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Abstract

For a given convex bodyK inR3 with C2 boundary, letPi
n be an inscribed

polytope of maximal volume with at mostn vertices, and letPc
(n) be a cir-

cumscribed polytope of minimal volume with at mostn faces. P.M. Gruber
[12] proved that the typical faces ofPc

(n) are asymptotically close to regular
hexagons in a suitable sense if the Gauß–Kronecker curvature is positive on
∂K. In this paper we extend this result to the case if there is no restriction
on the Gauß–Kronecker curvature, moreover we prove that the typical faces
of Pi

n are asymptotically close to regular triangles in a suitable sense. In ad-
dition writing P(n) andPn to denote the polytopes with at mostn faces orn
vertices, respectively, that minimize the symmetric difference metric from
K, we prove the analogous statements aboutP(n) andPn.

Key words: polytopal approximation, extremal problems
MSC 2000: 52A27, 52A40

1 Introduction

First we introduce some notions that will be used thorough the paper. For func-
tions f and g of positive integers, we writef (n) = O(g(n)) if there exists an
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absolute constantc such that| f (n)| ≤ c ·g(n) for all n≥ 1, and f (n) = o(g(n)) if
limn→∞

f (n)
g(n) = 0. In addition we writef (n)∼ g(n) if limn→∞

f (n)
g(n) = 1.

For a compact convex setC in R3, we write affC to denote its affine hull,
V(C) to denote its volume (Lebesgue measure),∂C to denote its boundary and
intC to denote its interior. We callC a convex body ifintC 6= /0, and a convex
disc if affC is a plane. IfC is a convex disc then we write|C| to denote its area,
andrelintC to denote its relative interior. Next let〈·, ·〉 denote the scalar product
in R3, let ‖x‖ =

√
〈x,x〉 =

√
x2 be the Euclidean norm ofx ∈ R3. We write o

to denote the origin, andB2 andB3 to denote the Euclidean unit disc inR2 and
unit ball in R3, respectively, centred ato; moreoverS2 to denote the boundary
of B3. For any objectsX1, . . . ,Xk, we write [X1, . . . ,Xk] to denote their convex
hull. Concerning additional notions for convex bodies and polytopes in this paper,
consult the beautiful monographs R. Schneider [20] and P.M. Gruber [15].

In this paper the distance of two convex bodiesK andM in R3 is mostly mea-
sured by their symmetric difference metricδS(K,M); that is, the volume of the
symmetric differenceK∆M of K andM.

Next we fix a convex bodyK in R3 with C2 boundary for the rest of the sec-
tion. We always integrate on∂K with respect to the two–dimensional Hausdorff–
measure. For anyx∈ ∂K, we writeQx to denote the second fundamental form atx,
henceQx is positive semi definite. Its two eigenvalues are the principal curvatures
atx, whose product (the determinant ofQx) is the Gauß–Kronecker curvatureκ(x)
atx. Readilyκ(x)≥ 0 for anyx∈ ∂K.

We definePn to be a polytope with at mostn vertices such thatδS(K,Pn) is
minimal, andP(n) to be a polytope with at mostn faces such thatδS(K,P(n)) is
minimal. In addition letPi

n be a polytope inscribed intoK with at mostn vertices
and of maximal volume, and letPc

(n) be a polytope circumscribed aroundK with
at mostn faces and of minimal volume. A task initiated by L. Fejes Tóth [5] led
to the asymptotic formulae

δS(K,Pi
n) ∼ 1

4
√

3

(∫

∂K
κ(x)1/4dx

)2

· 1
n

; (1)

δS(K,Pc
(n)) ∼ 5

36
√

3

(∫

∂K
κ(x)1/4dx

)2

· 1
n

; (2)

δS(K,Pn) ∼
(

1

12
√

3
− 1

16π

)(∫

∂K
κ(x)1/4dx

)2

· 1
n

; (3)
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δS(K,P(n)) ∼
(

5

36
√

3
− 1

8π

)(∫

∂K
κ(x)1/4dx

)2

· 1
n
. (4)

Under the assumption thatκ(x) > 0 for all x∈ ∂K, (1) is due to P.M. Gruber [8],
(2) is due to P.M. Gruber [9], moreover (3) and (4) follow from combining M.
Ludwig [17] and K. B̈oröczky, Jr. and M. Ludwig [3]. The cases when possibly
κ(x) = 0 are due to K. B̈oröczky, Jr. [2].

The goal of this paper is to continue a task initiated by P.M. Gruber [11] and
[12]; namely, to describe the typical faces of the extremal polytopes above. For
ε > 0 and convex discsC andM, we say thatC is ε–close toM if there existx∈C
andy∈M with

(1+ ε)−1 · (C−x)⊂M−y⊂ (1+ ε) · (C−x).

For anyx ∈ ∂K, we writeu(x) to denote the exterior unit normal to∂K at x.
Let ρ(x) ≥ 0 be a continuous function on∂K such thatρ(x) > 0 if κ(x) > 0, and
let Mn be a sequence of polytopes such thato∈ intMn for eachn, and the number
f (n) of faces ofMn tends to infinity withn. A faceF of Mn is calledproper if
there exits a unique pointxF ∈ ∂K such thatu(xF) is an exterior normal also to
F , and in additionQxF is positive definite. Givenk≥ 3, we say that the typical
faces ofMn are asymptotically regulark–gons with respect to the density function
ρ if the following properties hold. There existsν(n) > 0 with limn→∞ ν(n) = 0
such that for all butν(n) percent of the facesF of Mn, F is a properk–gon, and
F is ν(n)–close to somek–gon which is regular with respect toQxF and is of area∫

∂K ρ(x)dx
f (n)·ρ(xF ) .

In Theorems 1.1 and 1.2,K is any convex body inR3 with C2 boundary, and
P(n), Pc

(n), Pn, Pi
n are defined as above. Ifκ(x) > 0 for all x∈ ∂K then Theorem 1.1

for Pc
(n) is due to P.M. Gruber [12].

THEOREM 1.1 The typical faces of bothPc
(n) andP(n) are asymptotically regu-

lar hexagons with respect to the density functionκ(x)1/4.

Remark: Both Pc
(n) andP(n) have exactlyn faces. In addition each face ofPc

(n)

touchesK in its centroid, and ifF is a face ofP(n) then|F ∩K|= 1
2 |F |.

THEOREM 1.2 The typical faces of bothPi
n andPn are asymptotically regular

triangles with respect to the density functionκ(x)1/4.
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Remark: Both Pi
n andPn have2n−o(n) faces, and each vertex ofPi

n lies in ∂K.
In addition there existsµ(n) > 0 with limn→∞ µ(n) = 0 such that for all butµ(n)
percent of the facesF of Pn, we have1−µ(n)

2 |F |< |F ∩K|< 1+µ(n)
2 |F |.

Let us discuss some other results that follow from the methods of the proofs
of Theorems 1.1 and 1.2. Given a convex bodyC in R3, its support functionhC

is defined byhC(u) = maxx∈C〈x,u〉 for u∈ R3. If M is another convex body then
theL1–metric ofC andM is

δ1(C,M) =
∫

S2
|hC(u)−hM(u)|du.

In particular ifM ⊂C thenδ1(C,M) is proportional to the difference of the mean
widths ofC andM. The paper S. Glasauer and P.M. Gruber [6] introduced an
ingenious method to translate a result about polytopal approximation with respect
to δS into a ”dual” result with respect toδ1. The paper [6] discussed only the case
whenκ(x) > 0 for all x∈ ∂K (see also M. Ludwig [17]), but this restriction is not
necessary (see K. B̈oröczky, Jr. [2]). During the argument one takes the dual of
some polytope. Therefore it is not enough to know the shape of a typical face but
also its position with respect to∂K in the case of volume approximation (see the
Remarks above). In summary the analogues of Theorems 1.1 and 1.2 also hold if
the extremal polytopes were not defined in terms ofδS but in terms ofδ1, and the
only difference is that the density function isκ(x)3/4 in the case ofδ1. Actually
if κ(x) > 0 for all x ∈ ∂K then the statement about inscribed polytopes and the
L1–metric is due to P.M. Gruber [12].

