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Abstract

For a given convex body in R® with C2 boundary, leP!, be an inscribed
polytope of maximal volume with at mostvertices, and leP; be a cir-
cumscribed polytope of minimal volume with at mostaces. P.M. Gruber
[12] proved that the typical faces 9fn) are asymptotically close to regular
hexagons in a suitable sense if the Gaul3—Kronecker curvature is positive on
oK. In this paper we extend this result to the case if there is no restriction
on the GaulR—Kronecker curvature, moreover we prove that the typical faces
of P\ are asymptotically close to regular triangles in a suitable sense. In ad-
dition writing P,y andP, to denote the polytopes with at masfaces om
vertices, respectively, that minimize the symmetric difference metric from
K, we prove the analogous statements alsytandp,.

Key words: polytopal approximation, extremal problems
MSC 2000: 52A27,52A40

1 Introduction

First we introduce some notions that will be used thorough the paper. For func-
tions f and g of positive integers, we writd (n) = O(g(n)) if there exists an
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absolute constamtsuch that f (n)| < c-g(n) foralln> 1, andf(n) = o(g(n)) if
liMp— o % = 0. In addition we writef (n) ~ g(n) if liMp_c % =1

For a compact convex s€& in R3, we write affC to denote its affine hull,
V(C) to denote its volume (Lebesgue measud€),to denote its boundary and
intC to denote its interior. We call a convex body ifintC + 0, and a convex
disc if affC is a plane. IfC is a convex disc then we writ€| to denote its area,
andrelintC to denote its relative interior. Next Iét,-) denote the scalar product
in R3, let ||x]| = v/(x,x) = v/x2 be the Euclidean norm of € R3. We write 0
to denote the origin, anB? andB® to denote the Euclidean unit disc k? and
unit ball in R3, respectively, centred a;, moreoverS’ to denote the boundary
of B%. For any objectsXy, ..., Xy, we write [X1,...,Xg| to denote their convex
hull. Concerning additional notions for convex bodies and polytopes in this paper,
consult the beautiful monographs R. Schneider [20] and P.M. Gruber [15].

In this paper the distance of two convex bodieandM in R3 is mostly mea-
sured by their symmetric difference metdg(K,M); that is, the volume of the
symmetric differencé&AM of K andM.

Next we fix a convex bod¥ in R3 with C? boundary for the rest of the sec-
tion. We always integrate a?K with respect to the two—dimensional Hausdorff—
measure. For any< 0K, we writeQy to denote the second fundamental form,at
henceQy is positive semi definite. Its two eigenvalues are the principal curvatures
atx, whose product (the determinant@) is the Gau3—Kronecker curvatucéx)
atx. Readilyk(x) > 0 for anyx € oK.

We defineP, to be a polytope with at most vertices such thabs(K, Py) is
minimal, andP,, to be a polytope with at most faces such thabs(K,P,)) is
minimal. In addition letP! be a polytope inscribed inté with at mostn vertices
and of maximal volume, and Ié?(cn) be a polytope circumscribed arouKdwith
at mostn faces and of minimal volume. A task initiated by L. FejesA [5] led
to the asymptotic formulae

B(K, P ~ 4—\1/§</6KK(X)1/4dX)2-%; )
Bs(k.Py) ~ o AKK<X>1/4dX)2'%; @
Bs(K,Py) ~ (Flﬁ_%) </aKK<X)1/4dX>2‘%? @3)



2
55(K,P(n)) ~ (%—%) </6KK(X)1/4dX) % (4)

Under the assumption thatx) > O for all x € dK, (1) is due to P.M. Gruber [8],
(2) is due to P.M. Gruber [9], moreover (3) and (4) follow from combining M.
Ludwig [17] and K. Bdroczky, Jr. and M. Ludwig [3]. The cases when possibly
K(x) = 0 are due to K. Broczky, Jr. [2].

The goal of this paper is to continue a task initiated by P.M. Gruber [11] and
[12]; namely, to describe the typical faces of the extremal polytopes above. For
€ > 0 and convex disc€ andM, we say thaC€ is e-close taM if there existx € C
andy € M with

(1+¢e) 1. (C—x)cM—ycC (14¢)-(C—x).

For anyx € 0K, we write u(x) to denote the exterior unit normal & at x.
Let p(x) > 0 be a continuous function a?K such thaip(x) > 0 if kK(x) > 0, and
let M, be a sequence of polytopes such thatintM,, for eachn, and the number
f(n) of faces ofM, tends to infinity withn. A faceF of My, is calledproper if
there exits a unique poin: € dK such thatu(xg) is an exterior normal also to
F, and in additionQy. is positive definite. Giverlk > 3, we say that the typical
faces ofM,, are asymptotically reguld—gons with respect to the density function
p if the following properties hold. There existgn) > 0 with limp_,v(n) =0
such that for all buv(n) percent of the faceB of My, F is a properk—gon, and
F isv(n)—close to som&-gon which is regular with respect @, and is of area
Jok P(X)dX
f(n)-p0) "

In Theorems 1.1 and 1.K is any convex body ifR® with C? boundary, and
Py P(Cn), Pn, P! are defined as above.K{x) > 0O for all x € 0K then Theorem 1.1

for P(Cn) is due to P.M. Gruber [12].

THEOREM 1.1 The typical faces of botﬁ(cn) and P, are asymptotically regu-
lar hexagons with respect to the density funcukcén)l/"'.

Remark: Both P(Cn) andP, have exactlyn faces. In addition each face an)
touche in its centroid, and i is a face ofP,, then|F NK| = % |F].

THEOREM 1.2 The typical faces of botR| and P, are asymptotically regular
triangles with respect to the density functiofx)/%.



Remark: Both P! andP, have2n— o(n) faces, and each vertex Bf lies in oK.
In addition there existg(n) > 0 with limp_.. p(n) = 0 such that for all bufi(n)

percent of the faceB of P, we havel_T“(”) IF| < |FNK]| < ”T“(”) IF.

Let us discuss some other results that follow from the methods of the proofs
of Theorems 1.1 and 1.2. Given a convex b@lin R3, its support functioric
is defined byhc(u) = maxec(x, u) for u € R3. If M is another convex body then
the L;—metric ofC andM is

51(C,M) :/Szyhc(u)—hM(u)ydu.

In particular ifM C C thend,(C,M) is proportional to the difference of the mean
widths of C andM. The paper S. Glasauer and P.M. Gruber [6] introduced an
ingenious method to translate a result about polytopal approximation with respect
to dsinto a "dual” result with respect td;. The paper [6] discussed only the case
whenk(x) > 0 for all x € 0K (see also M. Ludwig [17]), but this restriction is not
necessary (see K.doczky, Jr. [2]). During the argument one takes the dual of
some polytope. Therefore it is not enough to know the shape of a typical face but
also its position with respect @K in the case of volume approximation (see the
Remarks above). In summary the analogues of Theorems 1.1 and 1.2 also hold if
the extremal polytopes were not defined in termdgibut in terms 0®4, and the
only difference is that the density functionk$x)®4 in the case ob;. Actually
if K(x) > 0 for all x € dK then the statement about inscribed polytopes and the
Li1—metric is due to P.M. Gruber [12].

