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Abstract

A stability version of the Blaschke–Santaló inequality and the affine isoperimetric inequality for convex
bodies of dimension n � 3 is proved. The first step is the reduction to the case when the convex body is
o-symmetric and has axial rotational symmetry. This step works for related inequalities compatible with
Steiner symmetrization. Secondly, for these convex bodies, a stability version of the characterization of
ellipsoids by the fact that each hyperplane section is centrally symmetric is established.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

Stability versions of geometric inequalities have been investigated since the days of
H. Minkowski, see the beautiful survey of H. Groemer [19], or K.J. Böröczky [10] for some
more recent results. Here we prove stability versions of two classical inequalities originating
from the beginning of the 20th century, the Blaschke–Santaló inequality and the affine isoperi-
metric inequality. For all the basic affine invariant notions, consult the thorough monograph of
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K. Leichtweiß [32], and for notions of convexity in general, see P.M. Gruber [22] and R. Schnei-
der [50].

We write o to denote the origin of Rn, 〈·,·〉 to denote the standard scalar product, and V (·) to
denote volume. Let Bn be the unit Euclidean ball with volume κn = V (Bn), and let Sn−1 = ∂Bn.
A convex body K in Rn is a compact convex set with non-empty interior. If z ∈ intK , then the
polar of K with respect to z is the convex body

Kz = {
x ∈ Rn: 〈x − z, y − z〉 � 1 for any y ∈ K

}
.

It is easy to see that (Kz)z = K . According to L.A. Santaló [49] (see also M. Meyer and A. Pajor
[38]), there exists a unique z ∈ intK minimizing the volume product V (K)V (Kz), which is
called the Santaló point of K . In this case z is the centroid of Kz. The well-known Blaschke–
Santaló inequality states that if z is the Santaló point (or centroid) of K , then

V (K)V
(
Kz

)
� κ2

n, (1)

with equality if and only if K is an ellipsoid. The inequality was proved by W. Blaschke [7] for
n � 3, and by L.A. Santaló [49] for all n. The case of equality was characterized by J. Saint-
Raymond [48] among o-symmetric convex bodies, and by C.M. Petty [44] among all convex
bodies (see also M. Meyer and A. Pajor [38], D. Hug [24], and M. Meyer and S. Reisner [39] for
simpler proofs).

Our main task is to provide a stability version of this inequality. A natural tool is the Banach–
Mazur distance δBM(K,M) of the convex bodies K and M , which is defined by

δBM(K,M) = min
{
λ � 1: K − x ⊂ Φ(M − y) ⊂ λ(K − x) for Φ ∈ GL(n), x, y ∈ Rn

}
.

In particular, if K and M are o-symmetric, then x = y = o can be assumed. It follows from a the-
orem of F. John [25] that δBM(K,Bn) � n for any convex body K in Rn (see also K.M. Ball [4]).

Theorem 1.1. If K is a convex body in Rn, n � 3, with Santaló point z, and

V (K)V
(
Kz

)
> (1 − ε)κ2

n for ε ∈
(

0,
1

2

)
,

then for some γ > 0 depending only on n, we have

δBM
(
K,Bn

)
< 1 + γ ε

1
6n | log ε| 1

6 .

Taking K to be the convex body resulting from Bn by cutting off two opposite caps of vol-
ume ε shows that the exponent 1/(6n) cannot be replaced by anything larger than 2/(n + 1).
Therefore the exponent of ε is of the correct order. Since 1/(6n) is most probably not the opti-
mal exponent of ε in Theorem 1.1, no attempt was made to find an explicit γ in Theorem 1.1.
In principle, this would be possible following the argument in this paper if the exponent 1/(6n)

is replaced by 1/(6n + 6) (see the discussion after (20)). We note that a stability version of the
Blaschke–Santaló inequality in the planar case is proved in K.J. Böröczky, E. Makai, M. Meyer,
S. Reisner [11], using a quite different method.
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The literature about the Blaschke–Santaló inequality is so extensive that only just a small
portion can be discussed here. The PhD thesis of K.M. Ball [3] started off the quest for suitable
functional versions. This point of view is for example pursued in M. Fradelizi and M. Meyer [15]
and S. Artstein, B. Klartag and V.D. Milman [2]. Stability questions on a related problem are
discussed in M. Meyer and E. Werner [40].

We note that the minimum of the volume product V (K)V (Kz) is not known for convex bod-
ies K in Rn and z ∈ K for n � 3. According to the well-known conjecture of K. Mahler [36], the
volume product is minimized by simplices, and among o-symmetric convex bodies by cubes. The
planar case was actually proved in [36], and simpler arguments are provided by M. Meyer [37]
and M. Meyer and S. Reisner [39]. For n � 3, the Mahler conjecture for o-symmetric con-
vex bodies has been verified among unconditional bodies by J. Saint-Raymond [48] (see also
S. Reisner [46]), and among zonoids by S. Reisner [45] (see also Y. Gordon, M. Meyer and
S. Reisner [17]). The best lower bound for the volume product of an o-symmetric convex body
K in Rn is

V (K)V
(
Ko

)
> 2−nκ2

n, (2)

due to G. Kuperberg [29]. With a non-explicit exponential factor instead of 2−n, it was proved
by J. Bourgain and V.D. Milman [12].

