and
more generally in density estimates of sytems of convex sets (for the non-
symmetric case seemingly even more than the original volume product), cf.
e.g., [33], [34], [35] Theorem 5.2, Remark 5.3. Since |K| · |[(K − K)/2]∗| =
[|K|/|(K − K)/2|] · [|(K − K)/2| · |[(K − K)/2]∗|], G. Kuperberg’s result
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and the difference body inequality (Rogers-Shephard, [48]) imply |K| · |[(K−
K)/2]∗| ≥ κ2

d/4d ∼ edπd2−dd−d (1 + o(1))d. Observe that the quotient of this

value and the conjectured value is (π/4 + o(1))d.
A question of another character was treated by A. Florian in [15] and [16].

He investigated convex bodies in R
2, contained in the unit circle about o, and

showed the sharp estimate |K|+ |K∗| ≥ 6, attained for a square inscribed to
the unit circle. He gave as well a stability result in a more special case. See
references to earlier results of this type as well in [15] and [16].

We note that F. Barthe and M. Fradelizi in the preprint [3] proved that
if K is a convex body and P is a regular polytope in R

d such that the origin
is their centroid, and K has all the symmetries of P — thus the origin is also
their Santaló point — then |K| · |K∗| ≥ |P | · |P ∗|.

After essentially finishing our paper we were informed from the paper
Nazarov-Petrov-Ryabogin-Zvavitch [43] about the following theorem. For
d ≥ 2 an integer there exist εd > 0 and cd > 0 with the following properties.
If the Banach-Mazur distance of an o-symmetric convex body K ⊂ R

d from
the class of parallelepipeds is 1 + ε ∈ (1, 1 + εd], then the volume product
|K|·|K∗| is at least [4d/d!](1+cdε). Here the order of the error term is optimal.
Together with the paper Böröczky K. J.-Hug [9] (which calls the attention to
the fact that the proof in [43] actually gives this stronger, stability variant,
cited above; cf. [43], §4), this gives the following. For the case of o-symmetric
zonoids K in R

d, with int K 6= ∅, in particular, for o-symmetric convex bodies
in R

2, we have global stability of the parallelotopes, more exactly, the above
inequality, without a restriction of the form 0 < ε ≤ εd. For R

2, this is
our Theorem 1, without the specification of the coefficient of ε in the lower
estimate. Once more, the order of the error term is optimal.

Since optimality of the order of the above two error terms was not proved
in [43] or [9], we show it. Of course, it suffices to deal with the case of zonoids
only, for which we give the following example. For d = 2 we take [−1, 1]2,
and cut off small isosceles right triangles of legs ε at each vertex. For d ≥ 3
we take the product of this example with [−1, 1]d−2, that is an o-symmetric
zonoid, say, K. Then |K| · |K∗| = (4d/d!) (1 + c1ε + O(ε2)), for some c1 > 0.
Clearly δBM (K, [−1, 1]d) ≤ 1+c2ε+O(ε2), for some c2 > 0. Now we estimate
δBM(K, [−1, 1]d) = δBM (K∗, conv {±ei}) from below, by 1 + c3ε + O(ε2), for
some c3 > 0 (ei’s are the standard unit vectors). Thus, we have to consider
cross-polytopes Ci contained in, and Co containing K∗, with centres at o. Of

10



course, it suffices to show

|Ci|/|K∗| ≤ 1 − c4ε + O(ε2), for some c4 > 0 . (1)

We may assume that vert Ci ⊂ vert K∗ (vert means the set of vertices). Here
vert K∗ consists of ±ei, and still four vertices, close to (±e1 ± e2)/2. If for
some i ≥ 3 we have ±ei 6∈ Ci, then |Ci| = 0. If ±e1,±e2 ∈ Ci, then (1)
holds. Otherwise, e.g., ±(1/2, 1/2) ∈ vert Ci, and either e.g. ±e1 ∈ vert Ci,
or ±(1/2,−1/2) ∈ vert Ci; in both cases |Ci|/|K∗| = 1/2 + O(ε). So (1) is
shown.

A still more recent manuscript Kim-Reisner [25] proved the asymmetric
variant of the theorem of [43]. For d ≥ 2 an integer there exist ε′d > 0 and c′d >
0 with the following properties. If the Banach-Mazur distance of a convex
body K ⊂ R

d, with o ∈ int K, from the class of simplices is 1+ε ∈ (1, 1+ε′d],
then the volume product |K|·|K∗| is at least [(d+1)d+1/(d!)2](1+c′dε). Again,
also here the order of the error term is optimal. (An example is obtained
from a regular simplex of edge length 1, and barycentre o, with small regular
simplices of edge length ε cut off at each vertex. The argument showing
optimality of the order of the error term is like above.)

General information about stability versions of geometric inequalities cf.
in Groemer [21].

3 Main statements

For stability versions of the Mahler-Reisner, Mahler-Meyer, Eggleston theo-
rems, we prove the following theorems.

Theorem 1 Let K be a centrally symmetric convex body in R
2 with o ∈

int K, and P a parallelogram, and

|K| · |K∗| ≤ (1 + ε) · 8 , with ε > 0 .

Then δBM (K, P ) ≤ 1 + 200ε. Moreover, if x ∈ R
2, and λi > 0, and P is a

parallelogram, such that λ1P +x ⊂ K ⊂ λ2P +x, and λ2/λ1 ≤ 1+200ε < 2,
then, in the Euclidean norm where [(λ1 + λ2)/2]P is a square of diameter 1,
we have that the distance of the centre of [(λ1 +λ2)/2]P +x from o is at most
336 · √ε.
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Theorem 2 Let K be a convex body in R
2 with o ∈ int K, and T a triangle,

and
|K| · |K∗| ≤ (1 + ε) · 27/4 , with ε > 0 .

Then δBM (K, T ) ≤ 1 + 900ε. Moreover, if x ∈ R
2, and λi > 0, and T is a

triangle, such that λ1T +x ⊂ K ⊂ λ2T +x, and λ2/λ1 ≤ 1+900ε < 4, then,
in the Euclidean norm where [(λ1 +λ2)/2]T is a regular triangle of side 1, we
have that the distance of the centre of [(λ1 + λ2)/2]T + x from o is at most
917 · √ε.

We note that, for Rn a regular n-gon with centre o,

|Rn| · |R∗

n| = (n/2) sin(2π/n) · n tan(π/n) = n2 sin2(π/n).

We prove the following generalization of the Mahler-Reisner and Mahler-
Meyer theorems.

Theorem 3 Let Ki and Ko be regular n-gons, n ≥ 3, and let each vertex of
Ki lie on a side of Ko, and hence Ki and Ko have a common centroid z. If
Ki ⊂ K ⊂ Ko for a planar convex body K with o ∈ int K, then

|K| · |K∗| ≥ n2 sin2(π/n),

with equality if and only if o = z, and either K = Ki or K = Ko.

Let us show how Theorem 3 yields the Mahler-Reisner and Mahler-Meyer
theorems. For the o-symmetric case, one considers an (o-symmetric) paral-
lelogram P of maximal area contained in K. Applying a linear map, we
may assume that P is a square. Now the Mahler-Reisner theorem follows as
K ⊂ Q for the square Q satisfying that the midpoints of its sides are the
vertices of P .

For the Mahler-Meyer theorem, let T be a triangle of maximal area con-
tained in K. Applying a linear map, we may assume that T is regular, and
let S be the regular triangle satisfying that the midpoints of the sides of S
are the vertices of T . Since K ⊂ S, Theorem 3 yields the Mahler-Meyer
theorem.

Another consequence of Theorem 3 is the following.
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Corollary 4 If a convex body K in R
2 has n-fold rotational symmetry about

o, where n ≥ 3, then
|K| · |K∗| ≥ n2 sin2(π/n),

with equality if and only if K is a regular n-gon.

To prove Corollary 4 based on Theorem 3, one just chooses a point x ∈ ∂K
that is the farthest from o, and Ki is the inscribed regular n-gon, of centre
o, such that x is one of its vertices, and Ko is the regular n-gon such that
the midpoints of the sides of Ko are the vertices of Ki.