Finally the Hausdorff metriéy (C,M) of two convex bodie€ andM is the
minimal d such that any point df is of distance at most from M, and any point
of M is of distance at most from C. Then the analogues of Theorems 1.1 and 1.2
also hold if the extremal polytopes were not defined in term3sdfut in terms
of 84, and the only difference is that the density functior {%)%/2 in the case of
on. If kK(x) > Ofor all x € 0K then all the statements about the Hausdorff metric
are due to P.M. Gruber [11].

Next we discuss uniform distribution of the faces of the extremal polytopes.
We may assume thate intK, and we writerjx to denote radial projection onto
OK. Let M, be the extremal polytope with vertices orn faces in any of the
extremal problems above, |6, denote the family of faces &fl,,, and letp(x) be
the corresponding density function 4. We say that the radial projection of the
faces ofM,, are uniformly distributed odK with respect t@(x) if for any Jordan
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measurabl&X c 0K, we have

Jxp(x)dx . H#HF € Fniry(F) C X}
Tacp0gax AT, o ©)
— im #{F € Fn:rogx(F)NX # 0}
n—co #In '

This formula (in an analogous form) was proved first by S. Glasauer and R.
Schneider [7] if the metric i$4 andk(x) > O for all x € 0K. The cases if the
metric isds or & andk(x) > O for all x € 0K are due to S. Glasauer and P.M.
Gruber [6]. Finally the restriction that(x) > 0O for all x € 0K was removed by K.
Boroczky, Jr. [2]. We note that replacing, in (5) by the family74, of the vertices

of Mp, the resulting formula holds in all cases, as well.

Let us discuss the proofs of Theorems 1.1 and 1.2. Applying the method
developed by P.M. Gruber [8] and [9], the proofs of the asymptotic formulae (1)
to (4) are based on the moment theorem of L. FejethT5] and its variants.
Therefore stability versions of these statements lead to information on the typical
faces of the extremal polytopes. H%ﬁ;) the original moment theorem of L. Fejes
Toth [5] forms the core of the proof. In this case P.M. Gruber [12] and G. Fejes
Toth [4] provided the necessary stability versions (see Section 3.1). Concerning
the variants of the moment theorem usedRQrP, and Pn), the stability versions
are proved in Section 3. We note that the error estimates are of optimal order in
all stability statements in Section 3.

For P\ and P, the proof of Theorem 1.2 is not substantially simpler if we
assume that the Gaul3-Kronecker curvature is positive everywhed& ol he
reason is that one only deals with triangular faces. However in the cagg) of
and P(Cn it is essential that the average number of sides of the "typical faces” is at
most six. If the Gaul3-Kronecker curvature is positive then one can simply use that
the statement holds for all faces of a three-polytope. Otherwise one needs a more
careful approach. More precisely if a planar polygon is tiled by small enough
polygons then the average number of sides of the tiles is at most six according to
Lemma4.1.

Detailed proof of the theorems is only presented in the casg,pfFor P

. ( )1
P, andP,, we only sketch the necessary changes in the argument.



2 A transfer lemma

As usual in polytopal approximation, we plan to transfer the original problem in
RR3 into a planar problem where certain integral expressions based on the second
moment are investigated. A useful tool is the Taylor formula that we use in the
following form: Let f be a convexC? function on a convex dis€ c R? satisfying

o € relintC. Fory e C, we write ly to denote the linear form representing the
derivative off aty, andgy to denote the quadratic form representing the second

derivative off aty. Now if a,y € C then there existse (0,1) satisfying
f(y) = f(a)+laly—a)+ %Qa+t (y—a) (y—a). (6)

We write pp2 to denote orthogonal projection ini?. LetC andC’ be convex
discs withC' C relintC andC C relintC. In addition letP be a polytope with
C C prz(P), and letd be the convex piecewise linear function definedComhose
graph is part obP. We writeFy, ..., F to denote the faces ¢t whose relative
interiors intersect the graph ¢faboveC, and assume thaelintF intersects the
graph ofp aboveC’ if and only ifi < k'. Moreover we define

M =Cnpg(F),i=1...k

We also assume that for afy, i = 1,...,k, there exists am € C such that the
exterior unit normal td~ coincides with the exterior unit normal to the graph of
f at (g, f(a)). In particularaffF is the graph of the function;(y) = f(a) +

la, (Y — &) +aj of y € R? for somea; € R. In addition the Taylor formula (6)
yields the existence of a continuous functgty — &) of y € C such thatf (y) =

f(a)+lq(y—a)+0i(y—a), and for any e C there existg € C with gi(y—a;) =
30y — a;). We observe that

g(y—a)—ai<gjly—a)—oaj foryemij=1,. k (7)
Moreover then; satisfy the following conditions.

If K C Pthen i <0 fori=1,...,k, (8)
if PCKthen ga(y—a&)<a; fori=1,...,kandy e l;. (9)

Let us assume thag = 0 and the graph of is part of the boundary of @2
convex bodyK. In particular the second fundamental form is

Qx=0qo atx= (o, f(0)) € 0K,
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and we also assume th& is positive definite. Ifu(x) = (o,—1) is the unit
exterior normal taK atx, moreover = (g, f(a)) € 0K andz = (&, ¢i(a)) €
affiF fori=1,... kthen

Gi:<U(X>,Xi—Zj>,i:l,...,k. (10)
Our goal is to investigat® = {(1—t)f(y) +td(y) : y € Candt € [0,1]},
which is the part oKAP nearC, and satisfies
k
V@)= y [ laly-a)aidy (1)
i=1/Mi
LEMMA 2.1 Lete € (0,2722). Using the notation as above, let= q; if a; <0,

and letaj < af < (1+¢)ajif a; > 0,i=1,...,k In addition we assume that

(1+€) Q< qy < (1+€)Q foranyyeC,

moreover ify e Candg;(y—a) < a; fori <k theny € relintC. Then
k/
V@) @2y [ FQudy-a) iy
i= i

Proof: We may assume th&l(z) = 2(z,z) = 27°. It follows by the Taylor formula
(6) that for anyy € C andi = 1,...,k, we have

1+e) ty-a)?<g(y—a) < (1+e)(y—a)2

Fori=1,...,K, if a; < 0then we defind®; = 0, and ifa; > 0 then we define
ri =,/aj and
Di={yeR*: gily—a)<$%}.
The conditions in the Lemma yield thataf > 0 then
a + 3 B? C Dj C relintC. (12)

In addition let /
C'= u};l(l'li uDbi),

and foranyi=1,...,K, let
Qi={yeC:Vvj=1.. K, g(y—a)—a <gjly—aj)—aj},
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hencell; C Q; according to (7). The core of the proof of Lemma 2.1 is to prove
the estimates

k/
> /Q_gi(y—aa)dy < ZZOZ/Q Gi(y —a) —ai|dy, (13)
i—1 K/ i=1/ Qi

> /Qiondy < 220,2/@ gi(y—a) —aij|dy. (14)

