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Abstract. We prove an asymptotic formula for the Hausdorff distance of a

3-dimensional convex body K with a C2 boundary and its best approximating

circumscribed polytope whose number of edges is restricted.

1. Notations and conventions

We shall work in d-dimensional Euclidean space E
d, with origin o, and scalar

product 〈·, ·〉, and induced norm |·|. We shall not distinguish between the Euclidean
space and the underlying vector space, and we will use the words point and vector

interchangeably, as we need them. Points of E
d are denoted by small-case letters of

the roman alphabet, and sets by capitals. For reals we use either Greek letters or
small-case letters. For a compact convex set K, we write aff K to denote its affine
hull, and relint K for its relative interior. A compact convex set K with nonempty
interior is called a convex body. If the dimension of K is two, then we call it a
convex disc. For the sake of brevity, we shall use the term unit disk for the unit
radius circular disc. Bd stands for the unit ball in E

d centred at the origin. Volume
in E

d is denoted by V (·), and two-dimensional Hausdorff measure is denoted by
A(·). Let A,B be subsets of E

d, then the convex hull of A and B is denoted by
[A,B].

There are numerous ways to define metrics on the space of convex bodies Kd,
of which the Hausdorff metric is one of the most natural and applicable ones. For
K,L ∈ Kd the Hausdorff distance is defined by

δH(K,L) = min{λ ≥ 0 | K ⊂ L + λBd, L ⊂ K + λBd}.
Then δH is a metric on Kd, called the Hausdorff metric. For further details on
convex sets and related measures consult the monographs of R. Schneider [24] and
P.M. Gruber [19].

Let K be a convex body in E
d, and let ∂K denote its boundary. We always

integrate on ∂K with respect to the (d − 1)-dimensional Hausdorff measure. We
say that K has a C2 boundary if for any x ∈ ∂K, a neighbourhood of x in ∂K is the
graph of a convex C2 function f that is defined in the orthogonal projection of that
neighbourhood into the tangent plane Tx at x. For x ∈ ∂K we write Qx to denote
the second fundamental form at x which is, in fact, the quadratic form representing
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the second derivative of f at x. Because of the convexity of K, Qx is positive
semi-definite. Its eigenvalues are the principal curvatures, and its determinant κ(x)
is the Gauss-Kronecker curvature of ∂K at x. Clearly, κ(x) ≥ 0 for all x ∈ ∂K. If,
in addition, κ(x) > 0 for all x ∈ ∂K, then we say that the boundary of K is C2

+.
Throughout the paper we shall use the customary notations for the magnitude

of functions. Let f and g be functions of positive integers, then we write f(n) =
O(g(n)) if there exists a constant c depending on the given convex body K such
that |f(n)| ≤ c · g(n) for all n ≥ 1, and f(n) = o(g(n)) if limn→∞ f(n)/g(n) = 0.
Furthermore, we write f(n) ∼ g(n) if limn→∞ f(n)/g(n) = 1.

2. History and main result

Polytopal approximation of convex bodies with smooth boundary has been in-
vestigated intensively for over thirty years. The starting point of most work on
asymptotic approximation of convex bodies was the monograph of L. Fejes Tóth
[8], and the first major result about higher dimensions is due to R. Schneider [22].

Let K ⊂ E
d be a convex body with a C2 boundary, and 0 ≤ k ≤ d−1 an integer.

One of the most often studied questions is how well one can approximate K by a
polytope with a restricted number of k-faces. The same problem is also studied for
approximating polytopes that are inscribed in K or circumscribed about K. In this
paper, we concentrate on approximation in the Hausdorff metric, however, other
metrics, like the L1 metric, the Banach-Mazur metric, the symmetric difference
metric and Schneider’s distance also play important roles in the theory of polytopal
approximation.

Let Pn denote a polytope minimising δH(K,Pn) under the condition that Pn has
n k-faces. The existence of such a polytope clearly follows from the compactness
of K and the continuity of the Hausdorff metric. If k = 0 or k = d − 1, that is,
when the number of vertices or facets is given, the following asymptotic formula is
known.

(1) δH(K,Pn) ∼ c ·
(∫

∂K

κ(x)
1

2 dx

) 2

d−1

· n −2

d−1 ,

where the constant c depends only on k and d. This formula is the combined result
of the works of R. Schneider, P.M. Gruber and K. Böröczky Jr. To see more details
consult [15], [16] and [18]. However, no asymptotic formula is known for the case
when 1 ≤ k ≤ d − 2. A partial result by K. Böröczky Jr. [3] states that if the
boundary of K is C2

+ and n is large, then

(2) c1 ·
(∫

∂K

κ(x)
1

2 dx

) 2

d−1

· n −2

d−1 < δH(K,Pn) < c2 ·
(∫

∂K

κ(x)
1

2 dx

) 2

d−1

· n −2

d−1 ,

where c1, c2 > 0 depend only on k and d. Similar asymptotic formulae and estimates
are known when Pn is inscribed in K or circumscribed about K; for details see [15],
[16] and [18].