Theorem 5 Let n ≥ 3 be an integer, K be an n-fold rotationally symmetric
convex body in R

2 with o ∈ int K, and Rn a regular n-gon, and let

|K| · |K∗| ≤ (1 + ε) · n2 sin2(π/n) , with ε > 0 .

Then δs
BM (K, Rn) ≤ 1 + 18ε. Moreover, if x ∈ R

2, and λi > 0, and Rn

is a regular n-gon, such that λ1Rn + x ⊂ K ⊂ λ2Rn + x, and λ2/λ1 ≤
1+18ε < 1/ cos(π/n) ≤ 2, then, in the Euclidean norm where [(λ1+λ2)/2]Rn

is a regular n-gon of diameter 1, we have that the distance of the centre of
[(λ1 + λ2)/2]Rn + x from o is at most 263 · √ε.

The following theorem proves the conjecture mentioned in §2, concerning
the exact error term in the stability variant of the Zhang projection body
inequality, for the case of the plane.

Theorem 6 Let K be a convex body in R
2 with

|K| · | ((K − K)/2)∗ | ≤ (1 + ε) · 6 , with ε > 0 .

Then δBM (K, T ) ≤ 1 + 87ε.

Example. 1. We show that the stability statements in Theorems 1, 2,
5, 6, concerning the bodies, are of the exact order of magnitude. For this,
let the regular n-gon Rn be inscribed in the unit circle U about o, and let us
define Kn as the convex polygon with vertices the vertices of Rn, and 1 + ε
times the side-midpoints of Rn, where ε ∈ (0, 1/ cos(π/n)] (thus Kn ⊂ U).
Then |Kn| · |(Kn)

∗| = n2 sin2(π/n)+n2 sin2(π/n) · (ε − ε2 cot2(π/n)) /(1+ ε).
Letting n = 3, we have |K3| · | ((K3 − K3)/2)∗ | = 6 · (9 + 15ε + 3ε2 −
3ε3)/(3+ ε)2. Clearly, δs

BM (Rn, Kn) ≤ 1+ ε. On the other hand, for suitable

13



A, x, we have λ1ARn ⊂ Kn ⊂ λ2ARn + x and δBM (Rn, Kn)2 = (λ2/λ1)
2 ≥

|Kn|/|λ1ARn| ≥ (1+ε)|Rn|/|Rn| (at the last step we have used that λ1ARn ⊂
U is a convex n-gon, hence |λ1ARn| ≤ |Rn|). Hence, δBM(Rn, Kn) ≥

√
1 + ε.

(For Theorems 1, 2 we use the cases n = 4, 3.)
2. For the stability of the centre of polarity (for Theorems 1, 2, 5), we

proceed analogously to [25], Proposition 2. An example is a regular n-gon K
of centre o, and diameter 1 (with λi = 1). We use the well-known formula
(11) from the proof of Lemma 11, for d = 2. The inradius of K is at least
1/(2

√
3). We let ‖x‖ ≤ 1/(4

√
3), and estimate (∂/∂x2)

2|(K − x)∗| from
above by replacing, in the inequality in (11), hK(u) by 1/(2

√
3), and then

(1 − 〈u, x〉)−4 by
(
1/(4

√
3)
)−4

. Then, using still
∫

S1 u2
2du = π, we get

(∂/∂x2)|(K − x)∗| = 0 and (∂/∂x2)
2|(K − x)∗| ≤ 28 · 33 · π .

By diam K = 1 we have |K| ≤ π/4. Thus we get (∂/∂x2)
2(|K| · |(K−x)∗|) ≤

26 · 33 · π2, and the analogues of these formulas hold for the first and second
directional derivatives in any direction. Thus, for |K| · |(K − x|∗| ≥ (1 + ε) ·
n2 sin2(π/n), we have

ε · 27/4 ≤ ε · n2 sin2(π/n) ≤ |K| · |(K − x)∗| − |K| · |K∗| ≤ 25 · 33 · π2‖x‖2 ,

hence, for any x — i.e., without the restriction ‖x‖ ≤ 1/(4
√

3) — we have

‖x‖ ≥
√

ε ·
√

2/(16π) or ‖x‖ ≥ 1/(4
√

3) .

Then the first one of these inequalities holds, if ε ∈ (0, ε0], where
√

ε0 ·√
2/(16π) = 1/(4

√
3), i.e., for ε0 = 8π2/3. �

In the second part of this paper, under preparation, we will show that,
for convex n-gons K, the product |K| · |[K − s(K)]∗| is maximal exactly for
the affine regular n-gons. Further, we will give stability estimates for the
Blaschke-Santaló inequality in the plane, for the o-symmetric case. Here the
deviation from the ellipses will be measured by the quotient of the areas of
the convex body, and the maximal area inscribed/minimal area circumscribed
ellipse of the convex body. If any of these ellipses is the unit circle about o,
then even the arithmetic mean of the areas of the body and the polar body
is at most π.
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4 Proof of Theorem 3

First we prove a lower bound for the volume product in sectors. The idea
of giving lower bounds in sectors separately, and then using the arithmetic-
geometric mean inequality, is due to Saint Raymond, [49], proof of Théorème
28. There it is also noted, that this approach settles the two-dimensional o-
symmetric case. Our proofs of our Theorems 1, 2, 3, 5 all use this idea.

The particular case u = u∗ = (0, 1), v = v∗ = (1, 0) of our following
lemma reduces to the two-dimensional case of [49], Théorème 28.

Lemma 7 Let K be a planar convex body with o ∈ int K. Let, for some
linearly independent u, v ∈ ∂K, and linearly independent u∗, v∗ ∈ ∂K∗, the
supporting lines to K with exterior normals u∗ and v∗ intersect K, e.g., at u
and v, respectively, and intersect each other at p ∈ R

2, where [p, o]∩[u, v] 6= ∅.
Furthermore, let the supporting lines to K∗ with exterior normals u and v
intersect K∗, e.g., at u∗ and v∗, respectively, and intersect each other at
p∗ ∈ R

2 with [p∗, o] ∩ [u∗, v∗] 6= ∅. Then, for C = K ∩ [o, u, v, p] and C∗ =
K∗ ∩ [o, u∗, v∗, p∗], we have

|C| · |C∗| ≥ |[o, u, v, p]| · |[o, u∗, v∗]|,

with equality if and only if either C = [o, u, v] or C = [o, u, v, p].

Remark. We may assume C 6= [o, u, v]. Then, for p = λu + µv and
λ, µ > 0, we have λ + µ > 1 and p∗ = µu∗ + λv∗. We choose a coordinate
system, assuming

u = (1, 0), v = (0, 1) .

Then

p = (λ, µ), p∗ = (1, 1), u∗ = (1, (1 − λ)/µ) , v∗ = ((1 − µ)/λ, 1) ,

and {
|[o, u, v, p]| · |[o, u∗, v∗]| = |[o, u, v]| · |[o, u∗, v∗, p∗]| =

(λ + µ)(λ + µ − 1)/(4λµ) = (2 − 〈u, v∗〉 − 〈u∗, v〉)/4 .

First we show that Mahler’s original proofs ([Mah38]) yield our lemma,
except the case of equality.
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First proof. We exclude C = [o, u, v], [o, u, v, p]. Let k ≥ 0 be an
integer, and let us suppose that both C and C∗ are polygons, such that the
total number of their vertices in int [u, v, p], or int [u∗, v∗, p∗], respectively, is
at most k. (This case suffices to prove the inequality.) Let C, C∗ realize the
minimum under these hypotheses. If e.g. C has a vertex c ∈ int [u, v, p], then
we can move c a bit, parallel to the diagonal connecting its neighbours, hence
keeping |C| fixed. Then, for C∗, the polar side line will rotate about some
of its points. Since the lines of the neighbours of this side intersect outside
this side line, by some small rotation |C∗| strictly decreases, a contradiction.
Hence we have a situation as for k = 0.