1<i<K
aj>0

If a; <Oforalli=1,...,k then (13) and (14) readily follow, therefore we assume
thatoy > ... > o, andamy, > 0 for somel < m< k', moreover; < 0if i > m.
Fori < m, we defineD! = a + 2r; B? andD; = & + 8r; B2

Next letl; = 1, and we defind =11 < ... <l <m. If Ij is known and all
Di, i <m, intersect at least one & ,..., Dy then letj = m'. Otherwise let;;,

be the smallest index such tH?{tHl does not intersedED’l, - Df,—- It follows that
m m _
Ubic D, (15)
i=1 j=1

If i =1,...,mandy € Q;\D] thena; < 3gi(y—a), hence

ai < gily—a)—aj;
gly—a) < 2-[gi(y—a)—ai. (16)

However ify € Q; N D then letj be the smallest index such that [~)|j, hence
lj <i. We deduce
o <a, (17)

which fact combining witgi(y — &) — ai < gj,(y—&;) — oy, leads to
g(y—a) <g(y—a)—oi+o; <g,(y—a,) <2 (y—a,)>

It follows by using (12) and (15) that

i—i/ﬁiﬂD{gi(y_ai)dy < ji/ﬁljz(y—alj)zdy

m
< o7 / _a)2d
j; D|j<y j)°dy



m
< 2182/ g;(y—a;)dy
=170,

m
< 2182/ a1, (y—a,) — oy | dy.
=17Dy
In addition ify € D, N Q; for somej = 1,...,nm andt = 1,...,K' then we have
o(y—a)—ar <g,(y—a;)—a; <0, hence

m k/
(y—ai)dy<2” / —a) — o/ dy.
i;/meg'(y a)dy =< t; Qtfgt(y ay) — | dy.

Therefore we deduce by (16) that

m K
(y—a)dy<2¥ / —a) — o/ dy,
Y 00~ 2)ay=29% [ laly-a) —addy

which in turn yields (13). Turning to (14), we use the notation as above. It follows
by (17) that

m / m m 5
ajdy < ﬁ aj; dy < ﬂ 2-(y—ay;)°dy,
i; QinD{ 121 T jzl D;; J
hence the rest of the argument for (14) is similar to the proof (13).
Next we claim that ify € Q;\N; fori =1,...,K andy e Mj for j =1,....k
then
lgi(y —a) —ai| <|gj(y—aj) —ajl. (18)
To prove (18), we observe thaf > 0 andy € D;, hencegj(y—aj) —a;j < gi(y—
aj) —aj < 0. In turn we conclude (18).
Finally we definex = max{a;,0}, we deduce by (13), (14) and (18) that

é/giuy—af—aﬂdy < ii/gi|gi(y—ai)—0‘i\dy+
e-é/gi{gmy—aowr}dy
< <1+221e>-i§/9i|gi<y—ai>—ai|dy
< <1+221s>-i§l/ni|gi<y—a>—ai|dy.
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In turn we conclude Lemma 2.1 By, c Qi fori=1,.... K. O

3 Some extremal properties of regular polygons

The discussion in Section 2 shows that the symmetric difference metric can be
estimated from below by sums of integrals of the fofiq(y) — a|dywherel is
ak-gon,a € R andqis a positive definite quadratic form. It has been known that
givenk, g and||, if the integral above is minimal then is regular with respect
to g. In this section we prove stability versions of this property # 6.

First we present some auxiliary statements that will be useful in the proofs of
Lemmae 3.3, 3.8 and 3.13, moreover later in the proofs of Theorems 1.1 and 1.2.
We will need that certain type of functions are concave or monotonic:

PROPOSITION 3.1 Let f(t) = tant + &2 for givenw € [%,3].
(i) f(t)~Lis concave orf0,J), and(f(t)~1)” < —0.03ift € (F,33);

u
(i) t- f(t) is increasing on(0, ), and(t - f(t))’ > 0.07if t € (T, 7).

'_\

Proof: If t € (0, 7) then

2(tant)(1+ tarft)

(f()™1)” = —(tarft - (3w— 1) + 3w— w?) - o <

hencef(t)~! is concave. In addition the functidar’t - (30— 1) + 3w — «? is
concave irwfor fixedt, thus it attains its minimum ab = % or atw= 3. Therefore

if t € (5,2]) then

min{8tar? 7,8} - 2(tar? ) (1 + tar? J)

< —0.03
(3+tar? 12)

(fO™H"<-
Turning to (ii), lett € (0, J). It follows by tant >t + %t3 that

, 1 t
(t-f(t)) = t+tant+t- tanzt+oo(t ot

t3
> t4tant +t-tarft 4 w —t).
2 titant+ + <3tan°-t )
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Thusw = 3 can be assumed, hence- X—lz —2>1—xforx> lyields

, tant  t2
() >t =+ o —2 +t-tarft >t —tant +t - tarft.

Sincet — tant +t - tarft is a strictly increasing function df € [0, 2), we have
(t-f(t)) >0fort e (0,7), and ever(t- f(t))’ > 0.07fort € (%,7). O

If fis aC? function on(a,b) andt,ty € (a,b) then the Taylor formula says
that
f(t) = f(to) + '(to) - (t—to) + 3 F"(to +S(t —to)) - (t —t0)? (19)

wheres € (0,1). The Taylor formula yields simple stability properties of the
quadratic function and concave functions. We state these properties in the form
how we intend to use them. First#=* =t and the number df with [t —to| >
gismfor € > Othen

t24 ... 4t2
%Ztg_i_%].gz‘ (20)

Secondly we have the following property of concave functions:

PROPOSITION 3.2 Letw > 0, and letf be a concave function dja, b] satis-
fying f"(t) < —wfor all t € [a,b] with |t —tg| < &g for t € (a,b) andgg > 0. If
to = 1=t for ty,...,ty € [a,b], and the number of with [t —to| > € is m for
£ € (0,&0) then
f(ta)+...+ f(tn)
N <

We will also use the following consequence of Cauchy—Schwartz inequality:
If vi, A >0fori=1,...,mthen

Sur-(31)(34) N

Finally we introduce a notation that will be used thorough Section 3. For
t € (0,5), let R(t) be the triangle with a right angle such thais a vertex, the
angle abist, and the longest side is of length one.
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3.1 Properties related to circumscribed polytopes

Most of the results of this section are hidden in P.M. Gruber [12] or in G. Fejes
Toth [4]. Still we provide proofs because the statements are not stated exactly as
we need. Fot € (0, 5), we define

B fR(t)XZdX_ 1 tant

YO="roZ "’ 3 (22)
In particular
¥ 5
2 " 18/3 (23)

We note that (24) in Lemma 3.3 is due to L. FejegIT(see say [5]).