The Mahler conjecture for general convex bodies was verified by M. Meyer and S. Reisner
[39] among polytopes of at most n + 3 vertices. In a yet unpublished revision of [29], G. Kuper-
berg also showed, based on (2) and the Rogers–Shephard inequality [47], that if z ∈ intK for a
convex body K in Rn, then

V (K)V
(
Kz

)
> 4−nκ2

n. (3)

It was probably W. Blaschke who first noticed that the Blaschke–Santaló inequality is equiva-
lent to the affine isoperimetric inequality. This and other equivalent formulations are discussed in
depth in E. Lutwak [35] and K. Leichtweiß [32, Section 2]. To define the affine surface area of a
convex body K in Rn , we always consider its boundary endowed with the (n − 1)-dimensional
Hausdorff measure. According to Alexandrov’s theorem (see P.M. Gruber [22, p. 74]), ∂K is
twice differentiable in a generalized sense at almost every point, hence the generalized Gauß–
Kronecker curvature κ(x) can be defined at these x ∈ ∂K (see K. Leichtweiß [32, Section 1.2]).
The affine surface area of K is defined by

Ω(K) =
∫

∂K

κ(x)
1

n+1 dx.

If ∂K is C2, then this definition is due to W. Blaschke [6]. Since then various equivalent defi-
nitions were given for general convex bodies (including the above one) by K. Leichtweiß [31],
C. Schütt and E. Werner [52] and E. Lutwak [34], which were shown to be equivalent by C. Schütt
[51], and G. Dolzmann and D. Hug [14] (see K. Leichtweiß [32, Section 2]). The affine surface
area is a valuation invariant under volume preserving affine transformations, and it is upper semi-
continuous. These properties are characteristic, as any upper semi-continuous valuation on the
space of convex bodies which is invariant under volume preserving affine transformations is a
linear combination of affine surface area, volume, and the Euler characteristic by M. Ludwig and
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M. Reitzner [33]. We note that affine surface area comes up e.g. in polytopal approximation (see
P.M. Gruber [22, Section 11.2]), in limit shape of lattice polygons (see I. Bárány [5]), and many
other applications (see K. Leichtweiß [32, Section 2]).

The affine isoperimetric inequality states that

Ω(K)n+1 � κ2
nnn+1V (K)n−1, (4)

with equality if and only if K is an ellipsoid. The inequality itself is due to W. Blaschke [6],
whose proof in R3 for convex bodies with C2 boundaries readily extends to general dimension
and to general convex bodies. W. Blaschke characterized the equality case among convex bodies
with C2 boundary, and this characterization was extended to all convex bodies by C.M. Petty
[44]. We note that W. Blaschke and L.A. Santaló deduced the Blaschke–Santaló inequality from
the affine isoperimetric inequality. Here we take a reverse path.

An inequality on p. 59 of E. Lutwak [34] (see also Lemma 3.7 in D. Hug [24], or (1106) in
K. Leichtweiß [32]) says that if z ∈ intK , then

Ω(K)n+1 � nn+1V (K)nV
(
Kz

)
.

Therefore Theorem 1.1 yields

Theorem 1.2. If K is a convex body in Rn, n � 3, and

Ω(K)n+1 > (1 − ε)κ2
nnn+1V (K)n−1 for ε ∈

(
0,

1

2

)
,

then for some γ > 0 depending only on n, we have

δBM
(
K,Bn

)
< 1 + γ ε

1
6n | log ε| 1

6 .

For convex bodies K and M , we write V1(K,M) to denote the mixed volume

V1(K,M) = lim
t→0

V (K + tM) − V (K)

n · t
(see T. Bonnesen and W. Fenchel [9, Section 29], or P.M. Gruber [22, Section 6]). It satisfies
V1(K,K) = V (K). We write Kn

o to denote the family of convex bodies whose centroid is o.
C.M. Petty [42] defined the geominimal surface area by

G(K) = κ
− 1

n
n n inf

{
V1

(
K,Mo

)
V (M)

1
n : M ∈Kn

o

}
.

It is also invariant under volume preserving affine transformations. Positioning K in a way such
that o is the Santaló point of K and taking M = Ko, yields the so-called geominimal surface area
inequality of C.M. Petty [43]

G(K) � κ
1/n
n nV (K)

n−1
n , (5)

with equality if and only if K is an ellipsoid. From Theorem 1.1 we directly obtain
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Theorem 1.3. If K is a convex body in Rn, n � 3, and

G(K) > (1 − ε)κ
1
n
n nV (K)

n−1
n for ε ∈

(
0,

1

2

)
,

then for some γ > 0 depending only on n, we have

δBM
(
K,Bn

)
< 1 + γ ε

1
6n | log ε| 1

6 .

One of our main tools is to reduce the proof of Theorem 1.1 to o-symmetric convex bodies
with axial rotational symmetry.