Finally the Hausdorff metricδH(C,M) of two convex bodiesC andM is the
minimald such that any point ofC is of distance at mostd from M, and any point
of M is of distance at mostd fromC. Then the analogues of Theorems 1.1 and 1.2
also hold if the extremal polytopes were not defined in terms ofδS but in terms
of δH , and the only difference is that the density function isκ(x)1/2 in the case of
δH . If κ(x) > 0 for all x∈ ∂K then all the statements about the Hausdorff metric
are due to P.M. Gruber [11].

Next we discuss uniform distribution of the faces of the extremal polytopes.
We may assume thato∈ intK, and we writer∂K to denote radial projection onto
∂K. Let Mn be the extremal polytope withn vertices orn faces in any of the
extremal problems above, letFn denote the family of faces ofMn, and letρ(x) be
the corresponding density function on∂K. We say that the radial projection of the
faces ofMn are uniformly distributed on∂K with respect toρ(x) if for any Jordan

4



measurableX ⊂ ∂K, we have
∫

X ρ(x)dx∫
∂K ρ(x)dx

= lim
n→∞

#{F ∈ Fn : r∂K(F)⊂ X}
#Fn

(5)

= lim
n→∞

#{F ∈ Fn : r∂K(F)∩X 6= /0}
#Fn

.

This formula (in an analogous form) was proved first by S. Glasauer and R.
Schneider [7] if the metric isδH andκ(x) > 0 for all x ∈ ∂K. The cases if the
metric isδS or δ1 andκ(x) > 0 for all x ∈ ∂K are due to S. Glasauer and P.M.
Gruber [6]. Finally the restriction thatκ(x) > 0 for all x∈ ∂K was removed by K.
Böröczky, Jr. [2]. We note that replacingFn in (5) by the familyVn of the vertices
of Mn, the resulting formula holds in all cases, as well.

Let us discuss the proofs of Theorems 1.1 and 1.2. Applying the method
developed by P.M. Gruber [8] and [9], the proofs of the asymptotic formulae (1)
to (4) are based on the moment theorem of L. Fejes Tóth [5] and its variants.
Therefore stability versions of these statements lead to information on the typical
faces of the extremal polytopes. ForPc

(n) the original moment theorem of L. Fejes
Tóth [5] forms the core of the proof. In this case P.M. Gruber [12] and G. Fejes
Tóth [4] provided the necessary stability versions (see Section 3.1). Concerning
the variants of the moment theorem used forPi

n, Pn andP(n), the stability versions
are proved in Section 3. We note that the error estimates are of optimal order in
all stability statements in Section 3.

For Pi
n and Pn the proof of Theorem 1.2 is not substantially simpler if we

assume that the Gauß-Kronecker curvature is positive everywhere on∂K. The
reason is that one only deals with triangular faces. However in the case ofP(n)
andPc

(n) it is essential that the average number of sides of the ”typical faces” is at
most six. If the Gauß-Kronecker curvature is positive then one can simply use that
the statement holds for all faces of a three-polytope. Otherwise one needs a more
careful approach. More precisely if a planar polygon is tiled by small enough
polygons then the average number of sides of the tiles is at most six according to
Lemma 4.1.

Detailed proof of the theorems is only presented in the case ofP(n). For Pc
(n),

Pi
n andPn, we only sketch the necessary changes in the argument.
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2 A transfer lemma

As usual in polytopal approximation, we plan to transfer the original problem in
R3 into a planar problem where certain integral expressions based on the second
moment are investigated. A useful tool is the Taylor formula that we use in the
following form: Let f be a convexC2 function on a convex disc̃C⊂R2 satisfying
o ∈ relintC̃. For y ∈ C̃, we write ly to denote the linear form representing the
derivative of f at y, andqy to denote the quadratic form representing the second
derivative of f aty. Now if a,y∈ C̃ then there existst ∈ (0,1) satisfying

f (y) = f (a)+ la(y−a)+ 1
2 qa+t (y−a)(y−a). (6)

We write pR2 to denote orthogonal projection intoR2. LetC andC′ be convex
discs withC′ ⊂ relintC andC ⊂ relintC̃. In addition letP be a polytope with
C̃⊂ pR2(P), and letϕ be the convex piecewise linear function defined onC whose
graph is part of∂P. We writeF1, . . . ,Fk to denote the faces ofP whose relative
interiors intersect the graph ofϕ aboveC, and assume thatrelintFi intersects the
graph ofϕ aboveC′ if and only if i ≤ k′. Moreover we define

Πi = C∩ pR2(Fi), i = 1, . . . ,k.

We also assume that for anyFi , i = 1, . . . ,k, there exists anai ∈ C̃ such that the
exterior unit normal toFi coincides with the exterior unit normal to the graph of
f at (ai , f (ai)). In particularaffFi is the graph of the functionϕi(y) = f (ai) +
lai(y− ai) + αi of y ∈ R2 for someαi ∈ R. In addition the Taylor formula (6)
yields the existence of a continuous functiongi(y−ai) of y∈ C̃ such thatf (y) =
f (ai)+ lai(y−ai)+gi(y−ai), and for anyy∈ C̃ there existsz∈ C̃ with gi(y−ai) =
1
2 qz(y−ai). We observe that

gi(y−ai)−αi ≤ g j(y−a j)−α j for y∈Πi , i, j = 1, . . . ,k. (7)

Moreover theαi satisfy the following conditions.

If K ⊂ P then αi ≤ 0 for i = 1, . . . ,k, (8)

if P⊂ K then gai(y−ai)≤ αi for i = 1, . . . ,k andy∈Πi . (9)

Let us assume thatlo = 0 and the graph off is part of the boundary of aC2

convex bodyK. In particular the second fundamental form is

Qx = q0 atx = (o, f (o)) ∈ ∂K,
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and we also assume thatQx is positive definite. Ifu(x) = (o,−1) is the unit
exterior normal to∂K at x, moreoverxi = (ai , f (ai)) ∈ ∂K andzi = (ai ,ϕi(ai)) ∈
affFi for i = 1, . . . ,k then

αi = 〈u(x),xi−zi〉, i = 1, . . . ,k. (10)

Our goal is to investigateΩ = {(1− t) f (y) + tϕ(y) : y ∈ C andt ∈ [0,1]},
which is the part ofK∆P nearC, and satisfies

V(Ω) =
k

∑
i=1

∫

Πi

|gi(y−ai)−αi |dy. (11)

LEMMA 2.1 Letε∈ (0,2−22). Using the notation as above, letα′i = αi if αi ≤ 0,
and letαi ≤ α′i ≤ (1+ ε)αi if αi > 0, i = 1, . . . ,k. In addition we assume that

(1+ ε)−1Qx≤ qy≤ (1+ ε)Qx for anyy∈ C̃,

moreover ify∈C andgi(y−ai)≤ αi for i ≤ k′ theny∈ relintC. Then

V(Ω)≥ (1−221ε) ·
k′

∑
i=1

∫

Πi

|12 Qx(y−ai)−α′i |dy.

Proof: We may assume thatQx(z) = 2〈z,z〉= 2z2. It follows by the Taylor formula
(6) that for anyy∈C andi = 1, . . . ,k, we have

(1+ ε)−1(y−ai)2≤ gi(y−ai)≤ (1+ ε)(y−ai)2.

For i = 1, . . . ,k′, if αi ≤ 0 then we defineDi = /0, and ifαi > 0 then we define
r i =

√
αi and

Di =
{

y∈ R2 : gi(y−ai)≤ αi
2

}
.

