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Abstract

For a given convex body K in R
3 with C2 boundary, let Pc

n be the circum-
scribed polytope of minimal volume with at most n edges, and let Pi

n be the
inscribed polytope of maximal volume with at most n edges. Besides pre-
senting an asymptotic formula for the volume difference as n tends to infinity
in both cases, we prove that the typical faces of Pc

n and Pi
n are asymptotically

regular triangles and squares, respectively, in a suitable sense.

1 Introduction
Let K be a convex body in R

d with C2 boundary. For x ∈ ∂K, we write Qx to
denote the second fundamental form at x, and κ(x) to denote the Gauß-Kronecker
curvature detQx (see Section 2). We always integrate on ∂K with respect to the
(d−1)-dimensional Hausdorff-measure. In addition for functions f and g of pos-
itive integers, we write f (n) ∼ g(n) if limn→∞

f (n)
g(n) = 1.

∗Supported by OTKA grants 043520 and 049301, and by the EU Marie Curie grants Disc-
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For an integer 0 ≤ k ≤ d − 1, best approximation of K by polytopes of re-
stricted number of k–faces has been intensively investigated in the last thirty years
(see P.M. Gruber [15], [18], [19] and [20]). To indicate typical results, we write
δS(K,M) to denote the symmetric difference metric of K and another convex body
M in R

d; that is, the volume of the symmetric difference K∆M of K and M. Let
Pn be a polytope minimizing δS(K,Pn) under the condition that the number of k–
faces is at most n. If k = 0,d − 1; namely, if the number of vertices or facets is
restricted then the work of many people like L. Fejes Tóth, R. Vitale, R. Schnei-
der, P.M. Gruber, S. Glasauer, M. Ludwig, K.J. Böröczky leads to the asymptotic
formula

δS(K,Pn) ∼ c ·
(

Z

∂K
κ(x)

1
d+1 dx

) d+1
d−1

·n −2
d−1 (1)

as n → ∞ where c > 0 depends only on k and d. It has been also shown that the
projections of the vertices or facets, respectively, of Pn onto ∂K are uniformly dis-
tributed on ∂K with respect to the density function κ(x)

1
d+1 . Moreover if d = 3

and k = 0,3 then even the asymptotic shape of the typical faces of Pn is known.
More precisely the typical faces are asymptotically regular hexagons or regular
triangles in a suitable sense if the number of faces or vertices, respectively, is re-
stricted. Finally we note that the analogues of all these results are known if Pn is
assumed to be either inscribed or circumscribed.

However no asymptotic formula was known if 1 ≤ k ≤ d −2. A partial result
follows from combining the papers I. Bárány [2] and K.J. Böröczky [5]: If n is
large then

c1

(
Z

∂K
κ(x)

1
d+1 dx

) d+1
d−1

n
−2

d−1 < δS(K,Pn) < c2

(
Z

∂K
κ(x)

1
d+1 dx

) d+1
d−1

n
−2

d−1 (2)

where c1,c2 > 0 depend only on k and d. We note that the corresponding asymp-
totic formulae are known in the case of random polytopes (see I. Bárány [2]).
The goal of this paper is to extend the known results about best approximating
polytopes to the case when d = 3 and the number of edges are restricted.

In our theorems, we will have the convex body K in R
3 with C2 boundary, and

some sequence {Ln} of polytopes such that the number f (n) of faces of Ln tends
to infinity with n. Given k ≥ 3 and α > 0, we will state at some point that the
typical faces of Ln are asymptotically regular k–gons with respect to the density
function κ(x)α. Let us introduce some notions that clarify the meaning of this
statement.
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For ε > 0 and convex compact sets F and Π, we say that F is ε–close to Π if
there exist x ∈ F and y ∈ Π satisfying

(1+ ε)−1 · (Π− y) ⊂ F − x ⊂ (1+ ε) · (Π− y).

Let u(x) denote the exterior unit normal to ∂K at x ∈ ∂K. A face F of Ln is called
proper if there exits an xF ∈ ∂K such that u(xF) is an exterior normal also to F , and
QxF is positive definite (hence xF is unique). For real α > 0 and integer m ≥ 3, we
say that the typical faces of Ln are asymptotically regular m–gons with respect to
the density function κ(x)α if the following properties hold. There exists ν(n) > 0
with limn→∞ ν(n) = 0 such that for all but ν(n) percent of the faces F of Ln, F is a
proper m–gon, and F is ν(n)–close to some m–gon which is regular with respect
to QxF and is of area

R

∂K κ(x)αdx
f (n)·κ(xF )α .

We will also discuss the distribution of the edges of Ln. Let En denote the
family of edges of Ln, and let π∂K denote the closest point map onto ∂K (see
Section 2). We say that the projections of the edges of Ln are uniformly distributed
on ∂K with respect to the density function κ(x)α if for any Jordan measurable
Z ⊂ ∂K, we have

lim
n→∞

#{e ∈ En : π∂Ke ⊂ Z}
n

= lim
n→∞

#{e ∈ En : π∂Ke∩Z 6= /0}
n

=

R

Z κ(x)αdx
R

∂K κ(x)αdx
.

Here the cardinality of a finite set S is denoted by #S .
In Theorem 1.1, K is any convex body in R

3 with C2 boundary. We define Pn
to be a best approximating polytope with at most n edges such that δS(K,Pn) is
minimal. In addition let Pi

n be a polytope contained in K with at most n edges and
of maximal volume, and let Pc

n be a polytope containing K with at most n edges
and of minimal volume. The existence of these extremal polytopes follows from
the Blaschke Selection Theorem and the continuity of the volume.

THEOREM 1.1 The typical faces of Pi
n are asymptotically squares with respect

to the density function κ(x)1/4, and the typical faces of both Pc
n and Pn are asymp-

totically regular triangles with respect to the density function κ(x)1/4.

Remark: Theorem 1.1 in the case of inscribed polytopes provides the first ex-
ample when not triangles or hexagons but quadrilaterals are the asymptotically
optimal faces of the extremal polytopes in the case of volume approximation. We
also have the asymptotic formulae

δS(K,Pi
n) ∼ 1

3

(
Z

∂K
κ(x)1/4dx

)2

· 1
n

; (3)
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δS(K,Pn) ∼
(

1
4
√

3
− 3

16π

)(
Z

∂K
κ(x)1/4dx

)2

· 1
n

; (4)

δS(K,Pc
n) ∼ 1

4
√

3

(
Z

∂K
κ(x)1/4dx

)2

· 1
n
. (5)

In addition each extremal polytope in Theorem 1.1 has n + o(n) edges, Pi
n

has n
2 + o(n) faces, and both Pc

n and Pn have 2n
3 + o(n) faces. Moreover the pro-

jections of the edges of either extremal polytope in Theorem 1.1 are uniformly
distributed on ∂K with respect to the density function κ(x)1/4. These properties
follow from combining the proof of Theorem 1.1 with well-known methods (see
say K. Böröczky, Jr. [4]), and we do not provide the arguments.

Let us turn to approximation with respect to the L1–metric. If C is a convex
body in R

3 then its support function hC is

hC(u) = max
x∈C

〈x,u〉 for u ∈ R
3,

and the mean width of C is M(C) = 1
4π

R

S2{hC(u)+hC(−u)}du = 1
2π

R

S2 hC(u)du.
Now the L1–distance of the convex bodies C and M in R

3 is defined by

δ1(C,M) =
Z

S2
|hC(u)−hM(u)|du.

In particular if M ⊂C then δ1(C,M) is proportional to the difference of the mean
widths of C and M. The papers S. Glasauer, P.M. Gruber [11], M. Ludwig [22] and
K. Böröczky, Jr. [4] provided asymptotic formulae for polytopal approximation
of smooth convex bodies with respect to the L1 metric if the number of vertices or
facets are restricted.

In Theorem 1.2, K is any convex body in R
3 with C2 boundary. We define Wn

to be a best approximating polytope with at most n edges such that δ1(K,Wn) is
minimal. In addition let W i

n be a polytope contained in K with at most n edges and
of maximal mean width, and let W c

n be the polytope containing K with at most n
edges and of minimal mean width.