In this article, we shall investigate inequality (2) for d = 3. Let K be a convex
body in E

3 with a C2 boundary, and let Pc
n(K) denote the set of convex polytopes

circumscribed about K and having at most n edges. There exists a polytope P c
n,

not unique in general, such that

δH(K,P c
n) = inf{δH(K,P ) : P ∈ Pc

n(K)}.
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Similarly, there exists a, not necessarily unique, polytope P i
n inscribed in K having

at most n edges and minimising the Hausdorff distance δH(K,P i
n). Finally there

exists a, not necessarily unique, polytope Pn in E
3 having at most n edges and min-

imising the Hausdorff distance δH(K,Pn). We shall prove the following asymptotic
formulae.

Theorem. If K ∈ K3 is a convex body with a C2 boundary, then we have

(3) δH(K,P c
n), δH(K,P i

n) ∼ 1

2

∫

∂K

κ1/2(x)dx · 1

n
as n → ∞.

Note that (3) is an improvement on inequality (2), and it provides a similar
result to (1) for d = 3 and k = 1.

We present the details of the proof for the circumscribed case and only sketch the
necessary changes for the inscribed case at the end of the paper. The proof for P c

n

will consist of two parts. First, we construct a polytope with a prescribed number of
edges circumscribed about K which approximates K well in the Hausdorff metric.
Second, we prove a lower bound on δH(K,P c

n). We will achieve this estimate by
transferring the problem to the plane, where estimates based on the second moment
will be investigated.

Note that in order to prove (3) for P c
n, it is enough to see that there exist a τ > 0

and an ε0 > 0 absolute constants with the property that for all ε0 > ε > 0 there
exists an n0 = n0(ε) such that for all n > n0 we have

1 − τε

2n

∫

∂K

κ1/2(x)dx ≤ δH(K,P c
n) ≤ 1 + τε

2n

∫

∂K

κ1/2(x)dx .

In the course of the proof of the upper bound, we will construct two polyhedral
surfaces with a prescribed number of edges, one over a subset of ∂K where the
curvature κ is small, and another one over the rest of ∂K where κ is strictly positive.
We shall refer to the former part of ∂K as the flat part and the latter the curved

part. We will see that the polyhedral surface over the flat part has very few edges
compared to the one over the curved part. Finally, we shall establish that the
two polyhedral surfaces can be joined to form a polytope circumscribed about K
without creating a large number of extra edges. Furthermore, when investigating
the lower bound, we can ignore the flat part of ∂K.

3. Dividing the boundary

If the curvature on ∂K is allowed to be zero then we will separate the “flat” and
the “curved” part of ∂K. To approximate the flat part of ∂K, we use Lemma 1
and Corollary 1 below, which are both based on Lemma 1 proved in [2].

A Jordan measurable open subset of the boundary of a convex polytope P is
called a polytopal hyper-surface. If we have a Jordan measurable, open subset Z of
∂K then we define Y ⊂ ∂P as the set of points y such that there exists an exterior
normal to P at y which is the exterior normal to K at some z ∈ Z. We say that
the polytopal hyper-surface Y in ∂P approximates Z. For β > 0 let Σ(β) denote
the set of points on ∂K where the minimal principal curvature is less then β.
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Lemma 1 ([2]). Fix ε > 0. Then for any small β where Σ(β) is Jordan measurable,

Σ(β) satisfies the following property: For large m, there exists a polytopal hyper-

surface Ym ⊂ K and with at most m vertices approximating Σ(β) such that

δH(Σ(β), Ym) ≤ ε2

m
.

Applying Lemma 1 with ε/2 in place of ε, and dilating Ym from a fixed point in
intK by a suitable factor slightly larger than one we deduce the following statement.

Corollary 1. Lemma 1 holds with the same conditions not only if Ym ⊂ K but

also when Ym ∩ intK = ∅.
For a given ε > 0, we separate the “flat” part of ∂K, which depends on ε. Let us

choose β > 0 such that Σ(β) is small enough to satisfy the conditions of Lemma 1
and Corollary 1 and

∫

Σ(β)

κ1/2(x)dx <
ε

2

∫

∂K

κ1/2(x)dx.

We define

(4) X ′ = ∂K\clΣ(β).

Now, there exist relatively open Jordan-measurable subsets X and X0 of ∂K sat-
isfying the following conditions.

i) cl X ⊂ relint X ′ and cl X ′ ⊂ relint X0;
ii) There exists η = η(ε) > 0 such that all principal curvatures at x ∈ cl X0

are all least η;
iii)

∫
X

κ1/2(x)dx > (1 − ε)
∫

∂K
κ1/2(x)dx.