For k = 0, C has a vertex c, e.g. in relint [u, p], and then C = [o, u, v, c],
since else C∗ would have a vertex in int [u∗, v∗, p∗]. Then c = (αλ+1−α, αµ),
where α ∈ (0, 1), and |C| · |C∗| = (1/4) (1 + (λ + µ − 1)α) · [1 − (1 − λ/µ)−
((1 − µ)/λ − 1) (1 − αλ)/(1 − α + αµ)]. The fact that this is at least (λ +
µ)(λ + µ − 1)/(4λµ), can be written, after multiplying with the product of
the denominators (each of them being positive), and rearranging (using the
program package GAP, [51]), as λ(λ + µ − 1)2 · α(1 − α) ≥ 0. �

The second proof follows the lines of Meyer, [37], proof of Théorème I. 2
(more exactly, its two-dimensional case, that gives our lemma for u = u∗ =
(0, 1), v = v∗ = (1, 0)).

Second proof. We have

1 = 〈u∗, u〉 = 〈u∗, p〉 = 〈v∗, p〉 = 〈v∗, v〉 = 〈u, p∗〉 = 〈v, p∗〉.

For x ∈ K ∩ [p, u, v], the sum of the heights of the triangles [o, u, v] and
[x, u, v], belonging to their common side [u, v], is 〈p∗, x〉/‖p∗‖. Thus the
vectors w := [‖u∗ − v∗‖/(2‖p‖)]p and w∗ := [‖u − v‖/(2‖p∗‖)]p∗ satisfy

|C| ≥ |[o, u, v, x]| = 〈w∗, x〉 for x ∈ K ∩ [u, v, p], and (2)

|C∗| ≥ |[o, u∗, v∗, x∗]| = 〈w, x∗〉 for x∗ ∈ K∗ ∩ [u∗, v∗, p∗]. (3)

Since 〈w∗, p〉 = |[o, u, v, p]| ≥ |C|, and 〈w∗, x〉 < 〈w∗, u〉 for x ∈ K\[p, u, v],
we have w̃∗ := |C|−1w∗ ∈ K∗ ∩ [u∗, v∗, p∗], and analogously w̃ := |C∗|−1w ∈
K ∩ [u, v, p]. It follows by applying (2) to x = w̃, that

{
|C| · |C∗| ≥ 〈w∗, |C∗|w̃〉 = 〈w∗, w〉 =

〈w∗, p〉 · ‖u∗ − v∗‖/(2‖p‖) = |[o, u, v, p]| · |[o, u∗, v∗]|.
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We also have 〈w∗, w〉 = |[o, u, v]| · |[o, u∗, v∗, p∗]| by the remark following the
statement of this Lemma, hence we have equality in the Lemma if C = [o, u, v]
or C∗ = [o, u, v, p].

Assume that equality holds in Lemma 7. It follows by (2) and (3) that

C = [o, u, v, w̃] and C∗ = [o, u∗, v∗, w̃∗].

In particular C∗ has vertices a∗ and b∗ satisfying

〈a∗, u〉 = 〈a∗, w̃〉 = 1 and 〈b∗, v〉 = 〈b∗, w̃〉 = 1.

Checking the vertices of C∗, we have only two choices. Either a∗ = u∗ and
b∗ = v∗, and hence C = [o, u, v, p], or a∗ = b∗ = w̃∗, and hence C = [o, u, v].
�

The third proof will use an idea of Behrend, [4], proof of (77), pp. 739-
740, and of (112), pp. 746-747. Its idea, intuitively, is the following. “If C
is close to ouv, then C∗ is close to [ou∗v∗p∗], hence |C∗| will be a lot greater
than |ou∗v∗]. On the other hand, if C is close to [ouvp], then |C| will be a
lot greater than |[ouv]|.”

Third proof. Using the notations of the second proof, we have

|C| ≥ |[o, u, v, x]|,

where now x ∈ C ∩ [u, v, p] is a point farthest from the line (p∗)−1(1), which
line passes through u, v. Then there is a supporting line (x∗)−1(1) at x to K,
parallel to (p∗)−1(1). Then

|C∗| ≥ |[o, u∗, v∗, x∗]| ,

so,
|C| · |C∗| ≥ |[o, u, v, x]| · |[o, u∗, v∗, x∗]| .

Observe that, if x varies in [u, v, p], then |[o, u, v, x]| is proportional to dist (o,
(x∗)−1(1)) = 1/‖x∗‖. Simultaneously, x∗ varies in [o, p∗] ∩ [u∗, v∗, p∗], hence
|[o, u∗, v∗, x∗]| is proportional to ‖x∗‖. Hence, |[o, u, v, x]| · |[o, u∗, v∗, x∗]| does
not depend on x, so has the same value, as for x ∈ [u, v], and for x = p.

For the case of equality we have C = [o, u, v, x] and C∗ = [o, u∗, v∗, x∗].
We exclude x ∈ [u, v] and x = p. Then x∗ varies in relint (C∗ ∩ [o, p∗]), and
we get a contradiction as in the second proof. �
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Proof of Theorem 3. We may assume that o is the Santaló point of K.
First we show that o ∈ int Ki.

We note that as the origin is the centroid of K∗, there exists no line l
with o ∈ l bounding the half planes l− and l+ such that the reflected image
of K ∩ l− through the line l is strictly contained in K ∩ l+. If n ≥ 4 then the
angles of a regular n-gon are at least π/2, thus o ∈ int Ki by the property of
the Santaló point above.

If n = 3 then we may assume that K is not a parallelogram. In this
case for each triangle S cut off by a side s of Ki from Ko, there is a linear
transformation A such that the reflected image of AS through the line of
As is strictly contained in AKi (here we use that K is not a parallelogram).
Therefore the property of the Santaló point above, applied to AK, yields
o ∈ int Ki.

When indexing the vertices of an n-gon, we identify vertices with indices
j and j ± n. Let x1, . . . , xn, and y1, . . . , yn denote the vertices of Ki and Ko

in counterclockwise order, and x∗

1, . . . , x
∗

n, and y∗

1, . . . , y
∗

n denote the vertices
of K∗

i and K∗

o , respectively, so that, for j = 1, . . . , n, we have xj ∈ [yj, yj+1],
and

1 = 〈x∗

j , xj−1〉 = 〈x∗

j , xj〉 = 〈y∗

j , yj+1〉 = 〈y∗

j , yj〉.
In particular, y∗

j ∈ [x∗

j , x
∗

j+1]. For j = 1, . . . , n, let Cj = K ∩ [o, xj−1, xj , yj]
and C∗

j = K∗ ∩ [o, y∗

j−1, y
∗

j , x
∗

j ]. Therefore Lemma 7 yields that

|Cj| · |C∗

j | ≥ |[o, xj−1, xj, yj]| · |[o, y∗

j−1, y
∗

j ]|, (4)

with equality if and only if Cj = [o, xj−1, xj , yj] or Cj = [o, xj−1, xj].
By the n-fold rotational symmetry of Ki and Ko around their their com-

mon centre, there exist common distances a = ‖xj−1 − yj‖ and b = ‖xj − yj‖
for j = 1, . . . , n, and hence a + b is the side length of Ko. Since the distance
of o from the line of yj, yj+1 is dj := ‖y∗

j‖−1 for j = 1, . . . , n, it follows that

|Cj| · |C∗

j | =
(adj−1 + bdj) sin(2π/n)

4dj−1dj
.