THEOREM 1.2 The typical faces of W c
n are asymptotically squares with respect

to the density function κ(x)3/4, and the typical faces of both W i
n and Wn are asymp-

totically regular hexagons with respect to the density function κ(x)3/4.

Remark: We also have the asymptotic formulae

δ1(K,W c
n ) ∼ 1

3

(
Z

∂K
κ(x)3/4dx

)2

· 1
n

; (6)
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δ1(K,Wn) ∼
(

1
4
√

3
− 3

16π

)(
Z

∂K
κ(x)3/4dx

)2

· 1
n

; (7)

δ1(K,W i
n) ∼ 1

4
√

3

(
Z

∂K
κ(x)3/4dx

)2

· 1
n
. (8)

We note that each extremal polytope in Theorem 1.2 has n + o(n) edges, W c
n

has n
2 + o(n) faces, and both W i

n and Wn have n
3 + o(n) faces. In addition the

projections of the edges of W c
n , W i

n and Wn are uniformly distributed on ∂K with
respect to the density function κ(x)3/4. These properties follow from combining
the proof of Theorem 1.1 with well-known methods (see say K. Böröczky, Jr. [4]),
and we do not provide the arguments.

Most of the paper is dedicated to the proof of Theorem 1.1. The fundamen-
tal facts, notions and notation that are used thorough the paper are presented in
Section 2. The proof of Theorem 1.1 needs ”momentum lemma type” estimates
for planar polygons, which are subject of Section 3. The argument to prove Theo-
rem 1.1 presented only for Pi

n in detail, and the necessary changes in the argument
for Pc

n and Pn are outlined in Section 6. In Section 4 we construct inscribed poly-
topes with at most n edges that are asymptically best approximating. First we
approximate small “round” parts of ∂K by pieces of paraboloids whose size tends
to zero with n. For each paraboloidal piece, we transfer a suitable planar paral-
lelogram tiling to a polytopal surface inscribed into the paraboloid using power
diagrams. Finally the proof of Theorem 1.1 is completed in Section 5 by applying
the estimates of Section 3 to the faces of Pi

n. Theorem 1.2 follows from combining
the proof of Theorem 1.1 with an ingenious method based on duality developed
by R. Schneider and the paper S. Glasauer and P.M. Gruber [11]. We sketch the
argument in Section 7.

2 Some basic notions, notations and facts
Concerning notions for convex bodies and polytopes in this paper, consult the
beautiful monographs R. Schneider [25] and P.M. Gruber [20]. In this paper we
concentrate on R

3. However we present some of the notions in R
d , d ≥ 4, because

Section 1 quotes some results in higher dimensions.
For a compact convex set C in R

d , we write affC to denote its affine hull, ∂C
to denote its relative boundary in affC, and relintC to denote its relative interior
in affC. In addition C is called a convex body if intC 6= /0, and a convex disc
if affC is of dimension two. Let o be the origin in R

d , and Bd be the unit ball
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in R
d centred at o. Volume in R

d is denoted by V (·), and the two-dimensional
Hausdorff–measure is denoted by | · |. For any objects X1, . . . ,Xk in R

d , we write
[X1, . . . ,Xk] to denote the convex hull of their union.

If A is any affine plane in R
d then the orthogonal projection into A is denoted

by pA(·).
Let K be a convex body in R

d with C2 boundary, which we fix for the rest of
the section. For x ∈ ∂K, we write Tx to denote the tangent hyperplane at x, and as
before, write u(x) unit exterior normal at x. For C = pTxK, let f be the convex C2

function on relintC whose graph is contained in ∂K; namely, y− f (y)u(x)∈ ∂K for
y ∈ relintC. For y ∈ relintC, we write ly to denote the linear form representing the
derivative of f at y, and qy to denote the quadratic form representing the second
derivative of f at y on Tx − x. According to the Taylor formula, if a,y ∈ relintC
then there exists ξ(a,y) ∈ [a,y] satisfying

f (y) = f (a)+ la(y)(y−a)+ 1
2 qξ(a,y)(y−a). (9)

Naturally qξ(a,y)(y− a) is continuous as a function of y. Next we consider the
function ψ(y) = f (a)+ la(y)(y−a)+α, α ∈ R, of y ∈ Tx. In particular the graph
of ψ is parallel to the tangent plane to ∂K at a− f (a)u(x). For a Jordan measurable
Π ⊂ relintC, writing

Ψ = {(1− t) f (y)+ tψ(y) : y ∈ Π and t ∈ [0,1]}, we have

V (Ψ) =
Z

Π

∣∣1
2 qξ(a,y)(y−a)−α

∣∣ dy. (10)

The second fundamental form Qx at the x ∈ ∂K is defined by Qx = qx. It
is a positive semi-definite quadratic form on Tx − x. Its d − 1 eigenvalues are
the principal curvatures at x, and its determinant (the product of the principal
curvatures) is the Gauß-Kronecker curvature at x. Readily κ(x) ≥ 0 for x ∈ ∂K.

Let d = 3 for the rest of the section. We write clY to denote the closure of
any Y ⊂ R

3, and consider ∂K with the subspace topology as a subset of R
3. We

say that Y ⊂ ∂K is Jordan measurable if the relative boundary ∂Y of Y on ∂K is of
two-dimensional Hausdorff–measure zero.

Since ∂K is C2, there exists η > 0 such that balls of radius 2η roll from inside
along ∂K (see also K. Leichtweiß [21]). More precisely, for any x ∈ ∂K, the 3-ball
of radius 2η and of centre x−2ηu(x) is contained in K. We write K−η to denote
the family of points z such that z + ηBd ⊂ K. The existence of the rolling ball
yields that if x ∈ ∂K and y1,y2 ∈ Tx then

Qx(y1 − y2) ≤ η−1‖y1 − y2‖2; (11)
κ(x) ≤ η−2. (12)
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In addition if ‖x− z‖ ≤ η for x,z ∈ ∂K then

〈u(x),u(z)〉 ≥ 1− 1
η2 ‖x− y‖2. (13)

If w ∈ R
3\K−η then there exists a unique closest point π∂K(w) of ∂K to w. In

particular π∂K(w) = x if and only if x ∈ ∂K and w = x + su(x) for s > −η. The
closest point map satisfies

‖π∂K(w1)−π∂K(w2)‖ ≤ 2‖w1 −w2‖ for w1,w2 ∈ R
3\K−η. (14)

We say that Z ⊂ R
3 is a polytopal surface, if it is the union of certain faces of

some polytope P ⊂ R
3. The faces and vertices of Z are the faces and vertices,

respectively, of P that lie in Z. These notions do not depend on the actual choice
of P. It follows from (14) that if Z ⊂ R

3\K−η is a polytopal surface then π∂K(Z)
is Jordan measurable.

Next let Y ⊂ ∂K be closed such that κ(x) > 0 for x ∈Y . Then there exist ρ,R >
0 depending on Y and K with the following properties. If x ∈ Y and y1,y2 ∈ Tx
then

∂K ∩ (x+ρB3) ⊂ x−Ru(x)+RB3; (15)
Qx(y1 − y2) ≥ R−1‖y1 − y2‖2. (16)

We frequently measure the distance of K from another convex body M by the
Hausdorff distance δH(K,M). For x ∈ R

3 and compact Z ⊂ R
3, we write d(x,Z)

to denote the distance of x from Z. Therefore

δH(K,M) = max{max
x∈K

d(x,M),max
y∈M

d(y,K)}.

In the final part of the section, we present the rough estimate (17), which will
be useful to estimate the volume between a polytopal surface and ∂K. Let Y ⊂ ∂K
be Jordan measurable with |Y | > 0. If K contains a ball of radius t then

V ({x+ su(x) : x ∈ Y and s ∈ [0, t]}) ≤ |Y | · t +2πM(K) · t2 + 4π
3 · t3;

V ({x− su(x) : x ∈ Y and s ∈ [0, t]}) ≤ |Y | · t.