The conditions in the Lemma yield that ifαi > 0 then

ai + r i
2 B2⊂ Di ⊂ relintC. (12)

In addition let
C∗ = ∪k′

i=1(Πi ∪Di) ,

and for anyi = 1, . . . ,k′, let

Ωi = {y∈C∗ : ∀ j = 1, . . . ,k′, gi(y−ai)−αi ≤ g j(y−a j)−α j},
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henceΠi ⊂ Ωi according to (7). The core of the proof of Lemma 2.1 is to prove
the estimates

∑
i=1,...,k′

∫

Ωi

gi(y−ai)dy ≤ 220
k′

∑
i=1

∫

Ωi

|gi(y−ai)−αi |dy; (13)

∑
1≤i≤k′
αi>0

∫

Ωi

αi dy ≤ 220
k′

∑
i=1

∫

Ωi

|gi(y−ai)−αi |dy. (14)

If αi ≤ 0 for all i = 1, . . . ,k′ then (13) and (14) readily follow, therefore we assume
thatα1 ≥ . . . ≥ αk′ , andαm > 0 for some1≤m≤ k′, moreoverαi ≤ 0 if i > m.
For i ≤m, we defineD′i = ai +2r i B2 andD̃i = ai +8r i B2.

Next let l1 = 1, and we define1 = l1 < .. . < lm′ ≤ m. If l j is known and all
D′i , i ≤m, intersect at least one ofD′l1, . . . ,D

′
l j

then let j = m′. Otherwise letl j+1

be the smallest index such thatD′l j+1
does not intersectD′l1, . . . ,D

′
l j
. It follows that

m⋃

i=1

D′i ⊂
m′⋃

j=1

D̃l j . (15)

If i = 1, . . . ,m andy∈Ωi\D′i thenαi ≤ 1
2 gi(y−ai), hence

αi ≤ gi(y−ai)−αi ;
gi(y−ai) ≤ 2· [gi(y−ai)−αi ].

(16)

However if y∈ Ωi ∩D′i then let j be the smallest index such thaty∈ D̃l j , hence
l j ≤ i. We deduce

αi ≤ αl j , (17)

which fact combining withgi(y−ai)−αi ≤ gl j (y−al j )−αl j leads to

gi(y−ai)≤ gi(y−ai)−αi +αl j ≤ gl j (y−al j )≤ 2· (y−al j )
2.

It follows by using (12) and (15) that

m

∑
i=1

∫

Ωi∩D′i
gi(y−ai)dy ≤

m′

∑
j=1

∫

D̃l j

2· (y−al j )
2dy

≤ 217
m′

∑
j=1

∫

Dl j

(y−al j )
2dy
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≤ 218
m′

∑
j=1

∫

Dl j

gl j (y−al j )dy

≤ 218
m′

∑
j=1

∫

Dl j

|gl j (y−al j )−αl j |dy.

In addition if y ∈ Dl j ∩Ωt for some j = 1, . . . ,m′ andt = 1, . . . ,k′ then we have
gt(y−at)−αt ≤ gl j (y−al j )−αl j < 0, hence

m

∑
i=1

∫

Ωi∩D′i
gi(y−ai)dy≤ 218

k′

∑
t=1

∫

Ωt

|gt(y−at)−αt |dy.

Therefore we deduce by (16) that

m

∑
i=1

∫

Ωi

gi(y−ai)dy≤ 219
k′

∑
t=1

∫

Ωt

|gt(y−at)−αt |dy,

which in turn yields (13). Turning to (14), we use the notation as above. It follows
by (17) that

m

∑
i=1

∫

Ωi∩D′i
αi dy≤

m′

∑
j=1

∫

D̃l j

αl j dy≤
m′

∑
j=1

∫

D̃l j

2· (y−al j )
2dy,

hence the rest of the argument for (14) is similar to the proof (13).
Next we claim that ify ∈ Ωi\Πi for i = 1, . . . ,k′ andy ∈ Π j for j = 1, . . . ,k

then
|gi(y−ai)−αi | ≤ |g j(y−a j)−α j |. (18)

To prove (18), we observe thatαi > 0 andy∈ Di , henceg j(y−a j)−α j ≤ gi(y−
ai)−αi < 0. In turn we conclude (18).

Finally we defineα∗i = max{αi ,0}, we deduce by (13), (14) and (18) that

k′

∑
i=1

∫

Ωi

|(y−ai)2−α′i |dy ≤
k′

∑
i=1

∫

Ωi

|gi(y−ai)−αi |dy+

ε ·
k′

∑
i=1

∫

Ωi

{gi(y−ai)+α∗i }dy

≤ (1+221ε) ·
k′

∑
i=1

∫

Ωi

|gi(y−ai)−αi |dy

≤ (1+221ε) ·
k

∑
i=1

∫

Πi

|gi(y−ai)−αi |dy.
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In turn we conclude Lemma 2.1 byΠi ⊂Ωi for i = 1, . . . ,k′. 2

3 Some extremal properties of regular polygons

The discussion in Section 2 shows that the symmetric difference metric can be
estimated from below by sums of integrals of the form

∫
Π |q(y)−α|dywhereΠ is

ak–gon,α ∈ R andq is a positive definite quadratic form. It has been known that
givenk, q and|Π|, if the integral above is minimal thenΠ is regular with respect
to q. In this section we prove stability versions of this property ifk≤ 6.

First we present some auxiliary statements that will be useful in the proofs of
Lemmae 3.3, 3.8 and 3.13, moreover later in the proofs of Theorems 1.1 and 1.2.
We will need that certain type of functions are concave or monotonic:

PROPOSITION 3.1 Let f (t) = tant + ω
tant for givenω ∈ [1

3,3].

(i) f (t)−1 is concave on(0, π
2), and( f (t)−1)” <−0.03 if t ∈ (π

7, 5π
12);

(ii) t · f (t) is increasing on(0, π
2), and(t · f (t))′ > 0.07 if t ∈ (π

7, π
2).

Proof: If t ∈ (0, π
2) then

( f (t)−1)” =−(tan2 t · (3ω−1)+3ω−ω2) · 2(tant)(1+ tan2 t)
(ω+ tan2 t)3 < 0,

hence f (t)−1 is concave. In addition the functiontan2 t · (3ω− 1) + 3ω−ω2 is
concave inω for fixedt, thus it attains its minimum atω = 1

3 or atω = 3. Therefore
if t ∈ (π

7, 5π
12) then

( f (t)−1)” ≤−min{8tan2 π
7, 8

9} ·2(tan2 π
7)(1+ tan2 π

7)

(3+ tan2 5π
12)

<−0.03.

Turning to (ii), lett ∈ (0, π
2). It follows by tant > t + 1

3 t3 that

(t · f (t))′ = t + tant + t · tan2 t +ω
(

1
tant

− t
tan2 t

− t

)

≥ t + tant + t · tan2 t +ω
(

t3

3tan2 t
− t

)
.
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Thusω = 3 can be assumed, hencex+ 1
x2 −2 > 1−x for x > 1 yields

(t · f (t))′ ≥ t ·
(

tant
t

+
t2

tan2 t
−2

)
+ t · tan2 t ≥ t− tant + t · tan2 t.

Sincet − tant + t · tan2 t is a strictly increasing function oft ∈ [0, π
2), we have

(t · f (t))′ > 0 for t ∈ (0, π
2), and even(t · f (t))′ > 0.07 for t ∈ (π

7, π
2). 2

If f is aC2 function on(a,b) andt, t0 ∈ (a,b) then the Taylor formula says
that

f (t) = f (t0)+ f ′(t0) · (t− t0)+ 1
2 f ”(t0 +s(t− t0)) · (t− t0)2 (19)

wheres∈ (0,1). The Taylor formula yields simple stability properties of the
quadratic function and concave functions. We state these properties in the form
how we intend to use them. First ift1+...+tn

n = t0 and the number ofti with |ti−t0| ≥
ε is m for ε > 0 then

t2
1 + . . .+ t2

n

n
≥ t2

0 + m
n · ε2. (20)

Secondly we have the following property of concave functions:

PROPOSITION 3.2 Let ω > 0, and let f be a concave function on[a,b] satis-
fying f ”(t) ≤ −ω for all t ∈ [a,b] with |t− t0| < ε0 for t0 ∈ (a,b) andε0 > 0. If
t0 = t1+...+tn

n for t1, . . . , tn ∈ [a,b], and the number ofti with |ti − t0| ≥ ε is m for
ε ∈ (0,ε0) then

f (t1)+ . . .+ f (tn)
n

≤ f (t0)− ω
2 · m

n · ε2.