LEMMA 3.3 If gis a positive definite quadratic form d&?, a < 0 and[ is a
polygon of at moskt sides then

/ﬂ{q(x) —a)dx> VCZ(—P . IN[2/detq. (24)

If k<6and [{q(x) —a}dx< %&HE) IM|2,/detq for € € (0,g) thenM is a
k—gon, and there exists sorkegonllg that is regular with respect tq, haso as
its centroid, and satisfies

(1+9ve) NgcNc (1+9ve)Mg
wheregg andd are positive absolute constants.

To prove Lemma 3.3, we need four simple auxiliary statements. The first two;
namely, Propositions 3.4 and 3.5 are consequences of Proposition 3.1.

PROPOSITION 3.4 ty¢(t) is increasing on(0, ), and (ty*(t))’ > 0.07 for t €
(7.2)-

PROPOSITION 3.5 y*(t)~* is concave on(0,%), and (y°(t)~1)” < —0.03 for
te (5.35).

PROPOSITION 3.6 If T is a triangle that has an angle at the vertexo for
t € (0,1/2), andT has an obtuse angle then

/szdxz o) T

12



Proof: We may assume thaf | = |R(t)|, andT is positioned in a way such that
andR(t) share their angleato, and their longest sides are collinear. Since in this
case all points oR(t)\T are closer tm than any point ofl \R(t), we conclude
Proposition 3.6.0

PROPOSITION 3.7 If N is a convex disc witl ¢ relintl, andk > 3 then
Tt
/x dx>1.1. yc( )

n

Proof: Since there exists a half plane containihguch thab lies on the boundary
of the half plane, we may assume tlidtis a semi circular disc centred at In
this case direct calculations and Proposition 3.4 yield

it )
2k

N,

Nz

/x dx>1.1-

Proof of Lemma 3.3: We may assume thafz) = z°. Let 1 be a polygon with

at mostk sides. We may assun@ec relintl1 according to Proposition 3.7. We
dissectll into triangles. We consider all non-degenerate triangles of the from
[0,v,w] wherev is the closest point of some sid®f I to o, andw is an endpoint

of e We write Ry,...,R to denote these triangles, herRg ..., R tile . It
follows that the angle; of R ato is acute, and® has an angle which is at least

g, i=1,...,l. Naturallyl <2k, and in additiorl > 5 because al are acute. We
deduce
' S L ¥
X2 > s)|R[*> — R K m2
i 1;ﬂﬂ|__;f@) ;|| L0

by Propositions 3.4, 3.5 and 3.6, moreover by the Cauchy-Schwartz inequality

T
(21). Therefore lek < 6, and let[; x?dx < % -|MJ2. It follows by Propo-
sition 3.4 that ifeg is small enough theh= 2k. In particular eaclr; has a right
angle at a vertex that is not the vertexidof Combining Propositions 3.2 and 3.5
yields that|s — | < ty/efori=1,...,2k wheret > Ois an absolute constant. In
turn we conclude Lemma 3.3
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3.2 Properties related to inscribed polytopes

Fort € (0,5), we define

Jrpfl=x}dx 1 Stant

vt = ROZ @t 3 (25)
In particular _
We?) — % (26)

We note that a restricted version of (27) in Lemma 3.8 is due to P.M. Gruber [8].

LEMMA 3.8 If gis a positive definite quadratic form d&?, a > 0 andll is a
triangle such thaty(x) < a for x € M then

/{O(—q( )}dx> )N /det, 27)

If [n{a—q(x )}dx< ”E ||'||2\/aet for € € (0,&p) then there exists some
triangle Mo that is regular with respect tq, haso as its centroid, and satisfies

(1+9ve) NocNc (14+9ve) Mo
wheregg andd are positive absolute constants.

Let us prove the analogues of Propositions 3.4 to 3.7. Propositions 3.9 and
3.10 are consequences of Proposition 3.1.

PROPOSITION 3.9 ty/(t) is increasing on(0, 3), and (ty (t))’ > 0.07 for t €
(7.2)-

PROPOSITION 3.10 y/(t) 1 is concave or(0, J), and (y(t)~1)” < —0.03 for
te (2,5

The following statement is more general then the direct analogue of Proposi-
tion 3.6 because of applications in Proposition 3.12.

PROPOSITION 3.11 Let T  rB? be a triangle, which has an angteat the
vertexo for t € (0,11/2), and has another angle that is at ledst If M C T is a
convex disc then

7= de=yoing
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Proof: We may assume that=1 andT = R(t). Let R(t) = [0,a,b] whereR(t)
has a right angle a, hence|b|| = 1. We defineQ to be the family of convex discs

v
Q C R(t) with |Q| > |IM|. There exists som@g € Q satisfying that%( [
minimal, and Proposition 3.11 follows if
fQo{l—xz}dx> Jr {1 =X} dx
Q> — R

We may assume th&p # R(t).
In the proof of (28), we will use that €1,C, € Q with |C;| = |C;| then

/{1—x2}dx§/ {1—x%}dx if and only if / x2dx2/ xXdx  (29)
G G C1 C

2

(28)

Our main method for transforming elements@fis the so-called Blaschke-
Schittelung (see T. Bonnesen and W. Fenchel [1]). Let us given d lim&ector
unot parallel td, and a convex disC that lies on one side of Then applying the
Blaschke—Sdiittelung parallel tar and with respect tbto C leads to some convex
discC’ as follows. We translate any secanof C parallel tou into a segment’,
which intersects$ in an endpoint, and lies on the same sidé¢ whereC lies. We
defineC’ to be the union of all suct’. Readily|C’| = |C|. In addition if

max||x|| > max|[x|| (30)
xeao’ Xeo

holds for any secard of C then

/xzdxz/xzdx (31)
c c

with strict inequality if strict inequality holds in (30) for at least one se@ant

After applying Blaschke—Sdchtelung first parallel tawith respect taff{ a, b},
then parallel tob — a with respect toaff{o,b}, we may assume the following
by (31): There existi  [a,b] andb € [0,b] such thatQyN [a,b] = [4,b] and
Qo N [0,b] = [b,b], moreover the lines througé and b parallel toa andb—a,
respectively, are supporting lines @p.

We suppose thad # a, and seek a contradiction. Letc [o,b] satisfy that
a— cis parallel toa, hencec # o. Since(x—b,c) < 0 for x € Qo\{b}, we have
(b—c)?—(x—c)? < b? —x? = 1— 2, thus

{(a—c)?>— (x—c)?}dx< / {1—x?}dx
Qo Qo

15



Now Q € Q for Q = b+Hb—fC“(Qo—b), and

fé{l—xz}dx_fQO{(a—c)z—(x—c)z}dx Joof1— X%} dx
o Qo DT WA

It is absurd, thereforé = a.