In particular there exists η∗ ∈ (0,η) depending only on K with the following prop-
erty. If t ∈ (0,η∗) then

V ({x+ su(x) : x ∈ Y and s ∈ [−t, t]}) ≤ 3 · |Y | · t. (17)
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3 Planar formulae and estimates
The main goal of the section is to prove Lemmae 3.2, 3.3 and 3.4 that resemble
the classical Momentum Lemma of L. Fejes Tóth [10]. But before this we prove
Proposition 3.1, which helps to bound a convex polygon in terms of a positive
definite quadratic form.

PROPOSITION 3.1 Let q be a positive definit quadratic form on R
2, let Π be

a polygon in R
2, and let θ > 0. If there exist β ∈ R, a linear form l on R

2 and
a C2 function f on Π with qx being the quadratic from representing the second
derivative of f at x ∈ Π such that

1
2 q ≤ qx ≤ 2q and | f (x)+ l(x)+β| ≤ θ for x ∈ Π,

then q(x−a) ≤ 128θ for a,x ∈ Π.

Proof: It follows from the Taylor formula (9) that there exist a β′ ∈ R, a function
g on Π and a vector v ∈ R

2 such that

f (x)+ l(x)+β = g(x)+ 〈v,x−a〉+β′

where 1
4 q(x− a) ≤ g(x) ≤ q(x− a) for x ∈ Π. Given x ∈ Π, let us consider the

function

h(t) = f (a+ t(x−a))+ l(a+ t(x−a))+β = g(a+ t(x−a))+ t〈v,x−a〉+β′

for t ∈ [0,1]. Since |h(0)| ≤ θ, we have |β′| ≤ θ. In addition

9θ ≥ |h(1)−8h(1
8)| =

∣∣g(x)−8g(a+ 1
8 (x−a))−7β′∣∣

yields g(x)−8g(a+ 1
8 (x−a))≤ 16θ. Since g(x)−8g(a+ 1

8 (x−a))≥ 1
8 q(x−a),

we conclude Proposition 3.1. 2

The rest of the section with the Momentum Lemma type statements is based
on K.J. Böröczky, P. Tick and G. Wintsche [7]. Let us recall some basic facts and
notation. A simple stability property of the quadratic function is the following: If
t1+...+tn

n = t0 and the number of ti with |ti − t0| ≥ ε is m for ε > 0 then

t2
1 + . . .+ t2

n

n
≥ t2

0 + m
n · ε2. (18)
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We will also use the following consequence of Cauchy-Schwartz inequality:
If γi,Ai > 0 for i = 1, . . . ,m then

m

∑
i=1

γiA2
i ≥

(
m

∑
i=1

1
γi

)−1( m

∑
i=1

Ai

)2

. (19)

For t ∈ (0, π
2 ), let R(t) be the triangle with a right angle such that o is a vertex,

the angle at o is t, and the longest side is of length one.

3.1 Estimates related to circumscribed and general polytopes
For t ∈ (0, π

2 ), we define

γc(t) =

R

R(t) x2 dx

|R(t)|2 =
1

tan t
+

tan t
3

. (20)

This function satisfies γc(π
k ) > γc(π

3 ) = 2√
3

for k ≥ 4. In particular if Π is a trian-
gle regular with respect to the positive definite quadratic form q and has o as its
centroid then

Z

Π
q(x)dx =

1√
3
· |Π|2

3
√

q. (21)

Therefore Lemma 3.3 in K.J. Böröczky, P. Tick and G. Wintsche [7] yields

LEMMA 3.2 If q is a positive definite quadratic form on R
2, α ≤ 0 and Π is a

k–gon then
Z

Π
{q(x)−α}dx ≥ 1√

3
· |Π|2

k

√
detq.

If
R

Π{q(x)−α}dx≤ 1+ε√
3
· |Π|2

k
√

detq for ε∈ (0,ε0) then we have α≥−ε|Π|√detq,
Π is a triangle, and there exists some triangle Π0 that is regular with respect to q,
has o as its centroid, and satisfies

(1+ϑ
√

ε)−1Π0 ⊂ Π ⊂ (1+ϑ
√

ε)Π0

where ε0 and ϑ are positive absolute constants.

For t ∈ (0, π
2 ), we define

γ(t) =
minα∈R

R

R(t) |x2 −α|dx

|R(t)|2 .
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If t ∈ (0, π
3 ] then

γ(t) =
1

tan t
+

tan t
3

− 1
2t

. (22)

This function satisfies γ(π
k ) > γ(π

3 ) = 2√
3
− 3

2π for k ≥ 4. In particular if Π is a
triangle regular with respect to the positive definite quadratic form q and has o as
its centroid, and α > 0 satisfies |{x ∈ Π : q(x) ≤ α}| = 1

2 |Π| then

Z

Π
|q(x)−α|dx =

(
1√
3
− 3

4π

) |Π|2
3

√
q. (23)

Therefore Lemma 3.13 in K.J. Böröczky, P. Tick and G. Wintsche [7] yields

LEMMA 3.3 There exist absolute constants ε0,ϑ > 0 with the following prop-
erties: If q is a positive definite quadratic form on R

2, α ∈ R and Π is a k-gon
then

Z

Π
|q(x)−α|dx ≥

(
1√
3
− 3

4π

) |Π|2
k

√
detq.

If
R

Π |q(x)−α|dx≤ (1+ε)( 1√
3
− 3

4π) |Π|2
k
√

detq for ε∈ (0,ε0) then Π is a triangle,
and there exists some triangle Π0 that is regular with respect to q, has o as its
centroid, and satisfies

(1+ϑ
√

ε)−1Π0 ⊂ Π ⊂ (1+ϑ
√

ε) ·Π0;
1−ϑ

√
ε

2 |Π| < |{x ∈ Π : q(x) ≤ α}| < 1+ϑ
√

ε
2 |Π|.

3.2 Estimates related to inscribed polytopes
For t ∈ (0, π

2 ), we define

γi(t) =

R

R(t){1− x2}dx

|R(t)|2 =
1

tan t
+

5tan t
3

.

The analogue of Lemmae 3.2 and 3.3 can be proved for γi as well, but in this
case the optimal regular polygon is a pentagon. The reason is that among integers
k ≥ 3, the minimum of γi(π

k ) is attained for k = 5. Since regular pentagons do not
tile the plane, we need another approach. We will eventually show that typical
faces of Pi

n are suitable parallelograms by considering stars of vertices around Pi
n.

For t ∈ (0, π
2 ), let R̃(t) be a triangle with right angle such that o is a vertex, the
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longest side is of length 1, and the angle at o is π
2 − t. In particular the other acute

angle of R̃(t) is t. We define

γ̃i(t) = γi(π
2 − t) =

R

R̃(t){1− x2}dx

|R̃(t)|2
= tan t +

5
3tan t

. (24)

We observe that γ̃i(t) is strictly convex on t ∈ (0, π
2 ), and attains its minimum at

t = arctan
√

5√
3
. It follows that if t ≤ 2π

9 then

γ̃i(t) ≥ γ̃i(2π
9 ) > γ̃i(π

4 ). (25)

In addition we have

γ̃i(π
3 ) > γ̃i(π

4 ) = 8
3 ; (26)

γ̃i(t) ≥ 2
√

5√
3

for t ∈ (0, π
2 ). (27)

Let Π be a parallelogram centred at o that is a square with respect to a positive
definite quadratic form q. Since γi(π

4 ) = γ̃i(π
4 ) = 8

3 , if maxx∈Π q(x) = α then

Z

Π
{α−q(x)}dx =

1
3
|Π|2

√
detq. (28)

Let q be a positive definite quadratic form in two variables. We say that Σ
is a decorated cell complex with respect to q if Σ is the set of finitely many pla-
nar polygons (cells) with the following properties. The intersection of any two
elements of Σ is either a common side, a common vertex, or the empty set. In
addition an a(Π) ∈ R

2 and an α(Π) > 0 are assigned to any Π ∈ Σ such that

q(x−a(Π)) ≤ α(Π) for x ∈ Π.