We will also use the following consequence of Cauchy–Schwartz inequality:
If γi ,Ai > 0 for i = 1, . . . ,m then

m

∑
i=1

γiA
2
i ≥

(
m

∑
i=1

1
γi

)−1(
m

∑
i=1

Ai

)2

. (21)

Finally we introduce a notation that will be used thorough Section 3. For
t ∈ (0, π

2), let R(t) be the triangle with a right angle such thato is a vertex, the
angle ato is t, and the longest side is of length one.
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3.1 Properties related to circumscribed polytopes

Most of the results of this section are hidden in P.M. Gruber [12] or in G. Fejes
Tóth [4]. Still we provide proofs because the statements are not stated exactly as
we need. Fort ∈ (0, π

2), we define

γc(t) =

∫
R(t) x2dx

|R(t)|2 =
1

tant
+

tant
3

. (22)

In particular
γc(π

6)
12

=
5

18
√

3
. (23)

We note that (24) in Lemma 3.3 is due to L. Fejes Tóth (see say [5]).

LEMMA 3.3 If q is a positive definite quadratic form onR2, α ≤ 0 and Π is a
polygon of at mostk sides then

∫

Π
{q(x)−α}dx≥ γc(π

k)
2k

· |Π|2
√

detq. (24)

If k≤ 6 and
∫

Π{q(x)−α}dx≤ (1+ε)γc( π
k )

2k |Π|2√detq for ε ∈ (0,ε0) thenΠ is a
k–gon, and there exists somek–gonΠ0 that is regular with respect toq, haso as
its centroid, and satisfies

(1+ϑ
√

ε)−1Π0⊂Π⊂ (1+ϑ
√

ε)Π0

whereε0 andϑ are positive absolute constants.

To prove Lemma 3.3, we need four simple auxiliary statements. The first two;
namely, Propositions 3.4 and 3.5 are consequences of Proposition 3.1.

PROPOSITION 3.4 t γc(t) is increasing on(0, π
2), and (t γc(t))′ > 0.07 for t ∈

(π
7, π

2).

PROPOSITION 3.5 γc(t)−1 is concave on(0, π
2), and (γc(t)−1)” < −0.03 for

t ∈ (π
7, 5π

12).

PROPOSITION 3.6 If T is a triangle that has an anglet at the vertexo for
t ∈ (0,π/2), andT has an obtuse angle then

∫

T
x2dx≥ γc(t) · |T|2.

12



Proof: We may assume that|T|= |R(t)|, andT is positioned in a way such thatT
andR(t) share their anglet ato, and their longest sides are collinear. Since in this
case all points ofR(t)\T are closer too than any point ofT\R(t), we conclude
Proposition 3.6.2

PROPOSITION 3.7 If Π is a convex disc witho 6∈ relintΠ, andk≥ 3 then

∫

Π
x2dx≥ 1.1· γc(π

k)
2k

· |Π|2.

Proof: Since there exists a half plane containingΠ such thato lies on the boundary
of the half plane, we may assume thatΠ is a semi circular disc centred ato. In
this case direct calculations and Proposition 3.4 yield

∫

Π
x2dx≥ 1.1· γc(π

3)
6

· |Π|2≥ 1.1· γc(π
k)

2k
· |Π|2. 2

Proof of Lemma 3.3: We may assume thatq(z) = z2. Let Π be a polygon with
at mostk sides. We may assumeo ∈ relintΠ according to Proposition 3.7. We
dissectΠ into triangles. We consider all non-degenerate triangles of the from
[o,v,w] wherev is the closest point of some sideeof Π to o, andw is an endpoint
of e. We write R1, . . . ,Rl to denote these triangles, henceR1, . . . ,Rl tile Π. It
follows that the anglesi of Ri at o is acute, andRi has an angle which is at least
π
2, i = 1, . . . , l . Naturallyl ≤ 2k, and in additionl ≥ 5 because allsi are acute. We
deduce

∫

Π
x2≥

l

∑
i=1

γc(si)|Ri |2≥
(

l

∑
i=1

1
γc(si)

)−1(
l

∑
i=1
|Ri |

)2

≥ γc(2π
l )

l
· |Π|2≥ γc(π

k)
2k

· |Π|2

by Propositions 3.4, 3.5 and 3.6, moreover by the Cauchy–Schwartz inequality

(21). Therefore letk≤ 6, and let
∫

Π x2dx≤ (1+ε)γc(π
k )

2k · |Π|2. It follows by Propo-
sition 3.4 that ifε0 is small enough thenl = 2k. In particular eachRi has a right
angle at a vertex that is not the vertex ofΠ. Combining Propositions 3.2 and 3.5
yields that|si− π

k | ≤ τ
√

ε for i = 1, . . . ,2k whereτ > 0 is an absolute constant. In
turn we conclude Lemma 3.3.2

13



3.2 Properties related to inscribed polytopes

For t ∈ (0, π
2), we define

γi(t) =

∫
R(t){1−x2}dx

|R(t)|2 =
1

tant
+

5tant
3

. (25)

In particular
γi(π

3)
6

=
1√
3
. (26)

We note that a restricted version of (27) in Lemma 3.8 is due to P.M. Gruber [8].

LEMMA 3.8 If q is a positive definite quadratic form onR2, α > 0 and Π is a
triangle such thatq(x)≤ α for x∈Π then

∫

Π
{α−q(x)}dx≥ γi(π

3)
6

· |Π|2
√

detq. (27)

If
∫

Π{α− q(x)}dx≤ (1+ε)γi( π
3)

6 |Π|2√detq for ε ∈ (0,ε0) then there exists some
triangle Π0 that is regular with respect toq, haso as its centroid, and satisfies

(1+ϑ
√

ε)−1Π0⊂Π⊂ (1+ϑ
√

ε) ·Π0

whereε0 andϑ are positive absolute constants.

Let us prove the analogues of Propositions 3.4 to 3.7. Propositions 3.9 and
3.10 are consequences of Proposition 3.1.

PROPOSITION 3.9 t γi(t) is increasing on(0, π
2), and (t γi(t))′ > 0.07 for t ∈

(π
7, π

2).

PROPOSITION 3.10 γi(t)−1 is concave on(0, π
2), and (γi(t)−1)” < −0.03 for

t ∈ (π
7, 5π

12).

The following statement is more general then the direct analogue of Proposi-
tion 3.6 because of applications in Proposition 3.12.

PROPOSITION 3.11 Let T ⊂ rB2 be a triangle, which has an anglet at the
vertexo for t ∈ (0,π/2), and has another angle that is at leastπ

2. If Π ⊂ T is a
convex disc then ∫

Π
{r2−x2}dx≥ γi(t)|Π|2.

14



Proof: We may assume thatr = 1 andT = R(t). Let R(t) = [o,a,b] whereR(t)
has a right angle ata, hence‖b‖= 1. We defineQ to be the family of convex discs

Q⊂ R(t) with |Q| ≥ |Π|. There exists someQ0 ∈ Q satisfying that
∫

Q0
{1−x2}dx

|Q0|2 is
minimal, and Proposition 3.11 follows if

∫
Q0
{1−x2}dx

|Q0|2 ≥
∫

R(t){1−x2}dx

|R(t)|2 . (28)

We may assume thatQ0 6= R(t).
In the proof of (28), we will use that ifC1,C2 ∈ Q with |C1|= |C2| then
∫

C1

{1−x2}dx≤
∫

C2

{1−x2}dx if and only if
∫

C1

x2dx≥
∫

C2

x2dx. (29)

Our main method for transforming elements ofQ is the so-called Blaschke-
Scḧuttelung (see T. Bonnesen and W. Fenchel [1]). Let us given a linel , a vector
u not parallel tol , and a convex discC that lies on one side ofl . Then applying the
Blaschke–Scḧuttelung parallel tou and with respect tol toC leads to some convex
discC′ as follows. We translate any secantσ of C parallel tou into a segmentσ′,
which intersectsl in an endpoint, and lies on the same side ofl whereC lies. We
defineC′ to be the union of all suchσ′. Readily|C′|= |C|. In addition if

max
x∈σ′

‖x‖ ≥max
x∈σ

‖x‖ (30)

holds for any secantσ of C then
∫

C′
x2dx≥

∫

C
x2dx, (31)

with strict inequality if strict inequality holds in (30) for at least one secantσ.
After applying Blaschke–Schüttelung first parallel toawith respect toaff{a,b},

then parallel tob− a with respect toaff{o,b}, we may assume the following
by (31): There exist̃a ∈ [a,b] and b̃ ∈ [o,b] such thatQ0∩ [a,b] = [ã,b] and
Q0∩ [o,b] = [b̃,b], moreover the lines through̃a and b̃ parallel toa andb− a,
respectively, are supporting lines ofQ0.