We write u(z) to denote the exterior unit normal at z ∈ ∂K. Let C be a convex
polygon tangent to K at x ∈ relint C such that the orthogonal projection of int K
into aff C covers C. For any function f : C → R, we define its graph

Γ(f) = {z − f(z)u(x) : z ∈ C}.
Let fC : C → R denote the convex C2 function with Γ(fC) ⊂ ∂K. We shall use
qy to denote the quadratic form representing the second derivative of fC at y ∈ C,
hence qx = Qx (qy naturally depends on C, as well). In addition pC : E

3 → aff C
denote the orthogonal projection onto aff C, and Π∂K : C → ∂K the nearest point
map onto ∂K.

Lemma 2. For each ε > 0, there exists a δ(K, ε) = δ > 0 such that if C ⊂ x+ δB3

is a convex polygon touching K at x ∈ X ′ ∩ relintC, then the following statements

hold. We have Γ(fC) ⊂ X0, and

(5) for all y ∈ C, (1 + ε3)−1Qx ≤ qy ≤ (1 + ε3)Qx,

(6) for all z ∈ Γ(fC), 〈u(z), u(x)〉 = (1 + ε)−1

(7) pC(Π∂K(C)) ⊇ (1 − ε)(C − x) + x.

Proof. The condition (6) and (7) holds for small enough δ > 0 by the continuity of
u(z). Therefore we only consider (5).
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For all x ∈ clX ′ there exists a δx > 0 such that (5) holds with ε3/10 in place of
ε3. Let Bx = x + (δx/4)B3. Then

⋃

x∈ cl X′

Bx ⊇ cl X ′.

Since cl X ′ is compact, there exists a finite set V ⊂ cl X ′ such that
⋃

x∈V

Bx ⊇ cl X ′.

Let δ > 0 such that

δ ≤ minx∈V δx

4
.

and (6) holds with ε3/10 instead of ε for this δ.
Now, let x ∈ cl X ′ be an arbitrary point, let C ⊂ x + δ B3 be a convex polygon

touching K at x ∈ relintC. Then there exists an x̃ ∈ V such that x ∈ Bx̃, and a

convex polygon C̃ ⊂ x̃ + δx̃B3 touching K at x̃ with p eC(C ∪ Γ(fC)) ⊂ C̃.

For y ∈ C and z = y−fC(y)u(x), we have 〈u(x), u(x̃)〉 = (1+ε3/10)−1. We write

y∗ to denote the orthogonal projection of z into C̃, and write q and q̃ to denote the
quadratic forms representing the second derivatives of fC and f eC . If v is a vector
parallel to aff C and v′ is its orthogonal projection into the linear two-dimensional

subspace parallel to aff C̃, then

(1 + ε3/10)−3q̃y∗
(v′) ≤ qy(v) ≤ (1 + ε3/10)3q̃y∗

(v′).

Since Qx = qx, we obtained (5). ¤

4. The Momentum Lemmas

As a first step towards the proof of the Theorem, in this section we shall establish
one of the major tools to be used subsequently, the Momentum Lemma. In fact,
we will prove two slightly different versions of it in the following two statements.

Lemma 3. Let q(x) be a positive definite quadratic form on E
2, and α 5 0 a real

number. If Π is a polygon with at most k sides, then

max
x∈Π

(q(x) − α) =
2

k
· A(Π)

√
det q

with equality if α = 0 and Π is a square with respect to q centred at o.

Proof. We may assume that α = 0 and q(x) = x2.

Step 1. Let T be a right triangle with an angle ϕ < π/2 at o. If c denotes the
hypotenuse of T , then

max
x∈T

q(x) = c2 = 2 · c

2
· c = 2 · mc · c = 4 · A(T ).

Step 2. Suppose that the triangle T̂ is obtuse, that is, it has an angle β > π/2, and

an angle ϕ < π/2 at o. Let c denote the longest side of T̂ . Then we can

complete T̂ into a right triangle T which satisfies the conditions of Step 1.
It follows that

max
x∈T̄

q(x) = c2 = max
x∈T

q(x) = 4 · A(T ) = 4 · A(T̄ ).
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Step 3. Suppose that o ∈ Π. In this case, we may cut Π into triangles T1, . . . , Tm,
where m 5 2k, and each Ti is either like T or T̂ . Using the results of Steps
1 and 2, we obtain

max
x∈Π

q(x) = max
i∈[m]

max
x∈Ti

q(x) = 4 · max
i∈[m]

A(Ti) = 4 · A(Π)

2k
.

Step 4. Finally, let o /∈ Π. If p denotes the point of Π that is nearest to the origin,
then

max
x∈Π

x2 = max
x∈Π

(x − p)2 =
2

k
· A(Π),

where the last inequality follows from Step 3.

Finally, if Π is a square centred at o and α = 0 then we have equality in the
statement. This completes the proof of Lemma 3. ¤

Lemma 4. Let q(x) be a positive definite quadratic form. If Π is a polygon with

at most k sides, and α = 0 is a real number such that q(x) 5 α for all x ∈ Π, then

max
x∈Π

(α − q(x)) =
2

k
· A(Π) ·

√
det q

with equality if Π is a square with respect to q centred at o and α = q(x) for some

vertex x of Π.