Additionally, we have

n(a + b)2

4 tan(π/n)
= |Ko| =

(a + b)(d1 + . . . + dn)

2
.
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We deduce by repeated applications of the inequality between the (weighted)
arithmetic and geometric means, that

|K| · |K∗| =

(
n∑

j=1

|Cj|
)

·
(

n∑

j=1

|C∗

j |
)

≥ n2

(
n∏

j=1

(|Cj| · |C∗

j |)
)1/n

(5)

=
n2 sin(2π/n)

4

(
n∏

j=1

adj−1 + bdj

dj−1dj

)1/n

≥ n2(a + b) sin(2π/n)

4

(
n∏

j=1

dj

)−1/n

(6)

≥ n3(a + b) sin(2π/n)

4
∑n

j=1 dj
=

n2 sin(2π/n) tan(π/n)

2
. (7)

Assume that equality holds in Theorem 3. It follows by (6) and (7) that
all dj are equal, thus o is the common centre of Ki and Ko. Further, all Cj

have the same area by (5). Therefore the equality conditions in (4) imply
that either K = Ki or K = Ko. �

Remark. In the particular case of Lemma 7, when C is an n-th part
of a convex body K with n-fold rotational symmetry about o, we could
have referred in the first proof to [MR], to the so called “shadow move-
ment” (although this is more involved than the elementary proof of Mahler
used above). That is, we have an ln-gon K = x1...xln (where l ≥ 2),
having n-fold rotational symmetry about o. The movement of the vertices
x2, x2+l, ...x2+(n−1)l, parallel to the diagonals x1x3, etc., preserving the rota-
tional symmetry, and giving a polygon K ′, of course does not determine a
shadow movement. However, we can move only x2, in the above way, and
this determines a shadow movement, giving a polygon K ′′. (More exactly:
only the points of [x1, x2, x3] are moved, in the direction of x1x3, the points
of the chords parallel to x1x3 with the same velocity, so that at any moment
the moved chords constitute a triangle with vertices x1, x3, and the translate
of x2). Then |K| = |K ′| = |K ′′|, and |(K ′)∗| = |K∗| + n(|(K ′′)∗| − |K∗|), so
|(K ′)∗| is a linear function of |(K ′′)∗|. Moreover, K ′′ and K are not affinely
equivalent (consider the barycentres of the subpolygons with vertices each
l’th vertex of K ′′, K).

19



5 Proofs of the stability theorems

The main result in this section is the following stability version of Lemma 7.

Lemma 8 Let C, C∗, u, u∗, v, v∗, p, p∗ be as in Lemma 7, and let p = λu+µv
for λ, µ > 0. If

|C| · |C∗| ≤ (1 + ε)|[o, u, v, p]| · |[o, u∗, v∗]|,

for positive ε < min {λ, µ}/(λ+µ), then for γ := 3[(λ+µ)/(min {λ, µ})](1+√
λ + µ),

either C ⊂ (1 + γε)[o, u, v], or (1 + γε)−1[o, u, v, p] ⊂ C.

First proof. We may assume C 6= [o, u, v]. We use the notations from
the Remark after Lemma 7, and from the second proof of Lemma 7. We have
w̃ = tp and w̃∗ = sp∗ for some t, s ∈ (0, 1]. Since 〈w̃, w̃∗〉 ≤ 1, we have

ts(λ + µ) ≤ 1. (8)

Further, for ũ∗ := (1, (1 − tλ)/(tµ)) and ṽ∗ := ((1 − tµ)/(tλ), 1),

1 = 〈ũ∗, u〉 = 〈ũ∗, w̃〉 = 〈ṽ∗, v〉 = 〈ṽ∗, w̃〉.

It follows by the second proof of Lemma 7, using the notations w̃, w̃∗ intro-
duced there, that

[o, u, v, w̃] ⊂ C and |C| ≤ (1 + ε)|[o, u, v, w̃]|, and (9)

[o, u∗, v∗, w̃∗] ⊂ C∗ and |C∗| ≤ (1 + ε)|[o, u∗, v∗, w̃∗]|. (10)

It follows that if 〈ũ∗, x〉 ≥ 〈ũ∗, u〉 = 1 for x ∈ C then

|[x, u, w̃]| ≤ ε · |[o, u, v, w̃]| = ε · [(λ + µ)/µ] · |[o, u, w̃]|,

and hence 〈ũ∗, x〉 ≤ 1+ε · (λ+µ)/µ. For γ̃ := (λ+µ)/ min {λ, µ}, we deduce
that C ⊂ (1 + γ̃ · ε)[o, u, v, w̃], and hence [o, u∗, ũ∗, v∗, ṽ∗, w̃∗] ⊂ (1 + γ̃ · ε)C∗

by polarity, and analogously C∗ ⊂ (1 + γ̃ · ε)[o, u∗, v∗, w̃∗]. Since ε < γ̃−1, we
deduce

[o, u∗, ũ∗, v∗, ṽ∗, w̃∗] ⊂ (1 + γ̃ · ε)2[o, u∗, v∗, w̃∗] ⊂ (1 + 3γ̃ · ε)[o, u∗, v∗, w̃∗].
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For a := (λ − sλ, sλ + µ − 1), we have 〈a, v∗〉 = 〈a, w̃∗〉 = s(λ + µ − 1), thus

1 + 3γ̃ · ε ≥ 〈a, ṽ∗〉
〈a, v∗〉 =

ts(λ + µ − 1) + (1 − s)(1 − t)

ts(λ + µ − 1)

= 1 +

(
1

s
− 1

)(
1

t
− 1

)
1

λ + µ − 1
.

It follows by (8) that

either 1/s ≥
√

λ + µ, or 1/t ≥
√

λ + µ .

In the first case, 3γ̃ · (λ + µ − 1)/(
√

λ + µ − 1) = γ yields 1/t ≤ 1 + γε,
and hence (1 + γε)−1[o, u, v, p] ⊂ C. On the other hand, if 1/t ≥ √

λ + µ,
then a similar argument leads to (1 + γε)−1[o, u∗, v∗, p∗] ⊂ C∗, and hence
C ⊂ (1 + γε)[o, u, v]. �

The second proof of Lemma 8, where however the constant γ will be
different, and which iterates the construction in the proof of Behrend ([4],
proof of (77), pp. 739-740, and of (112), pp. 746-747) will be broken up into
two parts.

Lemma 9 Under the hypotheses of Lemma 7, and with p = λu + µv, for
λ, µ > 0, we have

|C| · |C∗| ≥ f(λ, µ) + g(λ, µ)α(1− α) ,

where
f(λ, µ) := (λ + µ)(λ + µ − 1)/(4λµ) ,

g(λ, µ) := (1/4)·(λ+µ−1)2·min {1/[µ(1+λ/4+µ)], 1/[λ(1+λ+µ/4)], 1/(λµ)} ,

α := max {|[u, v, x]|/|[u, v, p]| | x ∈ C ∩ [u, v, p]} ∈ [0, 1] .

Proof. We may suppose α ∈ (0, 1). Let x = (x1, x2) ∈ C \ [o, u, v] realize
α = max |[u, v, x]|/|[u, v, p]. We write Ci := [o, u, v, x], and Co := {(ξ, η) ∈
[o, u, v, p] | ξ + η ≤ x1 + x2}. Then Ci ⊂ C ⊂ Co. Let x divide the chord of
[o, u, v, p], parallel to the line uv, and containing x in the ratio β : (1 − β),
where the part of the chord with ratio β has an endpoint in [u, p].

We iterate this construction. Let y, z ∈ C, and y, z ∈ Co lie on the other
sides of the lines ux, vx than o, and let them realize max |[u, x, y]|, max |[v, x, z]|
and max |[u, x, y]|, max |[v, x, z]| under these conditions. We define γ :=
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|[u, x, y]/|[u, x, y]| ∈ [0, 1] and δ := |[v, x, z]|/|[v, x, z]| ∈ [0, 1]. Let C ′

i :=
Ci ∪ [u, x, y] ∪ [v, x, z], and let C ′

o be the intersection of Co and the support
half-planes of C at y, z, with boundaries parallel to the lines ux, vx. Then
Ci ⊂ C ′

i ⊂ C ⊂ C ′

o ⊂ Co. So for their polars (in the angular domain u∗ov∗)
we have (Co)

∗ ⊂ (C ′

o)
∗ ⊂ C∗. Hence,





|C| · |C∗| ≥ |C ′

i| · |(C ′

o)
∗| ≥

|Ci| · |(Co)
∗| + |C ′

i \ Ci| · |(Co)
∗| + |Ci| · |(C ′

o)
∗ \ (Co)

∗| =

|Ci| · |(Co)
∗| + (|Ty| + |Tz|) · |(Co)

∗| + |Ci| · (|(T ∗)y| + |(T ∗)z|) ,

where Ty := [u, x, y], Tz := [v, x, z], and the triangles (T ∗)y, (T
∗)z have as

their vertices the polars of the three first, or three last consecutive side lines
of C ′

o in the open angular domain u∗ov∗, taken in the positive orientation,
respectively.