We suppose that̃a 6= a, and seek a contradiction. Letc ∈ [o,b] satisfy that
ã− c is parallel toa, hencec 6= o. Since〈x−b,c〉 < 0 for x∈ Q0\{b}, we have
(b−c)2− (x−c)2 < b2−x2 = 1−x2, thus

∫

Q0

{(a−c)2− (x−c)2}dx<
∫

Q0

{1−x2}dx.

15



Now Q̃∈ Q for Q̃ = b+ 1
‖b−c‖ (Q0−b), and

∫
Q̃{1−x2}dx

|Q̃|2
=

∫
Q0
{(a−c)2− (x−c)2}dx

|Q0|2 <

∫
Q0
{1−x2}dx

|Q0|2 .

It is absurd, thereforẽa = a.
Next we definea0∈ [o,a] andb0∈ [o,a] by the properties that‖a0‖= ‖b0‖ and

the segment[a0,b0] touchesQ0. After applying Blaschke–Schüttelung parallel to
a0−b0 with respect toaff{o,b}, we may assumeb0 = b̃∈ Q0. We suppose that
a0 6∈ Q0, and seek a contradiction. We definea′ ∈ [o,a] by Q0∩ [o,a] = [a′,a],
andb′ ∈ [o,b] by ‖b′‖= ‖a′‖. In addition we choosec′ ∈ [b0,b′] with c′ 6= b0,b′.
The lineaff{a′,c′} dissectsQ0 into two convex discs, the polygonM containingb,
and the convex discN containingb0. Let N′ be the image ofN by the Blaschke–
Scḧuttelung parallel toa′− c′ with respect toaff{o,a}. ThenQ′ = M∪N′ ∈ Q ,
|Q′|= |Q0| and

∫

Q′
x2dx=

∫

M
x2dx+

∫

N′
x2dx>

∫

M
x2dx+

∫

N
x2dx=

∫

Q0

x2dx,

that is absurd. Thereforea0 ∈Q0, which in turn yieldsQ0 = [a,a0,b0,b].
Let sbe the area of the isosceles triangle[o,a0,b0], hence

∫
Q0
{1−x2}dx

|Q0|2 =
|R(t)|− γc(t)|R(t)|2−s+ γc(t/2)

2 ·s2

(|R(t)|−s)2 .

As t is fixed, we writef (s) to denote the right hand side above as a function ofs,
which function satisfies

f ′(s) =
{1−|R(t)| · γc(t/2)}(|R(t)|−s)−{2γc(t)− γc(t/2)} · |R(t)|2

(|R(t)|−s)3 .

Now s≤ ‖a‖2sint
2 = |R(t)|cost yields |R(t)|−s≥ (1−cost)|R(t)|, moreover ele-

mentary calculations and using the formula (22) forγc lead to

{
1−|R(t)|γc( t

2)
}

(1−cost)−{
2γc(t)− γc( t

2)
} ·|R(t)|=(1− 2

3 sin2 t
2)(1−cost)2.

Since2γc(t)− γc(t/2) ≥ 0 according to Proposition 3.4, it follows thatf ′(s) > 0
for all s≤ |R(t)|cost. We conclude (28), and in turn Proposition 3.11.2
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Finally we present the analogue of Proposition 3.7. Unfortunately this fact
is not as trivial as Proposition 3.7 because Proposition 3.12 does not hold for any
convex disc asΠ; for example, ifΠ is a semi circular disc with centreo and radius

one then
∫

Π{1−x2}dx<
γi( π

3)
6 · |Π|2.

PROPOSITION 3.12 If Π⊂ rB2 is a triangle witho 6∈ relintΠ then

∫

Π
{r2−x2}dx≥ 1.1· γi(π

3)
6

· |Π|2.

Proof: We say that a sidee of Π is a dark side ifo 6∈ e ande is a common side of
Π and[o,Π]. We consider all non-degenerate triangles of the from[o,v,w] where
v is the closest point of some dark sidee of Π to o, andw is an endpoint ofe. Let
R1, . . . ,Rl be the resulting triangles, henceΠ∩Rj , j = 1, . . . , l , form a tiling ofΠ.
We observe thatl ≤ 4, moreover if j = 1, . . . , l then the anglesj of Rj ato is acute,
andRj has an angle that is at leastπ

2. Writing s∗ = s1+...+sl
l , it follows by (25),

(26), Proposition 3.11 and by the Cauchy–Schwartz inequality (21) that

∫

Π
{r2−x2}dx ≥

l

∑
j=1

γi(sj) · |Rj ∩Π|2≥
(

l

∑
j=1

γi(sj)−1

)−1(
l

∑
j=1
|Rj ∩Π|

)2

≥ γi(s∗)
l

· |Π|2≥
2
√

5
3

4
· |Π|2 > 1.1· γi(π

3)
6

· |Π|2. 2

Based on Propositions 3.9 to 3.12, Lemma 3.8 can be proved analogously to
Lemma 3.3.2

3.3 Properties related to general polytopes

This section builds on K. B̈oröczky, Jr. and M. Ludwig [3]. Fort ∈ (0, π
2), we

define

γ(t) =
minα∈R

∫
R(t) |x2−α|dx

|R(t)|2 .

According to K. B̈oröczky, Jr. and M. Ludwig [3],

γ(t) =
1

tant
+

tant
3
− 1

2t
if t ∈ (0,1.05], (32)
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whereπ
3 < 1.05< π

2 andtan1.05< 2·1.05. Therefore

γ(π
3)
6

=
1

3
√

3
− 1

4π
; (33)

γ(π
6)

12
=

5

18
√

3
− 1

4π
. (34)

The estimate (35) in Lemma 3.13 is a restatement of Theorem 3 in K. Böröczky,
Jr. and M. Ludwig [3]. We note that the proof Lemma 3.13 is more complicated
than the proof of Lemma 3.3 because instead of Proposition 3.6, we have Propo-
sition 3.16.

LEMMA 3.13 There exist absolute constantsε0,ϑ > 0 with the following prop-
erties: If q is a positive definite quadratic form onR2, α ∈ R andΠ is a polygon
of at mostk sides then

∫

Π
|q(x)−α|dx≥ γ(π

k)
2k

· |Π|2
√

detq. (35)

In addition ifk≤ 6 and
∫

Π |q(x)−α|dx≤ (1+ε)γ( π
k )

2k |Π|2√detq for ε ∈ (0,ε0) then
Π is ak–gon, and there exists somek–gonΠ0 that is regular with respect toq, has
o as its centroid, and satisfies

(1+ϑ
√

ε)−1Π0⊂Π⊂ (1+ϑ
√

ε) ·Π0;

1−ϑ
√

ε
2 |Π|< |{x∈Π : q(x)≤ α}|< 1+ϑ

√
ε

2 |Π|.

To prove Lemma 3.13, we need several auxiliary statements. Proposition 3.1
yields directly Proposition 3.14.

PROPOSITION 3.14 t γ(t) is increasing on(0,1.05), and if t ∈ (π
7,1.05) then

(t γ(t))′ > 0.07.