Proof. We may suppose that q(x) = x2.

Step 1. Let T be a triangle, which has an angle β = π/2, and an angle ϕ < π/2 at
o. Let c denote the longest side of T . From x2 = q(x) 5 α it follows that
c2 5 α. One can see that

A(T ) 5
c2

4
5

α

4
=

maxx∈T (α − x2)

4
.

Step 2. Suppose that o ∈ Π. In this case, we may cut Π into triangles T1, . . . , Tm,
where m 5 2k and Ti is of the same type as T in Step 1. Using Step 1, we
obtain

max
x∈Π

(α − q(x)) = max
i∈[m]

max
x∈Ti

(α − q(x)) = 4 · max
i∈[m]

A(Ti) = 4 · A(Π)

2k
.

Step 3. Suppose that k = 4, and o /∈ Π. Let p be the nearest point of Π to the

origin, and d = |−→op|. Then the circle of radius
√

α − d2 centred at p contains
Π. Furthermore, there exists a line through p which separates Π from the
origin. We conclude that

max
x∈Π

(α − q(x)) = α − d2 =
2

k
· π

2
(α − d2) =

2

k
· A(Π).

Step 4. The last case to be checked is when Π is a triangle and o /∈ Π. Using the
same notations as in Step 3, we obtain

max
x∈Π

(α − q(x)) = α − d2 =
2

3
·
(

3

2
(α − d2)

)
=

2

3

√
α − d2 (

√
α − d) =

2

3
A(Π).

Finally, if Π is a square centred at o and α = x2 for some vertex x of Π then we
have equality in the statement. This completes the proof of Lemma 4. ¤
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5. Construction and upper bound

In this section, we shall construct a polytope Rc
n with n edges circumscribed

about K in such a way that it is close to K in the Hausdorff metric. As it was
mentioned before, we are going to use two different constructions.

One of our frequent tools is the Taylor formula which we will use in a special
form. Let f be a real C2 function on a convex polygon C, let lz be the linear form
representing the derivative of f at z, and let qz be the quadratic form representing
the second derivative of f at z. Now if a, z ∈ C then there exists a t ∈ (0, 1) such
that

(8) f(z) = f(a) + la(z − a) + 1
2qa+t(y−a)(y − a).

Now, we are ready to prove the upper bound.

Lemma 5. There exist a positive ε0 and c depending on K with the following

property. If 0 < ε < ε0 and n > N , where N depends on ε and K, then there exists

a polytope Rc
n with at most (1 + cε)n edges containing K such that

(9)
δH(K,Rc

n)
1
2n

∫
∂K

κ1/2(x)dx
5 1 + c · ε.

Proof. To simplify the notation we introduce

I =

∫

∂K

κ1/2(x)dx.

For any x ∈ X ′ and % > 0, let Tx denote the tangent hyperplane to ∂K at x, and
let

E(x, %) = {z ∈ Tx : 1
2 Qx(z − x) ≤ %2}.

In particular, the ellipse E(x, %) is a circular disc of radius % with respect to 1
2 Qx.

According to Section 3 ii), both principal curvatures of Qx are at least η > 0
depending on ε. Therefore, if % ≤ 1

4 δ
√

η then the Euclidean diameter of E(x, %) is
at most δ, where δ is the same as in Lemma 2.

Fix an ε > 0. Let y ∈ X ′ be arbitrary. We are going to construct a polytopal
surface near the point y that will be used in obtaining Rc

n. Consider the quadratic

form Sy = 1−ε3

2 Qy. The graph of Sy(z − y) (as a function of z ∈ Ty) above Ty is

a paraboloid surface Ω, whose part above Ty ∩ (y + δB3) does not intersect intK
by Lemma 2. Let us consider a side-to-side tiling of Ty by parallelograms that are

squares with respect to Qy and have area 2I/(nκ(y)1/2). We call this tiling a square
grid. For a tile N in the square grid, we define aN to be the centre of N . The size
of N is chosen in a way such that (compare Lemma 3)

(10) max
z∈N

1
2 Qy(z − aN ) =

I

2n
=

∫

∂K

κ1/2(x)dx · 1

2n
.

We define ν =
√

I√
n·ε , hence

(11) N − aN ⊂ E(y, εν).

We assume that n is large enough to ensure that the Euclidean diameter of E(y, 12ν)
is at most δ.