Next we defineg € [0,a] andbg € [0, @] by the properties thafiag|| = ||bo|| and
the segmeniag, bo] touchexy. After applying Blaschke—Scéttelung parallel to
ap — bo with respect taaff{o,b}, we may assumby = be Qo We suppose that
ap ¢ Qo, and seek a contradiction. We defigec [0,a] by Qo [o,a] = [d,a],
andb’ € [o,b] by ||b|| = ||&]|. In addition we choos€ € [bp, b'] with ¢’ # bg,b'.
The lineaff{a’,c'} dissect) into two convex discs, the polygdv containingb,
and the convex dishl containingbp. Let N’ be the image oN by the Blaschke—
ScHittelung parallel t& — ¢’ with respect taaff{o,a}. ThenQ =MUN’ € Q,

Q] =1Qo| and

/ xzdx:/ X2 dx+ x2dx>/ x2dx+/x2dx:/ X2 dx,
y M N/ M N Qo

that is absurd. Therefo® € Qp, which in turn yieldsQo = [a, ap, bo, b].
Let sbe the area of the isosceles trianfeag, bo], hence

Joo {1 dx  |R(t)|—ye(t)|RE)[2—s+ Y2 . &
Q2 (IR~ 572 |

Ast is fixed, we writef (s) to denote the right hand side above as a functios) of
which function satisfies

() = {1-IRM)[-V(t/2)} (IR —5) — {2¥°(t) - ¥*(t/2)} - R(1)?
(IR -9)° '

Now s < ”""HZTS"” = |R(t)|cog yields|R(t)| —s > (1—cost)|R(t)|, moreover ele-
mentary calculations and using the formula (22)\folead to

{1- [RO(5)} (L—cost) — {2/°(t) —V*(5) } - IR(t)| = (1 §sir? §)(1—cost)?

Since2y“(t) — y*(t/2) > 0 according to Proposition 3.4, it follows thét(s) > 0
for all s< |R(t)| cost. We conclude (28), and in turn Proposition 3.11.
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Finally we present the analogue of Proposition 3.7. Unfortunately this fact
is not as trivial as Proposition 3.7 because Proposition 3.12 does not hold for any
convex disc a$l; for example iff1 is a semi circular disc with centeeand radius

one then/{1— xz}dx< Lnp.

PROPOSITION 3.12 If I C rB? is a triangle witho ¢ relintMN then

U
/ﬂ{r2 X dx>1.1- W ) ni
Proof: We say that a side of I'l is a dark side ib ¢ e andeis a common side of
M and]o,M]. We consider all non-degenerate triangles of the ffoma w| where
v is the closest point of some dark sidef I to o, andw is an endpoint oé. Let
R1,...,R be the resulting triangles, henteNR;, j = 1,...,I, form a tiling of 1.
We observe thdt< 4, moreover ifj = 1,...,| then the angls; of R; atois acute,
andR; has an angle that is at leait Writing s* = 253 it follows by (25),
(26), Proposition 3.11 and by the Cauchy—Schwartz inequality (21) that

| | -1/ 2
2_\2v g 2 ie—1 _
JiE ek = 3 ¥s)IRnnE (_zw%) ) (J_zlmmm)
1) i Zf o129 g

Y

Based on Propositions 3.9 to 3.12, Lemma 3.8 can be proved analogously to
Lemma 3.3.0

3.3 Properties related to general polytopes

This section builds on K. 80czky, Jr. and M. Ludwig [3]. Fot € (0,7), we

define _ )
B MiNger [rq) [X°—ofdx

R(t)[?
According to K. Byroczky, Jr. and M. Ludwig [3],

1  tant
y(t)—m+T—ilftE(0105] (32)

17



Whereg <1.05< g andtan105< 2. 1.05. Therefore

®» _ 1 1
6 33 an (33)
v 5 1
12 T 183 am (34

The estimate (35) in Lemma 3.13 is a restatement of Theorem 3 iroK.cBky,

Jr. and M. Ludwig [3]. We note that the proof Lemma 3.13 is more complicated
than the proof of Lemma 3.3 because instead of Proposition 3.6, we have Propo-
sition 3.16.

LEMMA 3.13 There exist absolute constargigd > 0 with the following prop-
erties: Ifqis a positive definite quadratic form &7, o € R and I is a polygon
of at mosk sides then

/I_||q( aydx> ).\np./deq (35)

In addition ifk <6 and [ |q(x) —a|dx < (Hs \I‘I\Z\/aet for € € (0,g9) then
I is ak—gon, and there exists sorkegonlly that is regular with respect tq, has
0 as its centroid, and satisfies

(1+9ve) Noc N c (1+98vE)-No;
98N < {xen: q(x) <a}| < E2E M),

To prove Lemma 3.13, we need several auxiliary statements. Proposition 3.1
yields directly Proposition 3.14.

PROPOSITION 3.14 ty(t) is increasing on(0,1.05), and ift € (¥,1.05) then
(ty(t)) > 0.07.

Let us recall some results of [3]. We note that there exists a urtigge
(1.05,7) such thatant* = 2t*. Lemma 4 of [3] states thatt) ! is concave on
(0,t* ). Its proof actually verifies thaty(t)~1)” is continuous and negative on
(O,t*) Next letl (t) be the linear function Whose graph is tangent to the graph of

y(t)"* at. Lemma 5 of [3] states thatt)~* < I(t) fort € (3, 7). We deduce

18



PROPOSITION 3.15 There exists a concave functiéft) > y(t)~! on (0,11/2)
such thaB(t) = y(t)~* for t € (0, J]. In addition(y(t)~1)” < —& fort € (§,1.05)
whereg > 0is an absolute constant.

Remark: Since the resultin@(t) is linear ift > T, we cannot apply Proposi-

tion 3.2 if Y2 ,t; = 2m for acutety,...,ts. In this case the Taylor formula (19)
yields

2_ <Z}n>-— (_HTT502§69%»_%EQ?$5_“F'QQ

Next we restate Lemma 3 of [3].

PROPOSITION 3.16 If a € R and T is a triangle that has an anglét at the
vertexo fort € (0,71/2) then

/ 3 —aldx> Y0 T2
T
Finally combining Lemma 2 in [3] and Proposition 3.14 leads to

PROPOSITION 3.17 If a € R, I is a polygon with at mosk sides, ando ¢
relintl then
v() WW

/ﬁx —aldx>1.1-222. 02> 1.1 2.

Proof of Lemma 3.13:We may assume tha{z) = z°. Since (35) coincides with
Theorem 3 in [3], we assume that the-gonl1 for m< k < 6 anda € R satisfy

T[
Jr 2 —aldx < T
to Proposition 3. 17
We dissecfl into the triangleds, . .., Ty by connectingd to the vertices ofT,
and writeg to denote the side & opposite tam. Next we assign two triangld®1
andRj2 to eachT;. If both angles off; at the endpoints of are acute then letj
be the closest point & to 0, and letR;; andR;» be the two triangles, which til§
and intersect in the common sifew;]. In this case botfR; andR;z have a right
angle atvj, and we writdij; to denote the angle & ato, j = 1,2. Otherwise we
call T skew, and letj; = tj» be half of the angle of; ato, moreover leR;j be a
rescaled copy oR(tjj) with [Rjj| = 35 |T.| for j = 1,2. In both case§; +t;> is the

IM|2. If &g is small enough thea € relintM according
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angle ofT; ato,i=1,...,m. We apply Proposition 3.16 to all skelyy and deduce
by Proposition 3.15 and the Cauchy—Schwartz inequality (21) that

EEMD e = 5 iR @)
=12 B ,
> 1 Rl
=1 . =1
> |y e<tu>) N2> (2m-6(2) NP (38)

It follows by Proposition 3.14 thah = k if €g is small enough.