Let us recall some results of [3]. We note that there exists a uniquet∗ ∈
(1.05, π

2) such thattant∗ = 2t∗. Lemma 4 of [3] states thatγ(t)−1 is concave on
(0, t∗). Its proof actually verifies that(γ(t)−1)” is continuous and negative on
(0, t∗). Next let l(t) be the linear function whose graph is tangent to the graph of
γ(t)−1 at π

3. Lemma 5 of [3] states thatγ(t)−1 < l(t) for t ∈ (π
3, π

2). We deduce

18



PROPOSITION 3.15 There exists a concave functionθ(t) ≥ γ(t)−1 on (0,π/2)
such thatθ(t) = γ(t)−1 for t ∈ (0, π

3]. In addition(γ(t)−1)” <−ξ for t ∈ (π
7,1.05)

whereξ > 0 is an absolute constant.

Remark: Since the resultingθ(t) is linear if t ≥ π
3, we cannot apply Proposi-

tion 3.2 if ∑6
i=1 ti = 2π for acutet1, . . . , t6. In this case the Taylor formula (19)

yields

6

∑
i=1

θ(ti)≤
(

6

∑
i=1

l(ti)

)
− ξ

2

(
π
3− min

i=1,...,6
ti

)2

≤ 6θ(π
6)− ξ

50 max
i=1,...,6

(π
3− ti)2. (36)

Next we restate Lemma 3 of [3].

PROPOSITION 3.16 If α ∈ R and T is a triangle that has an angle2t at the
vertexo for t ∈ (0,π/2) then

∫

T
|x2−α|dx≥ γ(t)

2 · |T|2.

Finally combining Lemma 2 in [3] and Proposition 3.14 leads to

PROPOSITION 3.17 If α ∈ R, Π is a polygon with at mostk sides, ando 6∈
relintΠ then

∫

Π
|x2−α|dx≥ 1.1· γ(π

3)
6
· |Π|2≥ 1.1· γ(π

k)
2k

· |Π|2.

Proof of Lemma 3.13:We may assume thatq(z) = z2. Since (35) coincides with
Theorem 3 in [3], we assume that them–gonΠ for m≤ k≤ 6 andα ∈ R satisfy
∫

Π |x2−α|dx≤ (1+ε)γ(π
k )

2k · |Π|2. If ε0 is small enough theno∈ relintΠ according
to Proposition 3.17.

We dissectΠ into the trianglesT1, . . . ,Tm by connectingo to the vertices ofΠ,
and writeei to denote the side ofTi opposite too. Next we assign two trianglesRi1

andRi2 to eachTi . If both angles ofTi at the endpoints ofei are acute then letwi

be the closest point ofei to o, and letRi1 andRi2 be the two triangles, which tileTi

and intersect in the common side[o,wi ]. In this case bothRi1 andRi2 have a right
angle atwi , and we writeti j to denote the angle ofRi j ato, j = 1,2. Otherwise we
call Ti skew, and letti1 = ti2 be half of the angle ofTi at o, moreover letRi j be a
rescaled copy ofR(ti j ) with |Ri j |= 1

2 |Ti | for j = 1,2. In both casesti1 + ti2 is the
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angle ofTi ato, i = 1, . . . ,m. We apply Proposition 3.16 to all skewTi , and deduce
by Proposition 3.15 and the Cauchy–Schwartz inequality (21) that

(1+ ε)γ(π
k)

2k
· |Π|2 ≥ ∑

i=1,...,m
j=1,2

γ(ti j )|Ri j |2 (37)

≥

 ∑

i=1,...,m
j=1,2

1
γ(ti j )



−1

 ∑
i=1,...,m

j=1,2

|Ri j |



2

≥

 ∑

i=1,...,m
j=1,2

θ(ti j )



−1

|Π|2≥ (2m·θ( π
m))−1|Π|2. (38)

It follows by Proposition 3.14 thatm= k if ε0 is small enough.
During the rest of the argument, we writeϑ1,ϑ2, . . . to denote positive absolute

constants. We apply Propositions 3.2 and 3.15 ifk≥ 4, and (36) ifk = 3 to (38),
and obtain

|ti j − π
k | ≤ ϑ1

√
ε for i = 1, . . . ,k and j = 1,2. (39)

If no Ti is skew then (39) readily yields the existence ofΠ0 in Lemma 3.13.
Therefore we suppose that there is a skewTl for suitably smallε0, and seek

a contradiction. We deduce by (39) thatγ(ti j ) ≥ (1−ϑ2
√

ε)γ(π
k), thus (37) and

2(|Ri1|2 + |Ri2|2) ≥ |Ti |2 yield thatk∑k
i=1 |Ti |2 ≤ (1+ ϑ3

√
ε)

(
∑k

i=1 |Ti |
)2

. Using
the convexity oft2 (compare (20)), we obtain

1−ϑ4
4
√

ε≤ |Ti |
|Π|/k

≤ 1+ϑ4
4
√

ε for i = 1, . . . ,k. (40)

Let v 6= o be the vertex ofTl where the angleαl of Tl is at leastπ2, and letTp the
other triangle that hasv as a vertex. Ifαp is the angle ofTp at v then combining
(39) and (40) yields that|αl −αp| ≤ ϑ5

4
√

ε. It follows by αl ≥ π
2 thatαp ≥ 5π

12 if
ε0 is small enough, moreoverαp < π

2 by the convexity ofΠ. In addition the angle
of Tp ato is at leastπ4 by k≤ 6, hence the third angle ofTp is at mostπ3. Therefore
Tp is not skew, and|tp1− tp2| ≥ αp− π

3 ≥ π
12. It contradicts (39) for suitably small

ε0, thus noT1, . . . ,Tk is skew. In turn we conclude the existence of suitableΠ0.
Finally we defineΠ+

α = {x∈Π : x2≥ α} andΠ−
α = {x∈Π : x2≤ α}, hence

the formula
∂

∂α

∫

Π
|x2−α|dx= |Π−

α |− |Π+
α |
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completes the proof of Lemma 3.13.2

4 The proof of Theorem 1.1

We only prove Theorem 1.1 forP(n) in detail, and sketch the necessary changes
for the case ofPc

(n) at the end of the proof. ForP(n), it is sufficient to prove the
following statement.

For a given convex bodyK in R3 with C2 boundary, letP(n) be a polytope with
at mostn faces such thatδS(K,P(n)) is minimal. Forν ∈ (0,ν0), if g(n) is number
of facesF of P(n) such thatF is a proper hexagon, andF is ϑν–close to some

hexagon that is regular with respect toQxF and is of area
∫

∂K κ(x)1/4dx
n·κ(xF )1/4 then

g(n) > (1− ϑ̃ν)n for n > n0 (41)

whereϑ andϑ̃ are positive absolute constants, andν0 > 0 depends onK, more-
overn0 depends onν andK.

We recall that for anyx ∈ ∂K, u(x) is the exterior unit normal to∂K at x. It
is well–known (see say K. Leichtweiß [16]) that there existsη > 0 such that balls
of radiusη roll from inside on∂K. In other words for anyx∈ ∂K, the three–ball
of radiusη and of centrex−ηu(x) is contained inK. Let K−η be the family of
pointsz such thatz+ ηB3 ⊂ K. Now if y ∈ R3\K−η then there exists a unique
closest point of∂K to y, and we writeπ(y) to denote this point.

We writeclY to denote the closure of anyY ⊂ R3, and consider∂K with the
subspace topology as a subset ofR3. We say thatY ⊂ ∂K is Jordan measurable if
the relative boundary ofY on∂K is of two–dimensional Hausdorff–measure zero.
Let X0, X′ andX be relatively open Jordan measurable subsets of∂K such that
clX0⊂ X, clX ⊂ X′, κ(x) > 0 for x∈ clX′, and

∫

X0

κ(x)1/4dx≥ (1−µν2)
∫

∂K
κ(x)1/4dx.

It is practical to define
µ= ν6.

We haveδ > 0 with the following properties:(X0 + 2δB3)∩ ∂K ⊂ X and(X +
2δB3)∩∂K ⊂ X′. Moreover ifC is a convex disc that touchesK in x∈ X andC is
of diameter at mostδ then
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(i) writing C′ to denote the orthogonal projection ofπ(C) into affC, we have

x+(1−µν2)(C−x)⊂C′ ⊂ x+(1−µν2)−1(C−x);

(ii) if w∈ π(C) then〈u(w),u(x)〉 ≥ 1−µν2;

(iii) if f is the convex function onC such that its graph is the part of∂K, andqy

is the quadratic form representing the second derivative off aty∈C (hence
Qx = qx) then

(1+µν2)−1Qx≤ qy≤ (1+µν2)Qx.