We write Λ̃′ to denote the family of squares in the grid that lie in E(y, 12ν). Let

ω = ωy and f = fy be the convex functions on ∪Λ̃′ such that ω(z) = Sy(z − y),
and Γ(f) ⊂ ∂K. It follows by the Taylor formula (8) that there exists a convex
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piecewise linear function ϕ = ϕy on ∪Λ̃′ such that ϕ is linear on each tile N ∈ Λ̃′

with ϕ(aN ) = ω(aN ), and the graph of the linear function touches Ω. Let Λ̃y = Γ(ϕ)

be the corresponding polytopal surface, hence its faces project into the tiles in Λ̃′.
We are going to give an upper bound for the Hausdorff-distance between Γ(f) and

Λ̃y.
It follows from (10) and the Taylor formula (8) that

(12)

δH(Λ̃y,Γ(ω)) ≤ max
N∈eΛ′

max
z∈N

(ω(z) − ϕ(z)) = max
N∈eΛ′

max
z∈N

Sy(z − aN ) ≤
∫

∂K
κ1/2(x)dx

2n
.

Next, we consider the distance between the paraboloid and the boundary of K.
Combining Lemma 2 and the Taylor formula (8) yield

δH(Γ(f),Γ(ω)) ≤ max
z∈E(x,12ν)

(f(z) − ω(z)) ≤ max
z∈E(x,12ν)

( 1+ε3

2 Qy(z − y) − Sy(z − y))

= max
z∈E(x,12ν)

ε3Qy(z − y) = 2 · 122ν2ε3 =
288Iε

n
.(13)

Therefore we conclude

(14) δH(Λ̃y,Γ(fy)) ≤ (1 + O(ε)) ·
∫

∂K
κ1/2(x)dx

2n
.

Now we are going to construct the polytope Rc
n. Let y1, . . . yk be a maximal

family of points of X ′ such that the sets Π∂K(relintE(yi, ν)) are pairwise disjoint.
We define M to be the (possibly unbounded) polyhedral set determined by the
tangent planes Ty1

, . . . , Tyk
. For the face C ′

i of M touching at yi, we define Ci =
C ′

i ∩ E(yi, 4ν). If n is large enough then the sets Π∂K(C1), . . . ,Π∂K(Ck) do not

overlap and cover X ′. For i = 1, . . . , k, let Λi be the union of all faces F of Λ̃yi

satisfying Π∂KF ∩Π∂KCi 6= ∅, hence pCi
Λi ⊂ E(x, 5ν). Finally, to approximate the

flat part, we choose m = εn, and consider the Ym approximating Σ(β) = ∂K\clX ′

provided by Corollary 1. Let Λ0 be the union of all faces F with Π∂KF ∩Σ(β) 6= ∅.
We define

(15) Rc
n = [Λ0,Λ1, . . . ,Λk].

The way how Λ0,Λ1, . . . ,Λk were constructed, Corollary 1 and (14) yield directly
that

K ⊂ Rc
n,

δH(K,Rc
n) ≤ (1 + O(ε)) ·

∫
∂K

κ1/2(x)dx

2n
.(16)

Therefore all we are left to do is to estimate the number of edges of Rc
n.

Let G be the graph defined by the edges of Rc
n that are intersections of two faces

of Λi for some i ≥ 1, and let G′ be the graph defined by the rest of the edges.
First, we estimate the number e(G) of edges of G. Let i = 1, . . . , k. We write

mi to denote the number of elements of Λi, and observe that

(17) E(yi,
1
2 ν) ⊂ Ci ⊂ E(yi, 4ν).

We deduce from Lemma 2 and (11) that

(18) pCi
Λi ⊂ yi + (1 + 4ε)(Ci − yi).
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Using the fact that A(pCi
F ) = 2I/(nκ(yi)

1/2) for a face F of Λi and Lemma 2, we
have that

(19) mi ≤ (1 + O(ε)) · nκ(yi)
1/2A(Ci)

2I
= (1 + O(ε)) · n

2
·
∫
Π∂KCi

κ(x)1/2dx
∫

∂K
κ(x)1/2dx

.

Since each face of Λi is a quadrilateral, it follows that

(20) e(G) ≤
k∑

i=1

2mi ≤ (1 + O(ε)) · n.

Now we turn to G′. We first count the number of vertices of G′. For i = 1, . . . , k,
let µi be the number of common vertices v of Λi and G′ such that there exists an
edge [v, w] of G′, where w is a vertex of some Λj with j ≥ 1 (possibly j = i). In
addition, let µ0 be the number of vertices v of G′ such that either v is a vertex of
Λ0 or there exists an edge [v, w] of G′, where w is a vertex of Λ0.

Let us consider an edge [v, w] of G′, where v is a vertex of Λi for some i ≥ 1.
For v′ = pCi

v and w′ = pCi
w, it follows from (16) that

0 ≤ g(t) = ωyi
(tw′ + (1 − t)v′) − ϕyi

(tw′ + (1 − t)v′) ≤ I/n for t ∈ [0, 1].

Since g(t) = 1−ε3

2 Qyi
(t(w′−v′))+at+b for some a, b ∈ R, the inequalities g(0) ≤ I/n

and g(1) − 2g(1/2) ≤ I/n yield

(21) Qyi
(w′ − v′) ≤ 2

1−ε3 · 8I
n ≤ 32I

n .