First we estimate |Ty| · |(Co)
∗| + |Ci| · |(T ∗)y| from below. We have

|Ci| = [1 + (λ + µ − 1)α]/2 ,

|(Co)
∗| = (1/2) · [1/ (1 + (λ + µ − 1)α)] · (λ + µ)(λ + µ − 1)/(λµ) ,

|Ty| = γβ ((λ + µ − 1)/2)α(1 − α) .

By using the program package GAP, [51],




|(T ∗)y| = (1/2) · (λ + µ − 1)2 · (1 − γ)βα(1 − α)/[
µ · [1 + (λ + µ − 1)α] · [β(1 − α − γα + γα2)+

γβα(1 − α)λ + α(1 + γβ − γαβ)µ]
]
.

Here the denominator is a product of three factors, all being positive. (For
the third factor observe that the coefficients of λ, or µ are non-negative or
positive, respectively, and the constant term is minimal for γ = 1, and is then
non-negative.) The second factor of the denominator will cancel with |Ci|,
and its third factor will be estimated from above as follows. The coefficients
of λ, or µ, in it are estimated from above by setting β = γ = 1, and then
α = 1/2, or α = 1, obtaining 1/4, or 1, respectively, and the constant term
is estimated from above by setting γ = 0, β = 1, and then α = 0, obtaining
1.

Hence, minimizing for γ ∈ [0, 1],
{
|Ty| · |(Co)

∗| + |Ci| · |(T ∗)y| ≥
(1/4) · ((λ + µ − 1)2/µ) · min {1/(1 + λ/4 + µ), 1/λ} · βα(1 − α)
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(the first term being estimated from below by setting α = 1 in the denomi-
nator of the second factor of |(Co)

∗|). Changing the roles of λ, µ, of β, 1− β,
and of γ, δ, we obtain similarly

{
|Tz| · |(Co)

∗| + |Ci| · |(T ∗)z| ≥
(1/4) · ((λ + µ − 1)2/λ) · min {1/(1 + λ + µ/4), 1/µ} · (1 − β)α(1 − α) .

Hence,

{
|C| · |C∗| ≥ |Ci| · |(Co)

∗| + (|Ty| + |Tz|) · |(Co)
∗| + |Ci| · (|(T ∗)y| + |(T ∗)z|)

≥ f(λ, µ) + g(λ, µ) · α(1 − α) .

�

Corollary 10 Under the hypotheses of Lemma 9, let

|C| · |C∗| ≤ (1 + ε) · f(λ, µ) ,

where ε ∈ (0, g(λ, µ)/ (4f(λ, µ))). Further let α± :=
[
1±√

1 − (4f(λ, µ)/g(λ, µ))ε
]
/2, and α++(1−α+) min {(1−λ)/µ, (1−µ)/λ} >

0. Then
either C ⊂ [1 + (λ + µ − 1)α−] · [o, u, v],

or C ⊃ [α+ + (1 − α+) · min {(1 − λ)/µ, (1− µ)/λ}] · [o, u, v, p] .

Proof. By hypotheses and Lemma 9, for α from Lemma 9,

f(λ, µ) · (1 + ε) ≥ |C| · |C∗| ≥ f(λ, µ) + g(λ, µ)α(1− α) ,

hence
α2 − α + (f(λ, µ)/g(λ, µ)) ε ≥ 0 ,

i.e., α ≤ α−, or α ≥ α+, where α± ∈ R and α− < α+.
Let x ∈ C ∩ [u, v, p], with |[u, v, x]| maximal. Then C lies below the line

l := {y | y lies above the line uv, and |[u, v, y]| = α · |[u, v, p]|}. If α ≤ α−,
then C lies below the line l−, defined analogously to l, but using α− rather
than α. If α ≥ α+, then C ⊃ [o, u, v, x], hence C ⊃ [o, u, v, νx], where νx
lies on the line l+, defined analogously to l, but using α+ rather than α.
Hence C contains the quadrangle obtained from [o, u, v, νx], by replacing its
side lines u(νx), v(νx) by lines through νx, parallel to up, vp. We further
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diminish this last quadrangle by translating its side lines parallel to up, or
vp so, that they should contain the points of intersection of the sides vp, or
up with the line l+, respectively. The formulas in the corollary then follow
by simple calculations. �

Remark. It is probable that with more work one could sharpen the
stability estimates in the second proof of Lemma 8, iterating further the
construction of inscribed/circumscribed polygons (defining, in an analogous
manner, some closer approximations Ci ⊂ C ′

i ⊂ C ′′

i ⊂ C ⊂ C ′′

o ⊂ C ′

o ⊂ Co,
etc.). However, this way does not seem to be suitable to give estimates,
which are sharp, up to a quantity o(ε).

The first inequality in the next lemma is related to [25], Proposition 1,
but is formulated with constants according to our particular needs in this
paper. The second inequality in our next lemma is related to an opposite
inequality as in Proposition 2 of [25], but the idea of the proof is similar.

Lemma 11 Let d ≥ 2 be an integer, K0 ⊂ R
d be a convex body, and let

0 < ε1 ≤ ε1(K0) := min {1/2, 2−2d−1 (κd−1/(dκ2
d)) · |K0|/(diamK0)

d}. Let
K ⊂ R

d be a convex body, and let (1 − ε1)K0 + a ⊂ K ⊂ (1 + ε1)K0 + b,
where a, b ∈ R

d. Then

‖s(K) − s(K0)‖ ≤ c1(K0) · ε1 ,

where
c1(K0) := (diam K0)

(d+1)2 |K0|−d−2 · d(dκd/κd−1)
d+2 .

If moreover, ε2 > 0, and |K0| · | (K0 − s(K0))
∗ | ≤ |K| · (K − s(K))∗ |, and

c ∈ int K, and |K| · |(K − c)∗| ≤ |K0| · | (K0 − s(K0))
∗ | + ε2 ≤ κ2

d, then

‖c − s(K0)‖ ≤ c1(K0) · ε1 + c2(K0) ·
√

ε2 ,

where
c2(K0) :=

√
(diam K0)d+2/|K| ·

√
2d+3/ ((d + 1)κd) .

Proof. We will suppose that the point of homothety of (1−ε1)K0+a and
(1+ε1)K0 +b, that is in the first body, is o (this does not change K0−s(K0),
K − s(K), K − c; namely, we consider c as “fixed to K”). Thus a = b = o
can be supposed.

24



We have




(∂/∂xd)|(K − x)∗| =
∫

Sd−1 ud (hK(u) − 〈u, x〉)−d−1 du ,

(∂/∂xd)
2|(K − x)∗| = (d + 1)

∫
Sd−1 u2

d (hK(u) − 〈u, x〉)−d−2 du

≥ (d + 1)(diam K)−d−2κd ,

(11)

where u = (u1, . . . , ud), hK is the support function of K, and κd the volume
of the unit ball in R

d. The analogues of these formulas hold for the first and
second directional derivatives in any direction.

First we estimate ‖s(K) − s(K0)‖ from above. We may assume that
s(K) − s(K0) = (0, . . . , 0, δ), where δ > 0.

We begin by showing that s(K) ∈ int ((1 − ε1)K0), and even estimate
dist (s(K), bd [(1 − ε1)K0]) from below. Let η := dist (s(K), bdK) ≤ dist
(s(K), bd [(1 + ε1)K0]). Then (K − s(K))∗ contains (diam K)−1Bd, and a
point at distance η−1 from o (with Bd the unit ball about o). Therefore

κ2
d ≥ |K| · | (K − s(K))∗ | ≥ |K| · (diam K)−d+1(κd−1/d)η−1 . (12)

Hence, by ε1 ≤ 1/2,





η0 := 2−2d+1 (κd−1/(dκ2
d)) · |K0|/[(diam K0)

d−1] ≤
(κd−1/(dκ2

d)) · |K|/(diamK)d−1 ≤ η ≤
dist (s(K), bd [(1 + ε1)K0]) ≤
dist

(
s(K), bd [(1 − ε1)K0 + 2ε1 · diam K0 · Bd]

)
.

Thus, for ε1 ≤ η0/(4 · diam K0),

s(K) ∈ int [(1 − ε1)K0] and η0/2 ≤ dist (s(K), bd [(1 − ε1)K0]) .