During the rest of the argument, we wrilg, -, . .. to denote positive absolute
constants. We apply Propositions 3.2 and 3.1&63 4, and (36) ifk = 3 to (38),
and obtain

tij — g| <91vE fori=1,... kandj =12 (39)

If no T is skew then (39) readily yields the existencdhfin Lemma 3.13.
Therefore we suppose that there is a skgwor suitably smalleg, and seek
a contradiction. We deduce by (39) thati;) > (1—92/€)y(f), thus (37) and

2(Ral?+ [Raf?) > T2 yield thatk 31 |Ti2 < (1+ 93vE) (5K1 [T[)". Using
the convexity ot? (compare (20)), we obtain
1—84{‘/§§%(§1+84<‘/E fori=1,....k (40)

Let v # o be the vertex offj where the angle of Tj is at least], and letT, the
other triangle that hag as a vertex. Ifxp is the angle off, atv then combining
(39) and (40) yields thaty — ap| < 95+/¢. It follows by a; > T thatap > %‘ if
€0 is small enough, moreover, < 7 by the convexity of1. In addition the angle
of Ty atois at least] by k < 6, hence the third angle df, is at most;. Therefore
Tp is not skew, andtp; —tp2| > ap — 5 > 15. It contradicts (39) for suitably small
€0, thus noT, ..., Tk is skew. In turn we conclude the existence of suitdhbje

Finally we defindl1i = {xc M : x>>a}andMy = {xcM: x?<a}, hence
the formula

0 _
5 |- bé—aldx=Ing| =g

20



completes the proof of Lemma 3.138]

4 The proof of Theorem 1.1

We only prove Theorem 1.1 fd#, in detail, and sketch the necessary changes
for the case oP(Cn) at the end of the proof. Fd?), it is sufficient to prove the
following statement.

For a given convex body in R3 with C? boundary, le®, be a polytope with
at mostn faces such thais(K, P,)) is minimal. Forv € (0,vo), if g(n) is number
of facesF of Py, such that- is a proper hexagon, arfé is 3v—close to some

: . . ~ 1/4
hexagon that is regular with respectQg. and is of area{%{ then

g(n) > (1—8v)n forn> ng (41)

whered and$ are positive absolute constants, and> 0 depends oK, more-
overng depends or andK.

We recall that for any € 0K, u(x) is the exterior unit normal taK at x. It
is well-known (see say K. Leichtweil3 [16]) that there exigts 0 such that balls
of radiusn roll from inside ondK. In other words for any € 0K, the three—ball
of radiusn and of centrex— nu(x) is contained irk. Let K_y be the family of
pointsz such thatz+nB% c K. Now if y € R3\K_n then there exists a unique
closest point 0K toy, and we writert(y) to denote this point.

We writeclY to denote the closure of angc R3, and considedK with the
subspace topology as a subseR3f We say tha¥ ¢ 9K is Jordan measurable if
the relative boundary of onoK is of two—dimensional Hausdorff-measure zero.
Let Xo, X" and X be relatively open Jordan measurable subset@iKo$uch that
clXo C X, cIX c X/, k(x) > 0for x € cIX’, and

/ K(x)Y4dx> (1—uv2)/ K (x)Y4dx
Xo oK
It is practical to define
n=v°
We haved > 0 with the following properties:(Xy + 26B3%) NdK C X and (X +

26B3)NaK c X'. Moreover ifC is a convex disc that touch&sin x € X andC is
of diameter at mosh then
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(i) writing C’ to denote the orthogonal projectionm(iC) into affC, we have

X+ (1-w?)(C—x) cC' cx+ (1—w?){C—-x);

(ii) if we 1(C) then(u(w),u(x)) > 1—pv?;

(i) if f is the convex function o@ such that its graph is the part @K, andagy
is the quadratic form representing the second derivativieatly € C (hence
Qx = gx) then
(1+w?) Q< gy < (1+w)Qx.

During the proof of (41)91,9>,... denote positive absolute constants, more-
over wy, Wy, ... denote positive constants that depend<grv and. Now there
exists a convex polytopk! circumscribed aroun& such thatdiamG < & holds
for each faceG of M with T(G) N X # 0. We write M to denote the family of
faces ofM that touchK in a point ofX, and letG € M touchK in xg. Therefore

T K(xe)4G| > (1— 917 / k(%)Y 4dx (42)

GeM oK

We start to investigatg,). We define
o5 1 1vd
V=363 8n 2 12
According to (4), ifnis large then
21

3s(K,Py)) < (1+w?)-¥- (/6KK(X)1/4dX> = (43)

It follows by (43) and the existence of the rolling ball of radiyghat
OH (K, P(n)) < wln_l/z. (44)

Therefore ifng is large enough theK_, C intPy,. Since the infimum of the
principal curvatures at the points ¥f is positive, we deduce thatif is a face of
Prny such that(F) C X' then

diamF < wpn~ V4. (45)
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Recalling thatG € M touchesK in xg, we write 3 to denote the family of
convex discs of the form

(1-2w?)(G—xa) +%g

asG runs through the elements 8f. In turn forC e QT/[ we write xc to denote
the point whereC touche, and define

C = (1- ) (C—xc) +xc.

In addition let 7c denote the family of faces d¥, nearC whose orthogonal
projection toaffC intersectgelintC. We deduce by (i) and (45) thatnb is large

enough then the familie$c for C € M are pairwise disjoint, and by (42) that

> K(xc)Y4C'| > (1—9omv?) /OK K(x)Y4dx (46)
CeM

For any pland. in R3, we write p_ to denote the orthogonal projection irito

LetC € M. We write 7. to denote the family of alF € #c such thatpasc(F)
intersectgrelintC’. Again if ng is large enough then (44) yields for aRye 7:
that

pPatic(K NaffF) C relintC. (47)

We recall that for any € ¢, xg denotes the point aK such thatu(xg) is an
exterior unit normal td~, and writeag = pagic(Xg). In addition letz= € affF
satisfy pafic(zr ) = aF, and letar = (u(xc),XF —zr). For anyF € £, we define

Mg =C'n paﬁc(F). (48)

It follows by (iii) and (47) that we may apply Lemma 2.1 to edCle M with
£ = w2, and we obtain (see also (10))

3s(K.Pm) = (1-9aw?) § 5 [ [3Qc(y—ar)~celdy  (49)
cemFeR T F

For anyF € 7, we definek(F) to be the number of sides dfr, and

L(F) = K(xc)Y4|NE|. (50)
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Next we decomposteCG%Té into the families#y, %2, F3 and%4. LetF € TC’ for

C e M. We putF into %4 if k(F) # 6, and into 73 if Mg is a hexagon that is not
v—close to any hexagon that is regular with resg@gt ThereforeF € 71U %

if Mg is a hexagon, which ig—close to some hexagon that is regular with respect
Q- Assuming this, we have

o | Jak K(X)Y4dx .
Fer If —n-I(F) -1/ <v;
| S k()Y 4dx
Fefr Iif —n-I(F) —1| >wv.