Next we define the schemes associated to the decorated cell complex Σ. We
assign a scheme R to any triple (Π,e,v) where Π ∈ Σ, e is a side of Π, and v is
an endpoint of e. Let w be the point of e minimizing q(w−a(Π)). If [a(Π),w,v]
is a (non-degenerate) triangle that intersects relintΠ then the associated scheme is
R = [a(Π),w,v]. Otherwise the associated scheme is the point R = {v}. We call
R a non-degenerate associated scheme if it is a triangle. In this case we define
a(R) = a(Π), α(R) = α(Π), Π(R) = Π and v(R) = v. There exists some linear
transformation A such that q(x) = ‖Ax‖2 for x ∈ R

2. Then the angle of AR at Aw

11



is at least π
2 , and we write t(R) to denote the (acute) angle of AR at Av. We note

that t(R) does not depend on the choice of A.
Two simple properties of a decorated cell complex Σ will be of very good

use. Let Π ∈ Σ. If R1, . . . ,Rm are the non-degenerate associated schemes with
Π(Ri) = Π then

R1 ∩Π, . . . ,Rm ∩Π tile Π. (29)

In addition if v is a vertex of Π, and both associated schemes R with v = v(R) and
Π = Π(R) are non-degenerate then

a(Π)− v ∈ relintpos(Π− v). (30)

LEMMA 3.4 There exist absolute constants ε0,ϑ > 0 with the following proper-
ties. Let Σ be a decorated cell complex in R

2 with respect to a positive definite
quadratic form q. In addition let v be the vertex of exactly k cells of Σ such that
these k cells cover a neighbourhood of v, and there exist all together m ≥ 1 non-
degenerate associated schemes R1, . . . ,Rm with v(Ri) = v. Then

m

∑
i=1

Z

Ri∩Π(Ri)
{α(Ri)−q(x−a(Ri))}dx ≥ 4

3
· (∑

m
i=1 |Ri ∩Π(Ri)|)2

k

√
detq. (31)

In addition if ε ∈ (0,ε0) and

m

∑
i=1

Z

Ri

{α(Ri)−q(x−a(Ri))}dx ≤ (1+ ε)4
3

· (∑
m
i=1 |Ri ∩Π(Ri)|)2

k

√
detq (32)

then k = 4 and m = 2k = 8, moreover α(Ri) ≤ (1+ϑε) ·q(v−a(Ri)) and

|t(Ri)− π
4 | < ϑ

√
ε hold for i = 1, . . . ,m. (33)

To prove Lemma 3.4, we need auxiliary some statements based on some re-
sults in K.J. Böröczky, P. Tick, G. Wintsche [7]. Proposition 3.1 in [7] yields

PROPOSITION 3.5 γ̃i(t)−1 is concave on (0, π
2 ), and (γ̃i(t)−1)” < −0.03 if t ∈

(π
7 , 5π

12 ).

In turn we have (compare Proposition 3.2 in [7]):

PROPOSITION 3.6 If t1+...+t8
8 = π

4 for t1, . . . , t8 ∈ [0, π
2 ], and max8

i=1 |ti − π
4 | ≥ ε

for ε ∈ (0, π
16) then

γ̃i(t1)−1 + . . .+ γ̃i(t8)−1

8
≤ γ̃i(π

4 )−1 −0.001 · ε2.

12



Next we deduce the following by Proposition 3.11 in [7].

PROPOSITION 3.7 If t ∈ (0,π/2) and Π ⊂ R̃(t) is a convex disc then
Z

Π
{1− x2}dx ≥ γ̃i(t)|Π|2.

In turn we prove

PROPOSITION 3.8 Let R = [a,w,v] a triangle that has an angle at least π
2 at w,

and let C ⊂ R be a polygon such that [w,v] is a side of C. If the angle of C at v is
s then

Z

C
{(v−a)2 − (x−a)2}dx ≥ γ̃i(s)|C|2.

Proof: Let a′ ∈ [a,w] be the point such that [a′,v] contains the side of C at v dif-
ferent from [w,v], and let R′ = [a′,w,v]. We deduce by Proposition 3.7 that

Z

C
{(v−a′)2 − (x−a′)2}dx ≥ γ̃i(s)|C|2.

Since [(v−a)2− (x−a)2]− [(v−a′)2− (x−a′)2] = 2〈a′−a,v−x〉 ≥ 0 for x ∈C,
we conclude Proposition 3.8. 2

Proof of Lemma 3.4: We may assume that q(x) = x2. For i = 1, . . . ,m, we define
si to be the angle of Π(Ri) at v if it is less than t(Ri), and si = t(Ri) otherwise. In
particular each si is acute, and ∑m

i=1 si ≤ 2π. In addition we define Ci = Ri∩Π(Ri),
i = 1, . . . ,m. We note that m ≤ 2k, and if m = 2k then si = t(Ri) for i = 1, . . . ,2k
according to (30), hence

s1 + . . .+ s2k = 2π. (34)

Even if m < 2k, it follows from Proposition 3.8, the Cauchy-Schwartz inequal-
ity and concavity of γ̃i(t)−1 (see Proposition 3.5) that

m

∑
i=1

Z

Ci

{α(Ri)− (x−a(Ri))
2}dx ≥

m

∑
i=1

γ̃i(si)|Ci|2 (35)

≥
(

m

∑
i=1

γ̃i(si)
−1

)−1( m

∑
i=1

|Ci|
)2

(36)

≥
γ̃i
(

∑m
i=1 si
m

)

m
·
(

m

∑
i=1

|Ci|
)2

. (37)

13



First we verify (31). If m ≥ 9 then ∑m
i=1 si
m ≤ 2π

9 , hence m ≤ 2k and (25) yield

m

∑
i=1

Z

Ci

{α(Ri)−q(x−a(Ri))}dx ≥
γ̃i
(2π

9

)

2k

(
m

∑
i=1

|Ci|
)2

>
4
3k

(
m

∑
i=1

|Ci|
)2

.

Therefore we assume m ≤ 8. If m < 2k then k
m ≥ 4

7 , thus it follows from (27), (37)

and 2
√

5√
3
· 4

7 > 4
3 that

m

∑
i=1

Z

Ci

{α(Ri)−q(x−a(Ri))}dx ≥ 2
√

5√
3
· 4

7
· (∑

m
i=1 |Ci|)2

k
>

4
3
· (∑

m
i=1 |Ci|)2

k
.

In particular the last remaining cases are when k = 3,4 and m = 2k, hence (34)
yields ∑m

i=1 si = 2π. In these cases (31) is a consequence of (26) and (37).
Next we assume (32). If follows from the proof of (31) that if ε0 is small

enough then m = 2k and k = 4. In particular si = t(Ri), i = 1, . . . ,m, and ∑m
i=1 si =

2π. Since γ̃i
(

∑8
i=1 si
8

)−1
≤ (1 + ε) · ∑8

i=1 γ̃i(si)
−1

8 , we conclude (33) by Proposi-
tions 3.6 and 3.5.

Finally, to prove the upper bound on α(Ri), we write ϑ1,ϑ2 . . . to denote pos-
itive absolute constants. We deduce γ̃i(si) ≥ (1−ϑ1

√
ε)8

3 in (35) for i = 1, . . . ,8 by

(33). Thus (32) yields ∑8
i=1 |Ci|2

8 ≤ (1+ϑ2
√

ε)
(

∑8
i=1 |Ci|

8

)2
, and hence if ϑ0 is small

enough then |Ci|
|C j| ≤ 2 for i, j = 1, . . . ,8 according to (18). Now we observe that

(35) holds even if we replace α(Ri) by (v− a(Ri))
2, i = 1, . . . ,8. Therefore (32)

yields
α(Ri)− (v−a(Ri))

2 ≤ ϑ3ε|Ci|, i = 1, . . . ,8.

Since (v−a(Ri))
2 ≥ |Ci|, we conclude α(Ri) ≤ (1+ϑ3ε) · (v−a(Ri))

2. 2

4 Constructing a well approximating inscribed poly-
tope for volume approximation

Let K be the convex body in R
3 with C2 boundary of Theorem 1.1. The whole

section is dedicated to prove the following statement:
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LEMMA 4.1 Given ε ∈ (0,ε0), for any n > n0 there exists a polytope P̃i
n ⊂ K that

has at most (1+ϑε)n edges, and

δS(K, P̃i
n) ≤ (1+ϑε) · 1

3

(
Z

∂K
κ(x)1/4dx

)2

· 1
n

where ϑ,ε0 > 0 depend on K, and n0 depends on K and ε.