During the proof of (41),ϑ1,ϑ2, . . . denote positive absolute constants, more-
over ω1,ω2, . . . denote positive constants that depend onK, ν andµ. Now there
exists a convex polytopeM circumscribed aroundK such thatdiamG < δ holds
for each faceG of M with π(G)∩X 6= /0. We write M to denote the family of
faces ofM that touchK in a point ofX, and letG∈M touchK in xG. Therefore

∑
G∈M

κ(xG)1/4|G| ≥ (1−ϑ1µν2)
∫

∂K
κ(x)1/4dx. (42)

We start to investigateP(n). We define

γ̃ =
5

36
√

3
− 1

8π
=

1
2
· γ(π

6)
12

.

According to (4), ifn is large then

δS(K,P(n)) < (1+µν2) · γ̃ ·
(∫

∂K
κ(x)1/4dx

)2

· 1
n
. (43)

It follows by (43) and the existence of the rolling ball of radiusη that

δH(K,P(n))≤ ω1n−1/2. (44)

Therefore ifn0 is large enough thenK−η ⊂ intP(n). Since the infimum of the
principal curvatures at the points ofX′ is positive, we deduce that ifF is a face of
P(n) such thatπ(F)⊂ X′ then

diamF ≤ ω2n−1/4. (45)
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Recalling thatG∈ M touchesK in xG, we writeM̃ to denote the family of
convex discs of the form

(1−2µν2)(G−xG)+xG

asG runs through the elements ofM . In turn forC ∈ M̃ , we writexC to denote
the point whereC touchesK, and define

C′ = (1−µν2)(C−xC)+xC.

In addition letFC denote the family of faces ofP(n) nearC whose orthogonal
projection toaffC intersectsrelintC. We deduce by (i) and (45) that ifn0 is large

enough then the familiesFC for C∈ M̃ are pairwise disjoint, and by (42) that

∑
C∈M̃

κ(xC)1/4|C′| ≥ (1−ϑ2µν2)
∫

∂K
κ(x)1/4dx. (46)

For any planeL in R3, we writepL to denote the orthogonal projection intoL.

Let C ∈ M̃ . We writeF ′
C to denote the family of allF ∈ FC such thatpaffC(F)

intersectsrelintC′. Again if n0 is large enough then (44) yields for anyF ∈ F ′
C

that
paffC(K∩affF)⊂ relintC. (47)

We recall that for anyF ∈ FC, xF denotes the point of∂K such thatu(xF) is an
exterior unit normal toF , and writeaF = paffC(xF). In addition letzF ∈ affF
satisfypaffC(zF) = aF , and letαF = 〈u(xC),xF −zF〉. For anyF ∈ F ′

C, we define

ΠF = C′∩ paffC(F). (48)

It follows by (iii) and (47) that we may apply Lemma 2.1 to eachC ∈ M̃ with
ε = µν2, and we obtain (see also (10))

δS(K,P(n))≥ (1−ϑ3µν2) ∑
C∈M̃

∑
F∈F ′

C

∫

ΠF

|12 QxC(y−aF)−αF |dy. (49)

For anyF ∈ F ′
C, we definek(F) to be the number of sides ofΠF , and

I(F) = κ(xC)1/4|ΠF |. (50)
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Next we decompose∪
C∈M̃ F ′

C into the familiesF1, F2, F3 andF4. Let F ∈ F ′
C for

C∈ M̃ . We putF into F4 if k(F) 6= 6, and intoF3 if ΠF is a hexagon that is not
ν–close to any hexagon that is regular with respectQxC. ThereforeF ∈ F1∪F2

if ΠF is a hexagon, which isν–close to some hexagon that is regular with respect
QxC. Assuming this, we have

F ∈ F1 if

∣∣∣∣∣
∫

∂K κ(x)1/4dx

n· I(F)
−1

∣∣∣∣∣≤ ν;

F ∈ F2 if

∣∣∣∣∣
∫

∂K κ(x)1/4dx

n· I(F)
−1

∣∣∣∣∣ > ν.

We write n j to denote the cardinality ofF j . Using (43) and (46) to get an up-
per bound onδS(K,P(n)), and (49) and Lemma 3.13 to get a lower bound on
δS(K,P(n)), we obtain

(1+ϑ4µν2) · γ̃ ·

 ∑

F∈∪4
j=1F j

I(F)




2

1
n

≥ γ̃ ·

 ∑

F∈∪3
j=1F j

I(F)2


 (51)

+ϑ5ν2

(
∑

F∈F3

I(F)2

)

+
1
2 ∑

F∈F4

γ( π
k(F))

2k(F)
· I(F)2.

We claim that last term above satisfies

1
2 ∑

F∈F4

γ( π
k(F))

2k(F)
· I(F)2≥ (1+ϑ6) · γ̃ ·

(
∑

F∈F4

I(F)

)2

· 1
n4

. (52)

It follows by the Cauchy–Schwartz inequality (21) that

∑
F∈F4

γ( π
k(F))

2k(F)
· I(F)2 = ∑

F∈F4

2k(F) · γ( π
k(F)) ·

(
I(F)

2k(F)

)2

≥
(

∑
F∈F4

2k(F) · γ( π
k(F))

−1

)−1

·
(

∑
F∈F4

I(F)

)2

.
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SinceC′ is tiled by ΠF asF runs throughF ′
C, and all tiles have small diameter

for largen according to (45), the average number of sides of allΠF , F ∈ F ′
C, is

at most six (see Lemma 4.1 below). In particular the average of allk(F), F ∈ F4,
is at most six. If the average is at least5.5 then we use Proposition 3.2 to the
concaveγ(t)−1 (compare Proposition 3.15), and after that use the monotonicity of
tγ(t) (compare Proposition 3.14) to obtain

(
∑

F∈F4

2k(F) · γ( π
k(F))

−1

)−1

≥ 1+ϑ7

n4
· n4

∑F∈F4
2k(F)

· γ
(

n42π
2∑F∈F4

k(F)

)

≥ 1+ϑ7

n4
· γ(π

6)
12

=
1+ϑ7

n4
·2γ̃.

If the average of allk(F), F ∈ F4, is less than5.5 then first we simply use the
concavity ofγ(t)−1, and after that we obtain an error term from the monotonicity
of tγ(t) (compare Proposition 3.14, and observe that the average of allk(F) is at
least three):

(
∑

F∈F4

2k(F) · γ( π
k(F))

−1

)−1

≥ 1
n4
· n4

∑F∈F4
2k(F)

· γ
(

n4π
∑F∈F4

k(F)

)

≥ 1+ϑ8

n4
· γ(π

6)
12

=
1+ϑ8

n4
·2γ̃.

In turn we deduce the claim (52).
Now by applying the inequality for quadratic mean to∑F∈F3

I(F)2, we deduce

(1+ϑ4µν2) · γ̃

 ∑

F∈∪4
j=1F j

I(F)




2

· 1
n

≥ γ̃ ·

 ∑

F∈∪3
j=1F j

I(F)2


 (53)

+ϑ5ν2

(
∑

F∈F3

I(F)

)2

· 1
n3

+(1+ϑ6) · γ̃ ·
(

∑
F∈F4

I(F)

)2

· 1
n4

.

First we show that the contribution coming from faces inF3 andF4 is negligible.
Applying the inequality for quadratic mean and the Cauchy–Schwartz inequality
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(21) in (53) leads to

(1+ϑ4µν2) · γ̃

 ∑

F∈∪4
j=1F j

I(F)




2

· 1
n

≥ γ̃ ·

 ∑

F∈∪4
j=1F j

I(F)




2

· 1

∑4
j=1n j

+ϑ9ν2

(
∑

F∈F3∪F4

I(F)

)2
1

n3 +n4
.