We write nj to denote the cardinality ofj. Using (43) and (46) to get an up-
per bound oms(K,Py)), and (49) and Lemma 3.13 to get a lower bound on
ds(K, Pry)), we obtain

2
1
(1+94w%) - IF)| = > ¥ I(F)? (51)
' (FEUJZP{FJ ) & (FEUJZJI )

V(2
Rl I(F)?
ZFEﬂ 2k(F)
We claim that last term above satisfies
2

1 < Y@®) o . 1

- A(F)*>(1+96) V- I(F)|] -—. (52)

2F€9r4 2k(F) Fezﬂ Ny

It follows by the Cauchy—Schwartz inequality (21) that

5 Y(giEy) I(F)

2
) 2 _ RYARLSA N RSV
2 ) T 2 O (2k<F>)

-1 2
> <Z 2k(F)-v(WE))‘1) -(Z I(F)) :
FeFa Feda
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SinceC' is tiled by Mg asF runs through#Z, and all tiles have small diameter
for largen according to (45), the average number of sides oflgl] F € ., is

at most six (see Lemma 4.1 below). In particular the average &R, F € 74,

is at most six. If the average is at le&sb then we use Proposition 3.2 to the
concavey(t) ! (compare Proposition 3.15), and after that use the monotonicity of
ty(t) (compare Proposition 3.14) to obtain

-1
— 1+'87 Ng 2
2k(F y 1 y-1 Z . y Ny 211
(FEZ_‘E]_ ( ) <k(F)) > N4 ZFE}'4 2k(F) <22F€5f4k(|:)>

1+97 ¥(§) 1497

= 2y.
- Ny 12 Ny ¥

If the average of alk(F), F € 74, is less tharb.5 then first we simply use the
concavity ofy(t)~1, and after that we obtain an error term from the monotonicity
of ty(t) (compare Proposition 3.14, and observe that the average kifFllis at
least three):

-1
_ 1 Ny
2k(F -y—T[ 1 > — Y NgTt
<Fezgr4 ) Vwy) ) Na Secq 2K(F) <zpef4k<F>>

1+9g ‘ y(g) ~1+3g %
- Ny 12 Ny )

In turn we deduce the claim (52).
Now by applying the inequality for quadratic mearptp, «, | (F)?, we deduce

2
1
(1+9av?) ¥ (F)] = > ¥ I(F)? (53)
‘ (Feglfi ) " (Feuizlﬁ )

2
2 1
+95v (FEZ%I(F)> -

2
- 1
+(1+96) -V (Fezﬂl(':)) T

First we show that the contribution coming from facegfinand 74 is negligible.
Applying the inequality for quadratic mean and the Cauchy—Schwartz inequality
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(21) in (53) leads to

2 2

1 1
(1+84uv2)-\7 I(F)] = > ¥ I(F) | -
(FGU]ZJJ ) " (FE%JJ ) Xj-am

2
+199V2< > I(F)) .
FeF3UTa N3+ N

Sincey{_; nj < n, it follows that

|(F)§1910\/|_.l- (F). (54)
FeFUTa FGszl.‘Fj

Thus (46) and (53) yield

2
( 3 |<F>) - <1—o<m>( 5 |<F>2>; (55)
FehUR FehUR
I(F) = (1+O(VA)- [ x(q™4dx (56)

Fefiur
Applying the inequality for quadratic mean in (55) leadste-n; = (1+O(,/f))n,
hence (56) shows that
o ZFEﬁU.‘Fz I <F) _ ) faK K(X)1/4dX
lo =SS = (14 OVl 2
Therefore ifvg after (41) is small enough then we apply (20) wigh= 1o and

. 1/4 .
— M to obtain

2
1911V2n2 1
y ez () (5 e
FeRUR 1712 ) \FeAUR 1712

Comparing to (55) leads tﬁ)l“j—nz = O(V@) = 0O(v), hence

ng > (1—912v)-n. (57)

We are not ready because sofie is not the projection oF. We callF € 71
a border face if assuminig € #c, C € M, Mg meets the relative boundary ©f.

26



Otherwise we calF € #; an inner face; namely, fflg C relintC’. We observe
that if F is an inner face theflg is the projection ofF, henceF is 9;3v—close
to some hexagon that is regular with respect to the positive defppiteand is

1/4 o L
of area%. However ifF is a border face anB € #c thenlg lies in a

wsn~ /2 neighbourhood of the relative boundary@fin affC. Since any border
faceF is in 71, we have|lg| > £, therefore the number of border faces is at
mostws+/N. After choosingng large enough, the number of border faces is less
thanv - n, henceg(n) > (1—3914v) - n. Therefore we conclude (41), and in turn
Theorem 1.1 in the case Bf,). O

To prove Theorem 1.1 in the casel%ﬁ]), only two changes are needed in the

argument. First albg in (49) satisfyar < 0 (compare (8)). Secondly we use
Lemma 3.3 instead of Lemma 3.131

No face can be added 8, or P(Cn), and no face oP, or P(Cn) can be varied
in a way such thabs(P,,K) or 63(P(°n),K), respectively, decreases, hence we
deduce the Remark after Theorem 101.

In the proof of Theorem 1.1, we used the fact that the average number of sides
of the tiles of a suitable tiling is at most six.

LEMMA 4.1 For any convex polygofl there existsd > 0 with the following
property: If the convex polygorss,... N, form a side to side tiling of1, and
eachlT; is of diameter at mosh then writingk; to denote the number of sides of
Mi, we haveky + ... +ky < 6n.

Proof: We writemto denote the number of sideslaf andp to denote the perime-
ter of M. Letd = %]. If eis the number of edges, arnds the number of vertices
in the tiling My, ...,My of I as above then the Euler formula says

v—e+n=1>0. (58)

Since at least two edges of the tiling meet at any vertel ,0&dnd at least three
edges of the tiling meet at any other vertices of the tiling, summing up the degrees
of the vertices of the tiling leads & < 2e+m. It follows by (58) thate < 3n+m.

In addition letb be the number of segments that are sides of sbifmand are
contained irdl, henceb > 2m by the choice ob. Therefore

ki+...+kn=2e—b<6n+2m—-b<6n 0O
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5 The proof of Theorem 1.2

Since the proof of Theorem 1.2 is very similar to the proof of Theorem 1.1, we
only provide a sketch about the necessary changes.