The asymptotic shape of the typical faces of P̃i
n should be parallelograms,

hence we will use power diagrams (see say F. Aurenhammer [1]). To indicate
the main idea, let us consider a parallelogram Π that is regular with respect to a
positive definite quadratic form q. The side to side tiling of the plane by translates
of Π can be lifted to an unbounded polytopal surface inscribed into the graph of q
(that is a paraboloid) in a way such that the faces of the unbounded polytopal sur-
face project to the tiles. Therefore we replace the ”non-flat” part of ∂K with pieces
of paraboloids, and after then we build the boundary of the well-approximating
polytopes using these pieces.

To prove Lemma 4.1, first we separate the “flat part” of ∂K. For µ > 0, we write
X(µ) to denote the set of x ∈ ∂K with κ(x) > µ. If X(µ) is not Jordan measurable
then there exists a rational number rµ with |X(µ)| < rµ < |clX(µ)|, therefore X(µ)
is Jordan measurable for all but countably many µ. We recall Lemma 1 in K.J.
Böröczky [4] in the following form where ε and K come from Lemma 4.1:

PROPOSITION 4.2 There exist µ0,m0 > 0 depending on K and ε such that for
m > m0, one finds a polytopal surface Z ⊂ K with at most m vertices satisfying

∂K\X(µ0) ⊂ π∂K(Z)

max
x∈Z

d(x,∂K) ≤ ε2

m
.

We choose small µ > 0 such that µ < µ0 for the µ0 of Proposition 4.2, moreover
X(µ) is Jordan measurable, and satisfies

µ < ε4; (38)
Z

X(µ)
κ(x)1/4dx ≥ (1− ε)

Z

∂K
κ(x)1/4dx. (39)

Let X and X ′ be open Jordan measurable subsets of ∂K such that clX(µ) ⊂ X and
clX ⊂ X ′, moreover κ(x) > 0 holds for x ∈ clX ′.
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During the argument, the implied constant in O(·) depends only on K. Let us
recall from Section 2 that Tx is the tangent plane at x ∈ ∂K. We may choose δ > 0
with the following properties: The minimal distance between any two of the sets
∂X(µ), ∂X and ∂X ′ is larger than 6δ. Moreover given x ∈ X ′,

(i) if w ∈ ∂K near x with ‖pTxw− x‖ ≤ δ then

〈u(w),u(x)〉 ≥ (1+ ε3)−1; (40)

(ii) if f is the convex function on Tx ∩ (x + δB3) whose graph is part of ∂K,
and qy is the quadratic form representing the second derivative of f at y ∈
Tx ∩ (x+δB3) (hence Qx = qx) then

(1+ ε3)−1Qx ≤ qy ≤ (1+ ε3)Qx.

Let x ∈ X ′. We now discuss the consequences (41), (42) and (43) of (i) and
(ii). If w ∈ ∂K near x with ‖pTxw− x‖ ≤ δ

2 then (i) yields

(1+ ε3)−1|t| ≤ d(w+ t u(x),∂K) ≤ |t| for t ∈ (− δ
2 , δ

2). (41)

Next let C be a convex disc such that C∪ (K ∩ affC) ⊂ x + δB3. First (i) and (ii)
yield

Z

π∂KC
κ(z)

1
4 dz = (1+O(ε))κ(x)

1
4 |C|. (42)

Secondly for Π = pTxC and y1,y2 ∈ Π, combining Proposition 3.1, (ii) and (41)
leads to

Qx(y1 − y2) ≤ 256 · max
z∈C∪(K∩affC)

d(z,∂K). (43)

We note that the typical faces of the well-approximating polytopes near an

x∈X are of area of order
R

∂K κ(w)1/4dw
nκ(x)1/4 . Therefore we will use pieces of paraboloids

near x whose area is of order
R

∂K κ(w)1/4dw
ε2nκ(x)1/4 .

We always assume that ε0 > 0 depending on K is small enough, and n0 de-
pending on K and ε ∈ (0,ε0) is large enough to satisfy the estimates below. If
Z ⊂ R

3\K−η (see Section 2 for the definition of η) is a polytopal surface then let

∆K(Z) = {(1− t)z+ tπ∂Kz : z ∈ Z and t ∈ [0,1]}.
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To simplify formulae, we define

I =
Z

∂K
κ(w)1/4dw.

For x ∈ X ′ and λ > 0, we define the ellipse E(x,λ) = {y ∈ Tx : Qx(y−x)≤ λ2}. In
particular |E(x,λ)| = λ2κ(x)−

1
2 π. We observe that if n0 is large then all ellipses

E(x, 4κ(x)
1
8 I

1
2

ε
√

n ), x ∈ X ′, are of the diameter at most δ.

For large n, let Ω be a family of points in X such that the sets π∂KE(x, κ(x)
1
8 I

1
2

ε
√

n )

are pairwise disjoint for x ∈ Ω, but for any y ∈ X there exists an x ∈ Ω such that

y ∈ π∂KE(x, 3κ(x)
1
8 I

1
2

ε
√

n ).
Let x ∈ Ω. Our first goal is to construct a paraboloidal piece very closely

approximating ∂K near x. For the function ψ(y) = 1+ε3

2 Qx(y− x) of y ∈ Tx, we
define

Ξx =

{
y−ψ(y)u(x) : y ∈ E

(
x, 4κ(x)

1
8 I

1
2

ε
√

n

)}
,

and let Ξ′
x be the paraloid containing Ξx (the graph of ψ above Tx). It follows from

the definition of the function ψ, (ii) and the Taylor formula (9) that

Ξ ⊂ K (44)

d(w,∂K) ≤ 16Iκ(x)
1
4 ε

n
for w ∈ Ξx. (45)

Next we define M to be the (possibly undounded) polyhedral set determined
by the tangent planes to K at all x ∈ Ω. For the face C′

x of M touching at x ∈ Ω, we

set Cx = C′
x ∩E(x, 3κ(x)

1
8 I

1
2

ε
√

n ). If n is large enough then the sets Π∂K(Cx), x ∈ Ω, do
not overlap and cover X . In addition if x ∈ Ω then

E
(

x, κ(x)
1
8 I

1
2

2ε
√

n

)
⊂Cx. (46)

After these preparations, we start to construct the vertices of P̃i
n. The idea is

to construct independently a polytopal surface incribed into Ξx for each x ∈ Ω.
Along the way, we also establish some key properties of these polytopal surfaces.

Let x ∈ Ω. We define Tx to be a side to side tiling of Tx by parallelograms that

are regular with respect to Qx, and their common area is 2
R

∂K κ(w)1/4dw
nκ(x)1/4 . For any
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tile Π of Tx, let aΠ be the centre of Π, and let

αx = max
y∈Π

1+ε3

2 Qx(y−aΠ) =
1+ ε3

4
· 2I
nκ(x)1/4

√
detQx =

(1+ ε3)Iκ(x)1/4

2n
. (47)

We define the convex unbounded polyhedron Λ′
x in a way such that for any tile

Π of Tx, Λ′
x has a face F with pTxF = Π, affF is parallel to the tangent plane to

Ξ′
x at aΠ −ψ(aΠ)u(x), and passes through aΠ − (ψ(aΠ)+ αx)u(x). In particular

writing V ′
x to denote the family of w ∈ Ξ′

x such that pTxw is a vertex of Tx, we
have Λ′

x = [V ′
x ]. We define Λx to be the union of the faces F of Λ′

x such that
π∂KF ∩π∂KCx 6= /0.