Then, using convexity of the function t−d−1 for t > 0, and (12) for K0,
rather than K,





0 =
∫

Sd−1 ud (hK(u) − 〈u, s(K)〉)−d−1 du ≥∫
Sd−1 ud[hK0

(u) + sg ud · ε1hK0
(u) − 〈u, s(K0)〉 − δud]

−d−1du ≥∫
Sd−1 ud (hK0

(u) − 〈u, s(K0)〉)−d−1 du+

(d + 1) ·
∫

Sd−1 ud (δud − ε1 · sg ud · hK0
(u))×

(hK0
(u) − 〈u, s(K0)〉)−d−2 du ≥

δ(d + 1)(diamK0)
−d−2

∫
Sd−1 u2

ddu−
ε1(d + 1) · diam K0 · [(κd−1/(dκ2

d)) |K0|/
(diam K0)

−d+1]−d−2
∫

Sd−1 |ud|du .

(13)
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Here,
∫

Sd−1 u2
ddu = κd, and

∫
Sd−1 |ud|du ≤

∫
Sd−1 du, and comparing the first

and last terms of (13), we get the first inequality of the Lemma.
We turn to the second inequality. We have

‖c− s(K0)‖ ≤ ‖c− s(K)‖+ ‖s(K)− s(K0)‖ ≤ ‖c− s(K)‖+ c1(K0)ε1 , (14)

and

|K| · |(K − c)∗| ≤ |K0| · | (K0 − s(K0))
∗ | + ε2 ≤ |K| · | (K − s(K))∗ | + ε2 .

We use (11) on the line of s(K), c, which gives

|K|(d + 1)(diam K)−d−2κd · ‖c − s(K)‖2/2 ≤ ε2 . (15)

(14) and (15) give the second inequality of the Lemma. �

Proof of Theorem 5. 1. First we estimate δs
BM(K, Rn) from above.

Here we may assume that o is the Santaló point of K, i.e., its centre of
rotational symmetry. As explained in §3, there exist regular n-gons Ki and
Ko centred at the origin, such that Ki ⊂ K ⊂ Ko, and the midpoints of the
sides of Ko are the vertices of Ki. Assuming that the unit circular disc about
o is the incircle of Ko, we have K∗

o = Ki. Now the radii from o to the vertices

of Ki divide Ko into n congruent deltoids C̃1, . . . , C̃n whose common vertex
is the origin. In particular C̃∗

j := C̃j ∩ Ki is the corresponding triangular

sector of Ki, j = 1, . . . , n. For the congruent sectors Cj = C̃j ∩K of K, and

the congruent sectors C∗

j = C̃j ∩ K∗ of K∗, j = 1, . . . , n, we have

(1 + ε)n2|C̃1| · |C̃∗

1 | = (1 + ε)|Ki| · |Ko| ≥ |K| · |K∗| = n2|C1| · |C∗

1 |.

We observe that C̃∗

1 = [o, u, v] and C̃1 = [o, u, v, p], where p = λu + λv for
λ = [cos(π/n)]−2/2, and

|C1| · |C∗

1 | ≤ (1 + ε)|[o, u, v, p]| · |[o, u∗, v∗]|.

We deduce by Lemma 8 that either C1 ⊂ (1 + γε)C̃∗

1 , or (1 + γε)−1C̃1 ⊂ C1,
where γ := 6(1 +

√
2λ) ≤ 18. Therefore the rotational symmetry yields that

either K ⊂ (1 + 18ε)Ki, or (1 + 18ε)−1Ko ⊂ K.
2. Now we turn to the proof of the stability of the centre of polarity. The

point x is the point of homothety of λ1Rn+x and λ2Rn+x, and x ∈ λ1Rn+x;
we will suppose x = o. Simultaneously, we have to replace K∗ with (K − c)∗,
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for some c ∈ int K (“fixed to K”). Let K0,n := [(λ1 + λ2)/2]Rn. Then
λ1Rn ⊂ K ⊂ λ2Rn and λ2/λ1 ≤ 1 + 18ε imply

{
K0,n(1 − 9ε) ⊂ K0,n/[(1 + λ2/λ1)/2] ⊂ K

⊂ K0/[(λ1/λ2 + 1)/2] ⊂ K0,n(1 + 9ε) .
(16)

Note that by hypothesis ε < 1/18, so here

1 − 9ε > 0 . (17)

Restricting Lemma 11 to d = 2, we have ε1(K0) = [1/(32π2)] · |K0|/
(diam K0)

2, and c1(K0) = 2π4 · (diam K0)
9|K0|−4, and c2(K0) = 4

√
2/(3π) ·

(diam K0)
2|K0|−1/2. Here diam K0 = 1, hence minn |K0,n| is attained for

n = 3, so minn ε1(K0,n) =
√

3/(128π2), and maxn c1(K0,n) = 512π4/9, and

maxn c2(K0,n) = 8
√

2/π3−3/4.
We apply Lemma 11 for d = 2, replacing there ε1(K0) by minn ε1(K0,n),

and c1(K0) by maxn c1(K0,n), and c2(K0) by maxn c2(K0,n). By (16) we may
choose ε1 = 9ε. Also, ε2 ≤ π2ε. So

‖c − s(K0)‖ ≤ (512π4/9) · 9ε + 8
√

2/π3−3/4 · π√ε , (18)

for
0 < ε ≤ ε∗ := [

√
3/(128π2)]/9 = 0.0001523... < 1/18 . (19)

However, we will use (18) only for 0 < ε ≤ ε∗∗, for some ε∗∗ ∈ (0, ε∗], to be
chosen later.

First let 0 < ε ≤ ε∗∗. Then (18) gives

‖c − s(K0)‖ ≤
(
512π4

√
ε∗∗ + 8

√
2π3−3/4

)
· √ε . (20)

Second let ε ≥ ε∗∗. Then by λ2/λ1 ≤ 2 we have

{
‖c − s(K0)‖ ≤ diam (λ2Rn) = λ2/[(λ1 + λ2)/2]

≤ 4/3 ≤ [4/(3
√

ε∗∗)] · √ε .
(21)

By (20) and (21), we have

‖c − s(K0)‖ ≤
(
max {512π4

√
ε∗∗ + 8

√
2π3−3/4, 4/(3

√
ε∗∗)}

)
· √ε . (22)
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Now we minimize the coefficient of
√

ε in (22), that is a function of ε∗∗. This
minimum occurs when the two terms under the maximum sign are equal,
that occurs for ε∗∗ = 0.0000258... , and its value is 262.30682... . (Observe
that 0 < ε∗∗ < ε∗). �

For the proofs of Theorems 1 and 2, we need a simple stability version
of the inequality between the arithmetic and geometric means. If n ≥ 2 and
0 < a1 ≤ . . . ≤ an, then

a1 + . . . + an

n · (a1 · . . . · an)1/n
=

(
√

an −√
a1)

2 + 2
√

a1an +
∑

1<j<n aj

n · (a1 · . . . · an)1/n

≥ (
√

an −√
a1)

2 + n · (a1 · . . . · an)1/n

n · (a1 · . . . · an)1/n

≥ 1 +
1

n

(
1 −

√
a1

an

)2

.

It follows that
{

if ε ≥ 0 and (a1 + . . . + an)/[n · (a1 · . . . · an)1/n)] ≤ 1 + ε,

then aj/ak ≥ 1 − 2
√

nε for any 1 ≤ j, k ≤ n.
(23)

Proof of Theorem 1. 1. First we estimate δBM (K, P ) from above.
Here we may assume that o is the Santaló point of K, i.e., its centre of
symmetry. As explained in §3, we may assume that Ki ⊂ K ⊂ Ko, where Ko

is a square of side length two centered at o, and the midpoints of the sides of
Ko are the vertices of Ki. In particular, Ki and Ko are polar to each other.
It also follows that δBM (K, P ) ≤ 2, and hence if ε ≥ 0.005, then we are done.
Therefore we assume that ε < 0.005.