First, we assume that w is a vertex of some Λj with j ≥ 1, and v is a vertex of a
face F of Λi. It follows from (17) and by applying (18) to Cj with j 6= i that

pCi
F ∩ (yi + (1 − γε)(Ci − yi)) = ∅

for some absolute constant γ > 0. Using the fact that A(pCi
F ) = 2I/(nκ(yi)

1/2)
and (18) we may conclude that

(22) µi ≤ O(ε) · nκ(yi)
1/2A(Ci)

2I
= O(ε) · n ·

∫

Π∂KCi

κ(x)1/2dx.

Now we are going to estimate µ0. If [v, w] is an edge of G′ such that v is a vertex
of Λi for some i ≥ 1 and w is a vertex of Λ0, then the definition of Λ0 and (21)
yield Π∂KCi ∩ X = ∅. Since Λ0 has at most εn vertices and Λi has at most 4mi

vertices for i ≥ 1, we deduce using (19) and the (iii) in Section 3 that

µ0 ≤ εn +
∑

Π∂KCi∩X=∅
4mi ≤ εn +

n ·
∫

∂K\X
κ(x)1/2dx

∫
∂K

κ(x)1/2dx
≤ 2εn.

Combining the above estimate with (22), i = 1, . . . , k, shows that G′ has at most
O(ε)n vertices. G′ is a planar graph, therefore the number e(G′) of its edges is at
most three times the number of its vertices (see P. Brass, W. Moser, J. Pach [6]).
In particular, e(G′) = O(ε)n. We deduce by (20) that Rc

n has at most (1 + O(ε))n
edges, which concludes the proof of Lemma 5. ¤

Corollary 2. If K is a convex body in R
3 with a C2 boundary and P c

n is a best

approximating circumscribed polytope with respect to the Hausdorff metric with at

most n edges, then

lim sup
n→∞

δH(K,P c
n)

1
2n ·

∫
∂K

κ1/2(x)dx
5 1.
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6. Lower bound

Let K be the convex body with C2 boundary of the main Theorem. In this
section we shall prove that

(23) lim inf
n→∞

[n · δH(K,P c
n)] =

1

2

∫

∂K

κ1/2(x)dx

It is enough to see that there exists an ε0 > 0 (depending only on K) such that
for every ε0 > ε > 0 there is a positive integer Nε with the property that if n > Nε,
then

(24) δH(K,Pn) =
(1 − τε)

2

∫

∂K

(κ(x))1/2dx · 1

n
,

where τ is a constant which depends only on K.

6.1. Transfer Lemma. We are going to prove a statement that transfers the prob-
lem into the plane where we need only investigate certain integral expressions based
on the second moment.

First, we establish the notations and conventions we will use in stating and
proving Lemma 6. We use δ and X ′ from Section 3. For x ∈ X ′, let C ⊂ x + δB3

be a convex polygon such that C touches K at x such that x lies in the relative
interior of C. Furthermore, let C ′ be a convex polygon such that C ′ ⊂ relint C and
C ⊂ pC(K). We write f to denote the convex function on C such that Γ(f) ⊂ ∂K.
We shall use ly for the linear from representing the first derivative of f at y ∈ C,
and, as usual, qy to denote the quadratic form representing the second derivative
of f at y ∈ C. Note that Qx = qx.

Next, let P be a polytope with C ⊂ pC(P ), and let F1, . . . , Fk to denote the
faces of P whose exterior unit normal encloses an acute angle with u(x) and satisfy
pC(Fi) ∩ C ′ 6= ∅, i = 1, . . . , k. Furthermore, we assume that

pC(Fi) ⊂ C, i = 1, . . . , k,

and for any Fi, there exists an ai ∈ C such that the exterior unit normal to Fi

coincides with the exterior unit normal to the graph of f at ai − f(ai)u(x). In
particular, aff Fi is the graph of the function

ϕi(y) = f(ai) + lai
(y − ai) + αi

for some αi ∈ R. Finally, we define Πi = pC(Fi).

Lemma 6 (Transfer lemma). Let ε ∈ (0, 1/4). Using the notation as above, we

assume that Qx is positive definite and for all z ∈ C, we have (1 + ε)−1Qx 5 qz 5

(1 + ε)Qx and 〈u(x), u(w)〉 ≥ (1 + ε)−1 for w = z − f(z)u(x).

(i) If K ⊂ P then each αi ≤ 0, and

δH(P,K) = (1 − 2ε) max
i=1,...,k

max
y∈Πi

(
1
2 Qx(y − ai) − αi

)
.

(ii) If P ⊂ K then each αi > 0. Letting α′
i = (1 + ε)αi for i = 1, . . . , k, we

have 1
2 Qx(y − ai) ≤ α′

i for y ∈ Πi, i = 1, . . . , k, and

δH(P,K) = (1 − 4ε) max
i=1,...,k

max
y∈Πi

(
α′

i − 1
2 Qx(y − ai)

)
.
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Proof. For i = 1, . . . , k, we define Π′
i = [Πi, {ai}].