To approximate the flat part, we apply Proposition 4.2 with m = εn, and obtain
a polytopal surface Y ′ ⊂ K with at most εn vertices such that

∂K\X(µ) ⊂ π∂K(Y ′); (48)

max
x∈Y ′

d(x,∂K) ≤ ε
n
. (49)

Let Y be the union of the faces F of Y ′ with π∂KF ∩ (∂K\X) 6= /0. We define

P̃i
n = [Y,∪x∈ΩΛx] , (50)

which readily satifies P̃i
n ⊂ K.

To prove Lemma 4.1 for P̃i
n, first we establish some simple properties of P̃i

n
and Λx for x ∈ Ω. In particular (47) and (45) together with (i) and (ii) yield that P̃i

n
is close K in the following sense. For x ∈ Ω, if w ∈ ∂P̃i

n such that 〈u(x),u(w)〉 > 0

and pTxw ∈ E(x, 4κ(x)
1
8 I

1
2

ε
√

n ) then

d(w,∂K) ≤ Iκ(x)1/4

n
. (51)

A consequence of (i) is that if w ∈Ci ∪Λi then

√
Qx (pTx(w)− pTx(π∂Kw)) ≤ εκ(x)

1
8 I

1
2

√
n

. (52)

Next let x ∈ Ω, which we keep fixed until (56) . It follows from (46) and (47)
that for any tile Π in Tx, we have

Π−aΠ ⊂ x+4ε(Cx − x). (53)

18



In turn we deduce

x+(1−8ε)(Cx − x) ⊂ pTxΛx ⊂ x+(1+8ε)(Cx − x). (54)

To prove (55) and (56), we use that if Π is a tile of Tx then |Π| = 2
R

∂K κ(w)1/4dw
nκ(x)1/4 .

Writing mx to denote the number of faces of Λx, we deduce from (42) and (54)
that

mx ≤ (1+O(ε))
nκ(x)1/4|Cx|

2
R

∂K κ(w)1/4dw
≤ (1+O(ε))n

2
·

R

π∂KCx
κ(w)

1
4 dw

R

∂K κ(w)1/4dw
. (55)

Finally we estimate the volume difference V (∆K(F)) corresponding to a face F
of Λi. For Π = pTxF , the first inequality in (56) follows from (10), (45) and (52),
and the second from (28) and (47). In particular we have

V (∆K(F)) ≤ (1+O(ε))
Z

Π
{αx − 1+ε3

2 Qx(x)}dx ≤ 1+O(ε)
6

· |Π|2κ(x)
1
2

=
2(1+O(ε))

3n2

(
Z

∂K
κ(w)1/4dw

)2

. (56)

We are ready to verify the estimates of Lemma 4.1 for P̃i
n. We divide the faces

of P̃i
n into two groups. Let Ω∗ be the family of x ∈ Ω with π∂KΛx ∩X(µ) 6= /0, let

Z be the union of the faces of P̃i
n that are also faces of some Λx for x ∈ Ω∗, and let

Z′ be the union of the rest of the faces.
First we consider Z. It follows from (55) and (56) that

V (∆K(Z)) ≤ ∑
x∈Ω∗

V (∆K(Λx))

≤ (1+O(ε)) ∑
x∈Ω∗

n · R

π∂KCx
κ(w)

1
4 dw

2 · R

∂K κ(w)1/4dw
· 2

3n2

(
Z

∂K
κ(w)1/4dw

)2

≤ 1+O(ε)
3n

(
Z

∂K
κ(w)1/4dw

)2

. (57)

To estimate the number e(Z) of edges of Z, we simply count the number of edges
Λx for every x ∈ Ω∗. Any face of Λx is a quadrilateral, and if pTxs ⊂ relint(x+(1−
8ε)(Cx − x)) for an edge s of Λx then it is contained in two faces of Λx according
to (54). Therefore combining (53) and (54) with the estimate (55) on mx leads to

e(Z) ≤ ∑
x∈Ω∗

(1+O(ε))2mx ≤ (1+O(ε)) ∑
x∈Ω∗

n · R

π∂KCx
κ(w)

1
4 dw

R

∂K κ(w)1/4dw
≤ (1+O(ε))n.

(58)
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Let us turn to Z′. For x ∈ Ω, the observation (59) helps to locate faces of P̃i
n

near Λx. If x′ ∈ Ω\x with 〈u(x),u(x′)〉 > 0 and F is a face of P̃i
n intersecting Λx′

then combining (54) for x′ with (43) and (51) leads to

x+(1− γε)(Cx − x)∩ pTxF = /0 (59)

for some absolute constant γ > 0. To estimate V (∆K(Z′)), we define Z′
x to be the

union of the faces of Z′ that intersect Λx for x ∈ Ω∗, and Z′
0 to be the union of the

faces F of Z′ that intersect either Y or some Λx with x ∈ Ω\Ω∗. It follows from
(59) and the definition of Y that if n is large then Z ′

x∩Y = /0 for x ∈ Ω∗. Therefore
(54) and (59) yield that

pTxZ
′
x ⊂ [x+(1+ γ1ε)(Cx − x)]\[x+(1− γ2ε)(Cx − x)] (60)

for x∈Ω∗ where γ1,γ2 > 0 are absolute constants. In particular |pTxZ
′
x|= O(ε)|Cx|.

Now we apply (17) using (51), and after that use (42) to obtain

V (∆K(Z′
x)) ≤

O(ε)κ(x)
1
4 |Cx|

n
≤

O(ε)
R

π∂KCx
κ(z)

1
4 dz

n
. (61)

For Z′
0, we claim that if w ∈ Z′

0 then

d(w,∂K) ≤ O(ε)
n

. (62)

If pTxw ∈ E(x, 4κ(x)
1
8 I

1
2

ε
√

n ) for some x ∈ Ω\Ω∗ then (62) follows from (38) and (51).
Otherwise (43), (51) and (54) imply that w ∈ Y , hence (62) follows from (49). In
turn combining (17) and (62) leads to V (∆K(Z′

0))≤
O(ε)

n . We conclude by (61) the
estimate

V (∆K(Z′)) ≤ V (∆K(Z′
0))+ ∑

x∈Ω∗
V (∆K(Z′

x))

≤ O(ε)
n

+ ∑
x∈Ω∗

O(ε)
R

π∂KCx
κ(z)

1
4 dz

n
≤ O(ε)

n
. (63)

Finally we show that Z′ has only a few edges. Actually we start with estimat-
ing the number of vertices of Z ′. For x ∈ Ω∗, we write V ′

x to denote the family of
vertices of Z′ that are vertices of Λx, as well. In addition we write V ′

0 to denote
the family of vertices of Z ′ that are vertices either of some Λx with x ∈ Ω\Ω∗ or
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of Y . For x ∈ Ω∗, we have Vx ⊂ Zx, and if Π = pTxF for a face F of Λx that has

a vertex in Vx then Π is a square with respect to Qx with |Π| = 2
R

∂K κ(w)1/4dw
nκ(x)1/4 . We

deduce first by (60), and secondly by (42) that

#Vx ≤ O(ε)κ(x)
1
4 |Cx| ·n ≤ O(ε)

Z

π∂KCx

κ(z)
1
4 dz ·n. (64)

For V0, we simply use the estimate (55) and that Y has at most εn vertices. Ac-
cording to (39), we have

#V0 ≤ εn+ ∑
x∈Ω\Ω∗

mx ≤ εn+ ∑
x∈Ω\Ω∗

R

π∂KCx
κ(w)

1
4 dw

R

∂K κ(w)1/4dw
·n

≤ εn+

R

∂K\X(µ) κ(w)
1
4 dw

R

∂K κ(w)1/4dw
≤ 2εn.

This estimate together with (64) for all x ∈ Ω∗ implies that the number v(Z ′)
of vertices of Z′ satisfies v(Z′) = O(ε)n. Since the edge graph of Z ′ is planar,
e(Z′) < 3v(Z′) holds for the number e(Z ′) of edges of Z′ (see say P. Brass, W.
Moser, J. Pach [8]). In particular

e(Z′) ≤ O(ε)n. (65)

To conclude Lemma 4.1 for P̃i
n, we observe that (58) and (65) yield that the

number of edges of P̃i
n is at most (1+O(ε))n. Therefore combining (57) and (63)

completes the argument. 2

5 The proof of Theorem 1.1 for Pi
n

Let K be a convex body in R
3 with C2 boundary. We use the notation as it was

set up before Theorem 1.1. We write f (n) to denote the number of faces of Pi
n.