Now Ko can be dissected into four unit squares S1
o := [0, 1]× [0, 1], S2

o :=
[−1, 0] × [0, 1], −S1

o and −S2
o . We write Sj

i = Sj
o ∩ Ki, Cj = Sj

o ∩ K and
C∗

j = Sj
o ∩K∗ for j = 1, 2, and hence Lemma 7 implies |Cj| · |C∗

j | ≥ |S1
i | · |S1

o |
for j = 1, 2. We deduce by the hypothesis |K| · |K∗| ≤ (1+ε) ·8 and Lemma 7
that

{
(1 + ε) · |S1

i | · |S1
o | ≥ [(|C1| + |C2|)/2] · [(|C∗

1 | + |C∗

2 |)/2]

≥
√
|C1| · |C2| · |C∗

1 | · |C∗

2 | , and |Cj| · |C∗

j | ≥ |S1
i | · |S1

o |.
(24)

In particular,

|Cj| · |C∗

j | ≤ (1 + ε)2 · |S1
i | · |S1

o | ≤ (1 + 2.005ε) · |S1
i | · |S1

o | for j = 1, 2.
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To apply Lemma 8, we have λ = µ = 1 and γ = 6(1 +
√

2) < 15
both in the cases of C1 and C2. Therefore, for each of j = 1, 2, either
Cj ⊂ (1 + γ · 2.005ε)Sj

i , or (1 + γ · 2.005ε)−1Sj
o ⊂ Cj . If both of C1 and C2

satisfies either the first, or the second condition, then δBM(K, P ) ≤ 1 + 31ε,
and we are done. Therefore we suppose that C1 ⊂ (1 + γ · 2.005ε)S1

i , and
(1 + γ · 2.005ε)−1S2

o ⊂ C2, and seek a contradiction. We have |C1| ≤ (1 +
γ · 2.005ε)2/2, and since the diagonal of S2

o not containing o is a subset of
C2, we also have |C2| ≥ (1 + γ · 2.005ε)−1. It follows by ε < 0.005 that
|C1| < (1 − 2

√
2ε)|C2|. On the other hand, (23) applied in (24) leads to

|C1| ≥ (1 − 2
√

2ε)|C2|, a contradiction.
2. The stability of the centre of polarity is deduced from Lemma 11 like in

Theorem 5, by supposing x = 0. Simultaneously, we have to replace K∗ with
(K − c)∗, for some c ∈ int K (“fixed to K”). Let K0 := [(λ1 + λ2)/2]P . Now
ε1(K0) = 1/(64π2), and also c1(K0), c2(K0), ε2 are numerical constants. We
only note that by hypothesis ε < 0.005, and then we use the sharper estimate
δBM(K, P ) ≤ 1+31ε, and we have, analogously to (17), 1− (31/2)ε > 0, and
analogously to (19), ε∗ := [ε1(K0)]/(31/2) < 0.005. The optimal choice of ε∗∗

is ε∗. The distance to be estimated from above is at most 335.10941... · √ε.
�

Proof of Theorem 2. 1. First we estimate δBM (K, T ) from above. We
may assume that K is not a parallelogram, and o is the Santaló point of K.
As it is explained in §3, we may assume that Ki ⊂ K ⊂ Ko, where Ki and
Ko are regular triangles, the midpoints of the sides of Ko are the vertices of
Ki. It also follows that δBM (K, T ) ≤ 4, and hence if ε ≥ 1/300, then we are
done. Therefore we assume that ε < 1/300.

We use the notation and ideas of the proof Theorem 3. In particular
o ∈ int Ki. We may assume that that the circumradius of Ki is 1, and hence
d1 + d2 + d3 = 3, and a = b =

√
3.

Since |K| · |K∗| ≤ (1+ ε) · |Ko| · |K∗

o |, and we used the inequality between
arithmetic and geometric means for |C1|, |C2|, |C3| in (5), and for d1, d2, d3 in
the step from (6) to (7), for j, k = 1, 2, 3, we deduce by (23) that

|Cj|/|Ck| ≥ 1 − 2
√

3ε ≥ 4/5 (25)

dj/dk ≥ 1 − 2
√

3ε ≥ 4/5. (26)
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Since d1 + d2 + d3 = 3, we have

dj ≥ 3/(1 + 5/4 + 5/4) = 6/7, (27)

dj ≤ 3/(1 + 4/5 + 4/5) = 15/13. (28)

Like in the proof of Theorem 1, by hypothesis, and by Lemma 7,




(1 + ε)
(∏3

j=1(|[o, xj−1, xj , yj]| · |[o, y∗

j−1, y
∗

j ]|)
)1/3

≥
(∏3

j=1(|Cj| · |C∗

j |)
)1/3

, and |Cj| · |C∗

j | ≥ |[o, xj−1, xj , yj]| · |[o, y∗

j−1, y
∗

j ]| .

Hence, for each j = 1, 2, 3, we have

|Cj| · |C∗

j | ≤ (1 + 3.1ε)|[o, xj−1, xj , yj]| · |[o, y∗

j−1, y
∗

j ]|. (29)

Let j = 1, 2, 3. To apply Lemma 8, we define λj , µj > 0 by

yj = λjxj−1 + µjxj .

Since λj/µj = |[o, xj, yj]|/|[o, xj−1, yj]| = dj/dj−1, (26) implies

λj + µj

min {λj, µj}
≤ 1 + 5/4 = 9/4.

Now the distances of yj, or o from the line of xj−1, xj are 3/2, or ‖x∗

j+1‖−1 =
3/2 − dj+1 ≥ 9/26, by (28), respectively, and hence

{
λj + µj = 〈x∗

j , yj〉 = 〈x∗

j , xj〉 + ‖x∗

j‖ · 〈‖x∗

j‖−1x∗

j , yj − xj〉
≤ 1 + (3/2)/(9/26) = 16/3.

We define γj := 3[(λj + µj)/ min {λj, µj}](1 +
√

λj + µj), and hence

3.1γj ≤ 3.1 · 3 · (9/4) · (1 + 4/
√

3) < 70.

In particular, it follows by Lemma 8 and (29) that

either (1 + 70ε)−1[o, xj−1, xj , yj] ⊂ Cj , or Cj ⊂ (1 + 70ε)[o, xj−1, xj ] .

We note that 1+70ε ≤ 5/4 and ‖xj−1 −xj‖ =
√

3. If (1+70ε)−1[o, xj−1,
xj , yj] ⊂ Cj , then (28) yields
{
|Cj| ≥ |[o, xj−1, xj, (4/5)yj]| =

(4/5) · (
√

3/2) · (3/2 − dj+1 + 3/2) ≥ (2
√

3/5) · 48/26 > 1.27.
(30)
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On the other hand, if Cj ⊂ (1 + 70ε)[o, xj−1, xj ], then (27) yields

{
|Cj| ≤ (5/4)2 · |[o, xj−1, xj]| = (5/4)2 · (

√
3/2) · (3/2 − dj+1) ≤

(5/4)2 · (
√

3/2) · (9/14) < 0.87.
(31)

Comparing (25), (30) and (31) shows that either (1+70ε)−1[o, xj−1, xj , yj]
⊂ Cj for all j = 1, 2, 3, or Cj ⊂ (1 + 70ε)[o, xj−1, xj ] for all j = 1, 2, 3.
Therefore either (1 + 70ε)−1Ko ⊂ K, or K ⊂ (1 + 70ε)Ki, and hence the
Banach-Mazur distance of K from the triangles is at most 1 + 70ε.

2. The stability of the centre of polarity is deduced from Lemma 11 like
in Theorem 5 and Theorem 2, by supposing x = o. Simultaneously, we have
to replace K∗ with (K − c)∗, for some c ∈ int K (“fixed to K”). Let K0 :=
[(λ1 +λ2)/2]T . Now ε1(K0) =

√
3/(128π2). We only note that by hypothesis

ε < 1/300, and then we use the sharper estimate δBM (K, T ) ≤ 1 + 70ε,
and we have, analogously to (17), 1 − (70/2)ε > 0, and analogously to (19),
ε∗ := [ε1(K0)]/(70/2) < 1/300. The optimal choice of ε∗∗ is ε∗. The distance
to be estimated from above is at most 916.69531... · √ε. �

We turn to the proof of Theorem 6. We proceed analogously as in
Lemma 9 and Corollary 10. Again, the proof of Lemma 12 will use an idea
of Behrend, [4], proof of (77), pp. 739-740, and of (112), pp. 746-747.