First, let K ⊂ P , then f(y) ≥ ϕi(y) for y ∈ C and i = 1, . . . , k. We claim that

(25) (1 + ε)δH(P,K) = max
i=1,...,k

max
y∈Π′

i

(f(y) − ϕi(y)).

Since f(y) − ϕi(y) is convex, we may assume that y is a vertex of Π′
i, and as

f(y) − ϕi(y) attains its minimum at ai, we may assume that y ∈ Πi. Let w =
y − ϕi(y)u(x) ∈ Fi, and let T be the tangent plane at v = y − f(y)u(x) ∈ ∂K.
Since T separates K and w and the exterior unit normal u(v) satisfies 〈u(x), u(v)〉 ≥
(1 + ε)−1, we have

δH(P,K) ≥ d(w, T ) ≥ (1 + ε)−1(f(y) − ϕi(y)),

where d(w, T ) is the distance of w and T . The above inequality implies (25).
For any y ∈ Πi there exists z ∈ Π′

i ⊂ C such that f(y)−ϕi(y) = 1
2 qz(y−ai)−αi

according to the Taylor formula (8), where qz(y − ai)− 2αi ≤ 2(1 + ε)δH(P,K) by
(25). Therefore

(1 + ε)δH(P,K) = 1
2 qz(y − ai) − αi

≥ 1
2 Qx(y − ai) − αi − 1

2 |qz(y − ai) − Qx(y − ai)|
≥ 1

2 Qx(y − ai) − αi − ε δH(P,K).

Thus, we have verified Lemma 6 i).
Next, let P ⊂ K, hence ϕi(y) ≥ f(y) for y ∈ C and i = 1, . . . , k. We claim that

(26) (1 + ε)δH(P,K) = max
i=1,...,k

αi ≥ max
i=1,...,k

max
y∈Π′

i

(ϕi(y) − f(y)).

The second inequality is a consequence of the facts that ϕi(y)−f(y) is concave and
ϕi(ai)− f(ai) = αi. To prove the first inequality in (26), set w = ai −ϕi(ai)u(x) ∈
aff Fi, and v = ai − f(ai)u(x) ∈ ∂K. As aff Fi separates P and v and its exterior
unit normal u(ai) satisfies 〈u(x), u(ai)〉 ≥ (1 + ε)−1, we have

δH(P,K) ≥ d(v, aff Fi) ≥ (1 + ε)−1(ϕi(ai) − f(ai)) = (1 + ε)−1αi,

which implies (26).
For any y ∈ Πi there exists z ∈ Π′

i ⊂ C such that ϕi(y)−f(y) = αi− 1
2 qz(y−ai)

according to the Taylor formula (8), where αi, qz(y − ai) ≤ 2δH(P,K) by (25). We
deduce

(1 + ε)δH(P,K) = αi − 1
2 qz(y − ai)

≥ α′
i − 1

2 Qx(y − ai) − 1
2 |qz(y − ai) − Qx(y − ai)| − (α′

i − αi)

≥ α′
i − 1

2 Qx(y − ai) − 3ε δH(P,K).

Therefore the proof of Lemma 6 is now complete. ¤

6.2. Proof of the lower bound. We are going to construct a ”large” auxiliary
polytope M = M(ε) circumscribed about K. We require that M has the following
property. If C is a face of M and Π∂KC ⊂ X0 then diam C < δ, where δ is defined

in Lemma 2. Let Ĉ be the family of all faces C of M such that Π∂KC ∩X 6= ∅. For

all C ∈ Ĉ, there is a unique xC ∈ X0 such that u(xC) is normal to C. Define

C = {xC + (1 − 2ε)(C − xC) | C ∈ Ĉ, Π∂K(xC + (1 − 2ε)(C − xC)) ∩ X 6= ∅}.
Properties (ii) and (iii) of X (see Section 3) and Lemma 2 yield



12 K. J. BÖRÖCZKY1, F. FODOR2, AND V. VÍGH

Lemma 7. ∑

C∈C
κ1/2(xC) · A(C) ≥ (1 − O(ε))

∫

∂K

κ1/2(x)dx

Corollary 2 and the property (ii) of X0 (see Section 3) imply that there exists an

ω = ω(K, ε) > 0 such that if F is a face of P c
n and ∃C ∈ Ĉ with Π∂K(C)∩Π∂K(F ) 6=

∅ then diam F 5 ω/
√

n. Now, if n > Nε then for every F there is at most one
C ∈ C such that Π∂K(F ) ∩ Π∂K(C) 6= ∅. (Note that Nε is independent of n.) Let
us denote by CC the set of those faces of P c

n which are ”above” C; namely, their
projection into affC intersects C, and whose exterior unit normal encloses an acute
angle with u(xC). For any F ∈ CC , let ΠF = pC(F ), let xF ∈ ∂K satisfy that u(xF )
is the exterior unit normal to F . Let kF denote the number of sides of F . Now if n
is large then aF = pC(xF ) lies in C, and let αF be defined by xF −αF u(xC) ∈ affF ,
hence αF ≤ 0.