We start with the case &%, which has at mos2n faces according to Euler the
formula. The main changes compared to (41) are thatgiowcounts the number
of triangular faces, which are close to regular in the suitable sense, and we prove

g(n) > (1—3v)2n. (59)
We definexX, M and 4/ as in Section 4. Instead gfwe use

V= 1 1 _ 1Y
12/3 16n 4 6

Here we have the fact(%' unlike the factor% in the definition ofy becausé, has
asymptotically twice as many facesRs.

An essential change in the argument that first we triangwBieby triangu-
lating any non-triangular face by diagonals from a fixed vertex of the face. We
write X to denote the resulting triangular complex, which has the same family of
vertices ad,,. ForC € M, we write Fc to denote the family of all faces of
that lies nea€ and pasic(F) intersectgelintC, moreover#! to denote the family
of all F € %¢ such thatpasc(F) intersectgelintC’. For anyF € J¢, we define
Mg = pasic(F) (hence we do not intersect wit]l as in (48)). In addition, we
defineag, ar andl (F) analogously as in Section 4.

Other changes compared to the argument in Section 4 are concerned with the
definitions of #; after (50). We decompo&e%ﬂfé into only three familiesfy,

Fo and F3. LetF € #. for C e M. We putF into #; if ‘%2;%(_ 1‘ <v, and
there exists a triangl& whose centroid isg, which is regular with respey.,
and
(1+v) YT —ap) c Mg —ar € (1+V)(T —aF).
Wi . . . faKK(x)l/“dx . .
e putF into %, if such aT exists but‘T(F) — 1‘ > V. FinallyF € F3ifno
suchT exists. As in Section 4, let, denote the cardinality of;.

We deduce the analogue of (51) without the last term concerfingvhich
yields right away the analogue (53). Continuing with essentially the same argu-
ment as in Section 4 (keeping onf§i, F» and #3) proves the analogue of (57);
namely,n; > (1—39*v)-2n whered* is a positive absolute constant. We are not
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ready becaus®, may have some faces that not ftrviangles.GIfs a face ofP,

such that C Gfor F € #; thenGis near som€ € M, and pasic(X(G)) = af €
relintMg. In particular there is no othé&’ € F; with F’ C G. SinceX has at most
2n elements, the number & € #; that are not faces d®, is at mostd*v - 2n,
thereforeg(n) > (1—29*v)-2n. O

The proof in the case d®, runs closely as foP,, the main difference is that
one uses Lemma 3.8 instead of Lemma 3.13. There is one additional change in
the argument. For eadhe £, we define

oF = (1+W?)-aF.
Therefore% Qx.(Y—aF) < ap for anyy € Mg (see (9)), and (49) is replaced by
Ss(K,PY > (1-8aw?) 5 % / {aF —3Qc(y—ar)} dy.
cearFer

The arguments just sketched complete the proof of TheoremC1.2.

Concerning the Remark after Theorem 1.2, detlndP}, have at mos2n—4
faces according to the Euler formula, hence the numbers of faces dPpatiuP,
are2n—o(n) by (59). Readily all vertices d®, lie on dK. To prove the property

of the typical faces oP,, we force the following extra condition on any element
F € 7 of 1 or F,. Any suchF should satisfy

VM| < {yeMe: 3Qe(y—ar) <op}| < T2 (Mgl O
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an unknown referee whose remarks considerably improved the paper.

References

[1] T. Bonnesen, W. Fenchel: Theory of convex bodies. BCS. Assoc., Moscow
(Idaho), 1987. Translated from German: Theorie der konvexérpé.
Springer-Verlag, 1934.

[2] K. Boroczky Jr.: Approximation of smooth convex bodies. Adv. Math., 153
(2000), 325—-341.

29



[3] K.Boroczky, Jr., M. Ludwig: Approximation of convex bodies and a momen-
tum lemma for power diagrams. Monats. Math., 127 (1999), 101-110.

[4] G. Fejes Bth: A stability criterion to the moment theorem. Studia Sci. Math.
Hungar., 38 (2001), 209-224.

[5] L. Fejes Toth: Lagerungen in der Ebene, auf der Kugel und im Raum.
Springer-Verlag, Berlin, 2nd edition, 1972.

[6] S. Glasauer, P.M. Gruber: Asymptotic estimates for best and stepwise approx-
imation of convex bodies Ill. Forum Math., 9 (1997), 383—-404.

[7] S. Glasauer, R. Schneider: Asymptotic approximation of smooth convex bod-
ies by polytopes. Forum Math., 8 (1996), 363-377.

[8] P.M. Gruber: Volume approximation of convex bodies by inscribed polytopes.
Math. Ann., 281 (1988), 229-245.

[9] P.M. Gruber: Volume approximation of convex bodies by circumscribed poly-
topes. In: Applied geometry and discrete mathematics, DIMACS Ser. Dis-
crete Math. Theoret. Comput. Sci. 4, Amer. Math. Soc., 1991, 309-317.

[10] P.M. Gruber: Asymptotic estimates for best and stepwise approximation of
convex bodies I. Forum Math., 5 (1993), 281-297.

[11] P.M. Gruber: Asymptotic estimates for best and stepwise approximation of
convex bodies IV. Forum Math., 10 (1998), 665-686.

[12] P.M. Gruber: Optimal configurations of finite sets in Riemannian 2-
manifolds. Geom. Dedicata, 84 (2001), 271-320.

[13] P.M. Gruber: Optimale Quantisierung. Math. Semesterber., 49 (2002), 227—-
251.

[14] P.M. Gruber: Optimum quantization and its applications. Adv. Math., 186
(2004), 456-497.

[15] P.M. Gruber: Convex and discrete geometry, Springer, to appear.

[16] K. Leichtweil3: Affine Geometry of Convex Bodies. Johann Ambrosius
Barth Verlag, Heidelberg, Leipzig, 1998.

30



[17] M. Ludwig: Asymptotic approximation of smooth convex bodies by general
polytopes. Mathematika, 46 (1999), 103-125.

[18] R. Schneider: Zur optimalen Approximation konvexer Hygfflen durch
Polyeder. Math. Ann., 256 (1981), 289-301.

[19] R. Schneider: Polyhedral approximation of smooth convex bodies. J. Math.
Anal. Appl. 128 (1987), 470-474.

[20] R. Schneider: Convex Bodies — the Brunn—Minkowski theory. Cambridge
Univ. Press, 1993.

Karoly J. Bdroczky

Alfr éd Renyi Institute of Mathematics, Budapest,

PO Box 127, H-1364, Hungargarlos@renyi.hu

and

Department of Geometry, Roland®&os University, Budapest,
Pazmany Feter €tany 1/C, H-1117, Hungary

Gergely Wintsche
Institute of Mathematics, Rolando/os University, Budapest,
Pazmany Reter £tany 1/C, H-1117, Hungarygerg@ludens.elte.hu

Péter Tick
Budapest, Gir(i utca 24., H-1039, Hungaryck@renyi.hu

31