As in the proof of Theorem 2, we assume that Ki ⊂ K ⊂ Ko, where
Ko = [a, b, c] , Ki = [a′, b′, c′] are regular triangles, a′ = (b + c)/2 , b′ =
(c + a)/2 , c′ = (a + b)/2. Now we assume ‖a − b‖ = 2. We let α1 :=
max {|[x, b′, c′]|/|[a, b′, c′]| | x ∈ K∩[a, b′, c′]}, α2 := max {|[x, c′, a′]|/|[b, c′, a′]| |
x ∈ K∩ [b, c′, a′]}, α3 := max {|[x, a′, b′]|/|[c, a′, b′]| | x ∈ K∩ [c, a′, b′]}. Then
αi ∈ [0, 1], and we let α := (α1 + α2 + α3)/3 ∈ [0, 1].

Lemma 12 With the above notations, we have

|K| · |[(K − K)/2]∗| ≥ 6 + (3/2)α(1− α) .

Proof. The supporting lines of K, parallel to and different from the side
lines of Ko, contain points a′′, b′′, c′′ of K, with a′′ lying in the triangle b′ac′,
etc. We let K ′

i := [a′, c′′, b′, a′′, c′, b′′], and K ′

o the hexagon bounded by the
supporting lines of K parallel to the sides of Ko. We have

K ′

i ⊂ K ⊂ K ′

o .
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Hence,
|K| · |[(K − K)/2]∗| ≥ |K ′

i| · |[(Ko − Ko)/2)]∗| . (32)

Here
|K ′

i| = (
√

3/4)(1 + α1 + α2 + α3) , (33)
{
|[(K ′

o − K ′

o)/2]∗| = 2(4/
√

3)2[(1 + α1)
−1(1 + α2)

−1+

(1 + α2)
−1(1 + α3)

−1 + (1 + α3)
−1(1 + α1)

−1] sin(π/3)/2 .
(34)

Now, (32), (33), (34), and the arithmetic-geometric mean inequality imply

{
|K ′

i| · |[(Ko − Ko)/2]∗| = 2(1 + 3α)(3 + 3α)×
(1 + α1)

−1(1 + α2)
−1(1 + α3)

−1 ≥ 6(1 + 3α)(1 + α)−2 .
(35)

It suffices to show that the last quantity in (35) is at least 6+ (3/2)α(1−α).
However, if we replace here 3/2 by some c ≥ 0, this claimed inequality
becomes equivalent to

α(1 − α)
(
1 − (c/6)(1 + α)2

)
≥ 0 ,

that is satisfied for c = 3/2. �

Proof of Theorem 6. We will use the notations in Lemma 12 and its
proof. By hypotheses and Lemma 12,

6 · (1 + ε) ≥ |K| · |[(K − K)/2]∗| ≥ 6 + (3/2)α(1− α) ,

hence
α2 − α + 4ε ≥ 0 ,

i.e., α ≤ α−, or α ≥ α+, where α± are the roots of the last polynomial. They
are real, with α− < α+, for

ε ∈ [0, 1/16) ,

which last inequality will be supposed preliminarily.
For α ≤ α− we have

δBM(K, T ) ≤ 1 + α1 + α2 + α3 = 1 + 3α− . (36)

Now let α ≥ α+. We proceed analogously, as in the proof of Corollary 10.
We write βi := 1− αi ∈ [0, 1], and β := 1− α ∈ [0, 1]. Then β = (

∑
βi)/3 ≤
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α−, hence βi ≤ ∑
βi ≤ 3α−. We have K ∩ [a′, b′, c] ⊃ [a′, b′, c′′]. We di-

minish this last triangle by retaining its side line a′b′, and replacing its sides
[a′, c′′], [b′, c′′] by sides containing c′′, and parallel to [a′, c], [b′, c]. We further
diminish this last triangle by retaining its side line a′b′, and translating its side
lines parallel to [a′, c], [b′, c], so that they should contain c′′(b′), c′′(a′), where
[c′′(a′), c′′(b′)] ∋ c′′ is a chord of [a′, b′, c] parallel to [a′, b′], with c′′(a′) ∈ [c, a′]
and c′′(b′) ∈ [c, b′]. Of course this is only possible for β3 ≤ 3α− ≤ 1/2;
therefore we preliminarily suppose also

α− ≤ 1/6 , or, equivalently, ε ∈ [0, 1/28.8] (⊂ [0, 1/16)) .

In this case the vertex c′′′ of the last triangle opposite its side on [a′, b′] de-
pends only on β3: it lies on the angle bisector of the triangle [a′, c, b′] at c,
and ‖c′′′−c‖ = β3

√
3. Lastly we replace c′′′ by c′′′′, which is constructed anal-

ogously as c′′′, but replacing at the beginning β3 by 3α− (≥ β3). Analogously
we define the points a′′′′, b′′′′. Then [a′′′′, b′′′′, c′′′′] ⊂ [a′, c′′′′, b′, a′′′′, c′, b′′′′] ⊂ K,
hence

δBM (K, T ) ≤ 1/ (1 − (9/2)α−) . (37)

Here we have 1− (9/2)α− ≥ 1/4, i.e., α− ≤ 1/6, thus a′′′′, b′′′′, c′′′′ 6∈ int [a′, b′,
c′].

Now, (36) and (37) give






δBM (K, T ) ≤ max {1 + 3α−, 1/(1 − (9/2)α−)} =

1/(1 − (9/2)α−) = 1 + [(9/2)α−]/[1 − (9/2)α−] ≤
1 + [(9/2)α−]/[1 − (9/2)(1/6)] = 1 + 18α− .

(38)

By convexity of the respective function,

α− = (1 −
√

1 − 16ε)/2 ≤ (24/5)ε, for ε ∈ [0, 1/28.8] . (39)

Thus, by (38) and (39),

δBM (K, T ) ≤ 1 + 18α− ≤ 1 + 86.4ε . (40)

There remained the case ε ≥ 1/28.8. Then

δBM(K, T ) ≤ 4 ≤ 1 + 86.4ε . (41)

Lastly, (40) and (41) together prove the theorem. �
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6 A short proof of the inequality of Mahler-

Reisner

Theorem 13 (Mahler-Reisner [30], [46]). If K is an o-symmetric convex
body in R

2, then
|K| · |K∗| ≥ 8 ,

with equality if and only if K is a parallelogram.

In the proof of this theorem we use the results of [42], more exactly, the
proof of their Theorem 15. Actually we will make only slight modifications
in its proof.

Proof of Theorem 13. Like in [42], proof of their Theorem 15, we may
suppose a diameter of K is [(−1, 0), (1, 0)], where K ⊂ R

2 has a minimal
volume product among 0-symmetric convex bodies. Let

K = {(x, y) | x ∈ [−1, 1], −f(−x) ≤ y ≤ f(x)} ,

where
{

f(x) is a concave function on [−1, 1], with

f(−1) = f(1) = 0, and f(x) > 0 for x ∈ (−1, 1) .
(42)

If the graph of f consists of two segments, we are done. If not, then, by
Lemma 14 of [42], there are functions g, h, both satisfying (42) above, both
not proportional to f , such that f = (g + h)/2.

Let t ∈ [−1, 1]. Let ft := f + t(h − g)/2. Then the area of the convex
body

Kt := {(x, y) | x ∈ [−1, 1], −ft(−x) ≤ y ≤ ft(x)}
is a linear function of t. By Theorem 1 of [42] the reciprocal of ϕ(t) :=
|[Kt − s(Kt)]

∗| is a convex function of t. Hence min ϕ is attained either for
t = −1 or for t = 1. Since K = K0 has minimum volume product, ϕ is
constant. Then, by Proposition 7 of [42], K1 is an affine image of K, by an
affinity of the form (x, y) → (x, ux + vy + w). By [42], p. 140, Remark to
Proposition 7, we have h(x) = vf(x) + ux + w. Putting here x = ±1, we see
u = w = 0. Hence, h is proportional to f , a contradiction. �
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Conf. Intuitive Geom., Siófok, 1985) Coll. Math. Soc. J. Bolyai
48, Intuitive Geom. (Eds. K. Böröczky, G. Fejes Tóth), J. Bolyai
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