Having Lemma 4.1, Theorem 1.1 and the asymptotic formula after it are conse-
quences of (66) and (67) below.

There exist positive ν0,ϑ depending on K with the following properties. Let
ν ∈ (0,ν0). We write g(n) to denote the number of faces F of Pi

n such that F is a
proper quadrilateral, and F is ϑν–close to some quadrilateral that is regular with
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respect to QxF and is of area
R

∂K κ(x)1/4dx
f (n)·κ(xF )1/4 . Then for any n > n0 where n0 depends

on ν and K, we have the estimates

g(n) > (1−ϑν) f (n); (66)

δS(K,Pi
n) ≥ (1−ϑν) · 1

3

(
Z

∂K
κ(x)1/4dx

)2

· 1
n
. (67)

In addition, Pi
n has n+o(n) edges, and f (n) = n

2 +o(n).

It is practical to define
µ = ν3.

Let X0, X ′ and X be relatively open Jordan measurable subsets of ∂K such that
clX0 ⊂ X , clX ⊂ X ′, κ(x) > 0 for x ∈ clX ′, and

Z

X0

κ(x)1/4dx ≥ (1−µ2ν2)
Z

∂K
κ(x)1/4dx.

We have δ > 0 with the following properties: (X0 +2δB3)∩∂K ⊂ X and (X +
2δB3)∩∂K ⊂ X ′. Moreover if C is a convex disc that touches K in x ∈ X and C is
of diameter at most δ then

(i) writing C′ to denote the orthogonal projection of π∂K(C) into affC, we have

x+(1−µ2ν2)(C− x) ⊂C′ ⊂ x+(1−µ2ν2)−1(C− x);

(ii) if w ∈ π∂K(C) then 〈u(w),u(x)〉 ≥ 1−µ2ν2;

(iii) if ϕ is the convex function on C such that its graph is part of ∂K, and qy is
the quadratic form representing the second derivative of ϕ at y ∈ C (hence
Qx = qx) then

(1+µ2ν2)−1Qx ≤ qy ≤ (1+µ2ν2)Qx.

During the proof of (66), ϑ1,ϑ2, . . . denote positive constants depending only
on K, and the implied constant in O(·) depends only on K. There exists a convex
polytope M circumscribed around K such that diamG < δ holds for each face G
of M with π∂K(G)∩X 6= /0. We write M to denote the family of faces of M that
touch K in a point of X , and let G ∈ M touch K in xG. Therefore

∑
G∈M

κ(xG)1/4|G| ≥ (1−ϑ1µ2ν2)
Z

∂K
κ(x)1/4dx. (68)
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According to Lemma 4.1, if n is large then

δS(K,Pi
n) < (1+µ2ν2) · 1

3
·
(

Z

∂K
κ(x)1/4dx

)2

· 1
n
. (69)

It follows from (69) and the existence of the rolling ball of radius η (see Section 2)
that

δH(K,Pi
n) ≤ ϑ2n−1/2. (70)

Therefore if n0 is large enough then K−η ⊂ intPi
n. We deduce by (15) and Propo-

sition 3.1 that if F is a face of Pi
n with π∂K(F) ⊂ X ′ then

diamF ≤ ωn−1/4 (71)

where ω > 0 depends on ν and K.
Recalling that G ∈ M touches K in xG, we write M̃ to denote the family of

convex discs of the form

(1−2µ2ν2)(G− xG)+ xG

as G runs through the elements of M . In turn for C ∈ M̃ , we write xC to denote
the point where C touches K, and define

C′ = (1−µ2ν2)(C− xC)+ xC.

In addition let FC denote the family of faces of Pi
n near C whose orthogonal pro-

jection to affC intersects relintC. We deduce by (i) and (71) that if n0 is large
enough then the families FC for C ∈ M̃ are pairwise disjoint, and by (68) that

∑
C∈M̃

κ(xC)1/4|C′| = (1+O(µ2ν2))
Z

∂K
κ(x)1/4dx. (72)

Let C ∈ M̃ . We write F ′
C to denote the family of all F ∈ FC such that paffC(F)

intersects relintC′. Again if n0 is large enough then (70) yields for any F ∈ F ′
C

that
paffC(K ∩ affF) ⊂ relintC. (73)

We recall that for any F ∈ FC, xF denotes the point of ∂K such that u(xF) is an
exterior unit normal to F , and write aF = paffC(xF). In addition let zF ∈ affF
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satisfy paffC(zF) = aF , let αF = 〈u(xC),xF − zF〉, and let ΠF = paffC(F). We
observe that

1
2 QxC(y−aF) ≤ (1+ ε)αF if y ∈ ΠF .

We observe that αF > 0 and define α′
F = (1+ ε)αF . It follows from (iii) and (73)

that we may apply Lemma 2.1 in K.J. Böröczky, P. Tick, G. Wintsche [7]) to each
C ∈ M̃ with ε = µ2ν2, and we obtain

δS(K,Pi
n) ≥ (1−ϑ3µ2ν2) ∑

C∈M̃

∑
F∈F ′

C

Z

ΠF

|1
2 QxC(y−aF)−α′

F |dy. (74)

For any F ∈ FC, C ∈ M̃ , we define k(F) to be the number of sides of ΠF , and

I(F) = κ(xC)1/4|ΠF |. (75)

We write F = ∪
C∈M̃

F ′
C. In addition we write e(n) to denote the number of edges

of Pi
n, hence e(n) ≤ n.
Let C ∈ M̃ . For any F ∈ FC, by assigning aF and α′

F to ΠF , we obtain a
decorated cell complex ΣC with respect to 1

2 QxC . We write VC to denote the
family of vertices v of ΣC such that the cells of ΣC cover a neighbourhood of v.
For any v ∈ VC, let Rv be the family of all associated schemes R with v(R) = v,
and let Sv = ∪Rv. We define d(v) to be the degree of v, and

I(v) = κ(xC)1/4|Sv|.

Finally we write V = ∪
C∈M̃

VC. If follows from (72) that

∑
v∈V

I(v) = (1+O(µ2ν2))
Z

∂K
κ(x)1/4dx. (76)

Since the sum of the degrees of the vertices of Pi
n is 2e(n), we have ∑v∈V d(v)≤

2n. Applying Lemma 3.4 to (74), and then the Cauchy-Schwartz inequality (19)
and (76), we deduce (67) by

δS(K,Pi
n) ≥ (1−ϑ13µ2ν2)

2
3
· ∑

v∈V

I(v)2

d(v)

≥ (1−ϑ13µ2ν2)
2
3
· (∑v∈V I(v))2

∑v∈V d(v)

≥ (1−ϑ14µ2ν2)
1
3
·

R

∂K κ(x)1/4dx
n

.
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To prove (66), we divide V into V1 and V2. For v ∈ VC, C ∈ M̃ , we put v
into V1 if d(v) = 4, Rv has eight non-degenerate elements, and |t(R)− π

4 | ≤ ν for
R ∈ Rv. Otherwise we put v into V2. Applying (76) to the upper bound of (69) for
δS(K,Pc

n), and Lemma 3.4 and the Cauchy-Schwartz inequality (19) to the lower
bound (74) for δS(K,Pc

n), we have

(∑v∈V I(v))2

3n
≥ (1−ϑ15µ2ν2)2

3
·
(

∑
v∈V

I(v)2

d(v)

)
+ϑ16ν2 ∑

v∈V2

I(v)2

d(v)
(77)

≥ (1−ϑ15µ2ν2)2
3

· (∑v∈V I(v))2

∑v∈V d(v)
+ϑ16ν2

(
∑v∈V2

I(v)
)2

∑v∈V2
d(v)

.(78)

Since ∑v∈V d(v) ≤ 2n, (78) yields

∑
v∈V2

I(v) ≤ ϑ17µ ∑
v∈V

I(v), and in turn (79)

∑
v∈V1

I(v) ≥ (1−ϑ17µ) ∑
v∈V

I(v) ≥ (1−ϑ18µ)
Z

∂K
κ(x)1/4dx. (80)

In addition (76) and (77) imply

(1−ϑ19µ) n
2 ≤ #V1 ≤ e(n)

2 ≤ n
2 . (81)

We write F1 to denote the family of all F ∈ F such that all vertices of ΠF come
from V1. It follows that for any F ∈ F1 ∩F ′

C, C ∈ M̃ , there exists quadrilateral D
that is regular with respect to QxC , whose centroid is aF , and

(1+ϑ20ν)−1(D−aF) ⊂ ΠF −aF ⊂ (1+ϑ20ν)(D−aF).