We deduce by Lemmas 6 and 3 (the Transfer and the Momentum lemmas), and

by
√

det 1
2 QxC

= 1
2 κ1/2(xC) the estimates

δH(P c
n,K) = (1 − O(ε))max

C∈bC
max
F∈CC

max
y∈ΠF

( 1
2 QxC

(y − aF ) − αF )

= (1 − O(ε)) · max
C∈bC

max
F∈CC

κ1/2(xC) · A(ΠF )

kF
.(27)

To estimate the maximum on the right-hand side of (27) we need the following
simple inequality.

Lemma 8. Let ai, bi ∈ R+ for i = 1, 2, . . . ,m. If there exists a λ such that

ai/bi 5 λ holds for all i = 1, 2, . . . ,m then (
∑m

i=1 ai)/(
∑m

i=1 bi) 5 λ.

Proof. If we sum the inequalities ai 5 λbi we get that
∑

ai 5
∑

λbi. Dividing
both side with

∑
bi we obtain the statement of the lemma. ¤

Since the sum of the number of sides of the faces of P c
n is at most 2n, applying

Lemmas 7 and 8 to (27), we obtain that

δH(P c
n,K) = (1 − O(ε)) ·

∑
C∈bC

∑
F∈CC

(κ1/2(xC) · A(ΠF ))∑
C∈bC

∑
F∈CC

kF

= (1 − O(ε)) ·
∑

C∈bC(κ1/2(xC) · A(C))

2n

=
1 − O(ε)

2

∫

∂K

κ1/2(x)dx · 1

n
.

Since ε was arbitrary, we have finished the proof of (3), and thus the proof of the
Theorem in the case of P c

n. ¤

7. The inscribed case

In this section, we are going to prove formula (3) of the Theorem for P i
n, that is

for polytopes inscribed in K having at most n edges. The proof of this statement
consists essentially of the same arguments as the proof for the circumscribed case,
only minor modifications are necessary to make everything work. For the sake of
brevity, we do not want to duplicate complete arguments, and thus we shall only
point out the differences between the proofs.
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To establish the lower bound, we are going to repeat the same argument as for
circumscribed polytopes. There will only be one minor detail that differs. In the
construction, we will face some complications with convexity, but these complica-
tions can be resolved with an extra step.

Now, we are going to give a sketch of the proof and emphasise only the important
steps.

7.1. Lower bound. We use the same circumscribed auxiliary polytope M , and
we would like to use Lemmas 6 and 4 (the Transfer and the Momentum lemmas).
Using the same notations as in the circumscribed case, we proceed exactly as there
until the definitions of αF , etc. for a face F ∈ CC of P i

n. Now, αF > 0, and (in
accordance with the Transfer Lemma) we define α′

F = (1 + ε)αF . Instead of (27),
we deduce from Lemmas 6 and 4 the estimates

δH(P c
n,K) = (1 − O(ε))max

C∈bC
max
F∈CC

max
y∈ΠF

(α′
F − 1

2 QxC
(y − aF ))

= (1 − O(ε)) · max
C∈bC

max
F∈CC

κ1/2(xC) · A(ΠF )

kF
.(28)

¿From this point on, the very same calculation works as in the circumscribed case.

7.2. Upper bound. We shall use the same notations as in Section 5. For y ∈ X ′,
in this case we define Sy by Sy = 1+ε3

2 Qy. Now, the graph of Sy(z−y) (as a function

of z ∈ Ty) above Ty is a paraboloid surface Ω whose part above Ty ∩ (y + δB3)
lies in K by Lemma 2. We define the square grid with respect to Qy as in the

circumscribed case, and define α = (1+ε3)I
2n . In particular (compare Lemma 4),

max
z∈N

Sy(z − aN ) = α,(29)

max
z∈N

(α − Sy(z − aN )) = α =
1 + ε3

2n
·
∫

∂K

κ1/2(x)dx.(30)

Again, we write Λ̃′ to denote the family of the squares in the grid that lie in

E(x, 12ν). Let ω and f be the convex functions on ∪Λ̃′ such that ω(z) = Sy(z− y),
and Γ(f) ⊂ ∂K. It follows from the Taylor formula (8) that there exists a convex

piecewise linear function ϕ on ∪Λ̃′ such that ϕ is linear on each tile N ∈ Λ̃′ with

ϕ(aN ) = ω(aN ) + α, and the graph Λ̃y = Γ(ϕ) is inscribed into Γ(ω); namely, the

vertices of Λ̃y lie on Γ(ω). Similarly as in the circumscribed case, we deduce (14).
The rest of the proof works similarly to the argument in the circumscribed case

with the small exception that we must use Lemma 1 instead of Corollary 1.

Acknowledgement: We are indebted to Endre Makai whose remarks consider-
ably improved the paper.
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