Since∑4
j=1n j ≤ n, it follows that

∑
F∈F3∪F4

I(F)≤ ϑ10
√

µ· ∑
F∈∪4

j=1F j

I(F). (54)

Thus (46) and (53) yield
(

∑
F∈F1∪F2

I(F)

)2

· 1
n

≥ (1−O(
√

µ))

(
∑

F∈F1∪F2

I(F)2

)
; (55)

∑
F∈F1∪F2

I(F) = (1+O(
√

µ)) ·
∫

∂K
κ(x)1/4dx. (56)

Applying the inequality for quadratic mean in (55) leads ton1+n2 =(1+O(
√

µ))n,
hence (56) shows that

I0 =
∑F∈F1∪F2

I(F)
n1 +n2

= (1+O(
√

µ)) ·
∫

∂K κ(x)1/4dx

n
.

Therefore ifν0 after (41) is small enough then we apply (20) witht0 = I0 and

ε = ν·∫∂K κ(x)1/4dx
2n to obtain

∑
F∈F1∪F2

I(F)2≥
(

1+
ϑ11ν2n2

n1 +n2

)(
∑

F∈F1∪F2

I(F)

)2

· 1
n1 +n2

.

Comparing to (55) leads ton2
n1+n2

= O(
√

µ
ν2 ) = O(ν), hence

n1≥ (1−ϑ12ν) ·n. (57)

We are not ready because someΠF is not the projection ofF . We callF ∈ F1

a border face if assumingF ∈ FC, C∈ M̃ , ΠF meets the relative boundary ofC′.
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Otherwise we callF ∈ F1 an inner face; namely, ifΠF ⊂ relintC′. We observe
that if F is an inner face thenΠF is the projection ofF , henceF is ϑ13ν–close
to some hexagon that is regular with respect to the positive definiteQF , and is

of area
∫

∂K κ(x)1/4dx
n·κ(xF )1/4 . However ifF is a border face andF ∈ FC thenΠF lies in a

ω3n−1/2 neighbourhood of the relative boundary ofC′ in affC. Since any border
faceF is in F1, we have|ΠF | > ω4

n , therefore the number of border faces is at
mostω5

√
n. After choosingn0 large enough, the number of border faces is less

thanν ·n, henceg(n) ≥ (1−ϑ14ν) ·n. Therefore we conclude (41), and in turn
Theorem 1.1 in the case ofP(n). 2

To prove Theorem 1.1 in the case ofPc
(n), only two changes are needed in the

argument. First allαF in (49) satisfyαF ≤ 0 (compare (8)). Secondly we use
Lemma 3.3 instead of Lemma 3.13.2

No face can be added toP(n) or Pc
(n), and no face ofP(n) or Pc

(n) can be varied
in a way such thatδS(P(n),K) or δS(Pc

(n),K), respectively, decreases, hence we
deduce the Remark after Theorem 1.1.2

In the proof of Theorem 1.1, we used the fact that the average number of sides
of the tiles of a suitable tiling is at most six.

LEMMA 4.1 For any convex polygonΠ there existsδ > 0 with the following
property: If the convex polygonsΠ1, . . . ,Πn form a side to side tiling ofΠ, and
eachΠi is of diameter at mostδ then writingki to denote the number of sides of
Πi , we havek1 + . . .+kn < 6n.

Proof: We writem to denote the number of sides ofΠ, andp to denote the perime-
ter of Π. Let δ = p

2m. If e is the number of edges, andv is the number of vertices
in the tiling Π1, . . . ,Πn of Π as above then the Euler formula says

v−e+n = 1 > 0. (58)

Since at least two edges of the tiling meet at any vertex ofΠ, and at least three
edges of the tiling meet at any other vertices of the tiling, summing up the degrees
of the vertices of the tiling leads to3v≤ 2e+m. It follows by (58) thate< 3n+m.
In addition letb be the number of segments that are sides of someΠi and are
contained in∂Π, henceb≥ 2m by the choice ofδ. Therefore

k1 + . . .+kn = 2e−b < 6n+2m−b≤ 6n. 2
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5 The proof of Theorem 1.2

Since the proof of Theorem 1.2 is very similar to the proof of Theorem 1.1, we
only provide a sketch about the necessary changes.

We start with the case ofPn, which has at most2n faces according to Euler the
formula. The main changes compared to (41) are that nowg(n) counts the number
of triangular faces, which are close to regular in the suitable sense, and we prove

g(n) > (1− ϑ̃ν)2n. (59)

We defineX, M andM̃ as in Section 4. Instead ofγ̃, we use

γ∗ =
1

12
√

3
− 1

16π
=

1
4
· γ(π

3)
6

.

Here we have the factor14 unlike the factor12 in the definition of̃γ becausePn has
asymptotically twice as many faces asP(n).

An essential change in the argument that first we triangulate∂Pn by triangu-
lating any non–triangular face by diagonals from a fixed vertex of the face. We
write Σ to denote the resulting triangular complex, which has the same family of
vertices asPn. ForC ∈ M̃ , we writeFC to denote the family of all facesF of Σ
that lies nearC andpaffC(F) intersectsrelintC, moreoverF ′

C to denote the family
of all F ∈ FC such thatpaffC(F) intersectsrelintC′. For anyF ∈ FC, we define
ΠF = paffC(F) (hence we do not intersect withC′ as in (48)). In addition, we
defineaF , αF andI(F) analogously as in Section 4.

Other changes compared to the argument in Section 4 are concerned with the
definitions ofF j after (50). We decompose∪

C∈M̃ F ′
C into only three familiesF1,

F2 andF3. Let F ∈ F ′
C for C∈ M̃ . We putF into F1 if

∣∣∣
∫

∂K κ(x)1/4dx
2n·I(F) −1

∣∣∣≤ ν, and

there exists a triangleT whose centroid isaF , which is regular with respectQxC,
and

(1+ν)−1(T−aF)⊂ΠF −aF ⊂ (1+ν)(T−aF).

We putF into F2 if such aT exists but
∣∣∣
∫

∂K κ(x)1/4dx
2n·I(F) −1

∣∣∣ > ν. Finally F ∈ F3 if no

suchT exists. As in Section 4, letni denote the cardinality ofFi .
We deduce the analogue of (51) without the last term concerningF4, which

yields right away the analogue (53). Continuing with essentially the same argu-
ment as in Section 4 (keeping onlyF1, F2 andF3) proves the analogue of (57);
namely,n1 ≥ (1−ϑ∗ν) ·2n whereϑ∗ is a positive absolute constant. We are not
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ready becausePn may have some faces that not triangles. IfG is a face ofPn

such thatF ⊂G for F ∈ F1 thenG is near someC∈ M̃ , andpaffC(x(G)) = aF ∈
relintΠF . In particular there is no otherF ′ ∈ F1 with F ′ ⊂G. SinceΣ has at most
2n elements, the number ofF ∈ F1 that are not faces ofPn is at mostϑ∗ν · 2n,
thereforeg(n)≥ (1−2ϑ∗ν) ·2n. 2

The proof in the case ofPi
n runs closely as forPn, the main difference is that

one uses Lemma 3.8 instead of Lemma 3.13. There is one additional change in
the argument. For eachF ∈ F ′

C, we define

α′F = (1+µν2) ·αF .

Therefore1
2 QxC(y−aF)≤ α′F for anyy∈ΠF (see (9)), and (49) is replaced by

δS(K,Pi
n)≥ (1−ϑ3µν2) ∑

C∈M̃
∑

F∈F ′
C

∫

ΠF

{
α′F − 1

2 QxC(y−aF)
}

dy.

The arguments just sketched complete the proof of Theorem 1.2.2

Concerning the Remark after Theorem 1.2, bothPn andPi
n have at most2n−4

faces according to the Euler formula, hence the numbers of faces of bothPn andPi
n

are2n−o(n) by (59). Readily all vertices ofPi
n lie on ∂K. To prove the property

of the typical faces ofPn, we force the following extra condition on any element
F ∈ F ′

C of F1 or F2. Any suchF should satisfy

1−ν
2 |ΠF |<

∣∣{y∈ΠF : 1
2 QxC(y−aF)≤ αF}

∣∣ < 1+ν
2 |ΠF |. 2
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