We deduce by (79), (80) and (81) that

(1−ϑ21µ) n
2 ≤ #F1 ≤ f (n) ≤ (1+ϑ21µ) n

2 ; (82)

∑
F∈F1

I(F) = (1+O(µ))
Z

∂K
κ(x)1/4dx. (83)

Therefore
∑F∈F1 I(F)

#F1
= (1+O(µ))

R

∂K κ(x)1/4dx
n/2 , and (77) yields

(∑F∈F1 I(F))2

#F1
≥ (1−ϑ22µ) ∑

F∈F1

I(F)2. (84)

Let g1(n) be the number of F ∈ F1 such that |
R

∂K κ(x)1/4dx
(n/2)·I(F) −1| ≤ ν. It follows from

applying (18) to (84) that g1(n) ≥ (1−ϑ23
µ
ν2 )#F1 ≥ (1−ϑ24 ν) f (n), concluding

the proof of (66).
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6 Changes in the proof of Theorem 1.1 for Pn and Pc
n

For the construction (analogue of Lemma 4.1) in the cases of Pn and Pc
n , let us

sketch the essential changes in the argument.
To approximate the flat part part, we may assume that rB3 ⊂K ⊂RB3 for some

R,r > 0. Given ε > 0, we use the µ0 of Proposition 4.2, and choose positive µ <
min{µ0,ε4}. We construct the polytopal surface Z ⊂ K with at most εn vertices
such that ∂K\X(µ0)⊂ π∂K(Z) and d(x,∂K)≤ rε

2Rn for x∈ Z. We now use Y ′ = (1+
ε

Rn)Z both for Pn and Pc
n , which for large n avoids intK, and satisfies ∂K\X(µ) ⊂

π∂K(Y ′) and d(x,∂K) ≤ ε
n for x ∈ Y ′.

Let us turn to the “round” part. For x ∈ Ω, now Tx is a side to side tiling
of Tx by triangles that are regular with respect to Qx, and their common area is
3

R

∂K κ(w)1/4dw
2nκ(x)1/4 . We define ψ(y) = 1−ε3

2 Qx(y−x), hence Ξx avoids intK. For Pc
n , we

have αx = 0, thus the faces of Λ′
x touch the paraboloid Ξ′

x. For Pn, we choose αx

in a way such that the area of the ellipse {y ∈ Tx : 1−ε3

2 Qx(y−x)≤ αx} is 1
2 |Π| for

any tile Π of Tx. The rest of construction goes through with the obvious changes.
The other half of the proof of Theorem 1.1 for Pc

n and Pn is quite different
from the argument in Section 5 for Pi

n. Instead now one uses an argument based
on Lemmae 3.2 and 3.3 that is very similar to the corresponding argument in
Böröczky, P. Tick and G. Wintsche [7].

7 Sketch of the proof of Theorem 1.2
Let K be a convex body with C2 boundary in R

d . We use the notation set up
in Sections 1 and 2. First we review some additional properties of the extremal
polytopes with respect to the volume which properties follow from the proof of
Theorem 1.1 (compare Lemmae 3.2, 3.3 and 3.4). We write Ln to denote either
of the extremal polytopes in Theorem 1.1. To describe the position of the typical
face of Ln, let cF denote the centroid of a convex disc F . There exists positive µ(n)
satisfying limn→∞ µ(n) = 0 such that for all but µ(n) percent of the vertices v of
Ln, if F is a face of Ln then F is proper and satisfies the properties in Theorem 1.1.
In addition we have the following properties.

(i) If Ln = Pc
n then v is of degree six, and for any face F of Pc

n containing v,
the distance of cF from K is at most µ(n)|F |κ(xF)

1
2 , and the distance of the

vertices of F from K is at least 1
4 |F|κ(xF)

1
2 .
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(ii) If Ln = Pn then v is of degree six, and for any face F of Pn containing v, we
have 1−µ(n)

2 |F| < |F ∩K| < 1+µ(n)
2 |F|.

(iii) If Ln = Pi
n then v is of degree four, and for any face F of Pi

n containing v,
the distance of cF from ∂K is at least 1

4 |F|κ(xF)
1
2 , and the distance of the

vertices of F from ∂K is at most µ(n)|F |κ(xF)
1
2 .

Following a suggestion of R. Schneider, the paper S. Glasauer and P.M. Gruber
[11] introduced an ingenious method to translate a result about polytopal approx-
imation with respect to δS into a ”dual” result with respect to δ1, which we now
sketch. The paper [11] discussed only the case when κ(x) > 0 for all x ∈ ∂K (see
also M. Ludwig [22]), but this restriction is not necessary (see K. Böröczky, Jr.
[4]). We recall that if M is a convex body with o ∈ intM then its dual (or polar) is

M∗ = {x ∈ R
3 : 〈x,y〉 ≤ 1 for all y ∈ M}.

If N is a convex body with M ⊂ N then N∗ ⊂ M∗. In addition if M is a polytope
then faces of M correspond to vertices of M∗. More precisely if v is a vertex M∗,
and the affine hulls of the k faces of M∗ containing v are of the form {x ∈ R

3 :
〈x,ui〉 = 1} for i = 1, . . . ,k then the vertices of the face of M corresponding to v
are u1, . . . ,uk.

To describe the main idea in S. Glasauer and P.M. Gruber [11], we assume that
o ∈ intK. Let X ⊂ ∂K be Jordan measurable such that κ(x) > 0 for x ∈ clX, and
let Q be a polytope with o ∈ intQ. We define Σ = {u(x) : x ∈ X} ⊂ S2, and

Z = {z ∈ ∂Q : ∃x ∈ X such that u(x) is an exterior normal to ∂Q at z}.

Now the parts of ∂K∗ and ∂Q∗ corresponding to X and Z are X∗ = { 1
hK(u) u : u∈ Σ}

and Z∗ = { 1
hQ(u) u : u ∈ Σ}, respectively. We define the part of R

3 ”between X∗

and Z∗” to be

∆ =
{(

λ
hQ(u) + 1−λ

hK(u)

)
u : u ∈ Σ and λ ∈ [0,1]

}
.

The main observation in S. Glasauer and P.M. Gruber [11] is that
Z

Σ
|hQ(u)−hK(u)|du =

Z

∆
‖y‖−4dy. (85)

In particular approximation of K with respect to δ1 translates into ”weighted vol-
ume approximation” of K∗. We write κ∗(y) to denote the Gauß-Kronecker cur-
vature at y ∈ ∂K∗. On a small neighbourhood of y ∈ X ∗, the function ‖y‖−4 is
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essencially constant, therefore locally we can use the argument developed for The-
orem 1.1. In particular say the argument in Section 5 shows that when estimating
the ”weighted volume” difference, the integrand on X ∗ contains a factor that is
the square root of the weight function ‖y‖−4. Calculating the Jacobian of the map
ϕ : X → X∗ defined by ϕ(x) = 1

hK(u(x)) u(x), we deduce

Z

X∗
κ∗(y)

1
4‖y‖−2dy =

Z

X
κ(x)

3
4 dx.

With the help of these observations, one obtains the asymptotic formulae after
Theorem 1.2. To determine the asymptotic shape of the typical faces of W i

n, Wn
and W c

n , we use the method developed for Theorem 1.1 to describe the typical
faces of Pc

n , Pn and Pi
n, respectively, together with the properties (i), (ii) and (ii)

above.
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