Theorem 1.4. For any convex body K in Rn, n � 2, with δBM(K,Bn) > 1 + ε for ε > 0, there
exists an o-symmetric convex body C with axial rotational symmetry and a constant γ > 0 de-
pending on n such that δBM(C,Bn) > 1 + γ ε2 and C results from K as a limit of subsequent
Steiner symmetrizations and affine transformations.

Remark. If K is o-symmetric, then 1 + γ ε2 can be replaced by 1 + γ ε. In particular, if K is
o-symmetric, then wherever the factor 1/6 occurs in Theorems 1.1, 1.2 and 1.3, it can be replaced
by 1/3.

Theorem 1.4 shows that it is possible to use Steiner-symmetrization to obtain a convex body
that is highly symmetric but still far from being an ellipsoid. On the other hand, B. Klartag [27]
proved that any convex body K in Rn gets ε close to some ball after suitable chosen cn4| log ε|2
Steiner symmetrizations where c > 0 is an absolute constant.

After discussing the basic tools such as the isotropic position of convex bodies and Steiner
symmetrization in Section 2, we prove Theorem 1.4 in Section 3. A stability version of the False
Centre theorem in a special case is presented in Section 4, which combined with Theorem 1.4
leads to the proof of Theorem 1.1 in Section 5. For stability versions of some other classical
geometric characterizations of ellipsoids, see, e.g., H. Groemer [20] and P.M. Gruber [21].

2. Some tools

2.1. Isotropic position

In this paper, we use the term isotropic position in a weak sense. More precisely, we say that
a convex body K in Rn is in weak isotropic position if its centroid is o, and

∫
K

〈u,x〉2 dx is
independent of u ∈ Sn−1. In particular, in this case∫

K

〈u,x〉2 dx = L2
KV (K)

n+2
n

for any u ∈ Sn−1 (see, e.g., A.A. Giannopoulos and V.D. Milman [16]), and the Legendre ellip-
soid (the ellipsoid of inertia) is a ball. For any convex body C there is a volume preserving affine
transformation T such that T C is in weak isotropic position. In the literature, two different nor-
malizations are used. Either V (K) = 1 (see, e.g., A.A. Giannopoulos and V.D. Milman [16]), or
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‖v‖2 = ∫
K

〈v, x〉2 dx for any v ∈ Rn (see, e.g., R. Kannan, L. Lovász and M. Simonovits [26]). In
this paper, if K is in weak isotropic position, then we compare it to balls, therefore we frequently
assume V (K) = κn.

It is known that LK is minimized by ellipsoids (see F. John [25] or A.A. Giannopoulos and
V.D. Milman [16]). It follows by Gy. Sonnevend [53] (see also R. Kannan, L. Lovász and M. Si-
monovits [26]) that if K is in weak isotropic position, then

K ⊂ L
2

n+2
K V (K)

1
n

√
n(n + 2)Bn.

Now LK � c0
4
√

n for some absolute constant c0 according to B. Klartag [28]. Therefore, if
V (K) = κn and K is in weak isotropic position, then

K ⊂ c
√

nBn (6)

for some absolute constant c � 1.
For properties of o-symmetric convex bodies in isotropic position, see the discussion in

V.D. Milman and A. Pajor [41].

2.2. Steiner symmetrization

Given a convex body K in Rn and a hyperplane H , for any l orthogonal to H and intersect-
ing K , translate l ∩ K along l in a way such that the midpoint of the image lies in H . The union
of these images is the Steiner symmetrial KH of K with respect to H . It follows that KH is
convex, V (KH ) = V (K), and, if the centroid of K lies in H , then it coincides with the centroid
of KH .

We write | · | to denote the (n − 1)-dimensional Lebesgue measure, where the measure of the
empty set is defined to be zero. For u ∈ Sn−1 and t ∈ R, let u⊥ denote the linear (n − 1)-space
orthogonal to u, let hK(u) = maxx∈K 〈u,x〉 be the support function of K , and let

K(u, t) = K ∩ (
tu + u⊥)

.

If M is a compact convex set of dimension n−1, then the classical Brunn–Minkowski inequality
(see, e.g., T. Bonnesen and W. Fenchel [9, p. 94], P.M. Gruber [22, Section 8.1], or the monograph
R. Schneider [50], which is solely dedicated to the Brunn–Minkowski theory) yields∣∣∣∣1

2
(M − M)

∣∣∣∣ � |M|. (7)

K.M. Ball proved in his PhD thesis [3] that Steiner symmetrization through u⊥ for u ∈ Sn−1

increases V (Ko) if K is o-symmetric. The basis of his argument is the observation that for
K̃ = Ku⊥ , we have

1

2

(
Ko(u, t) − Ko(u, t)

) ⊂ K̃o(u, t) − tu (8)

(see also M. Meyer and A. Pajor [38]). Here the (n − 1)-measure of the left-hand side is at
least |Ko(u, t)| according to the Brunn–Minkowski inequality, hence the Fubini Theorem yields
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V (K̃o) � V (Ko). K.M. Ball’s result was further exploited by M. Meyer and A. Pajor [38]. The
ideas and statements in [38] yield the following.

Lemma 2.1 (Meyer, Pajor). Let K be a convex body in Rn, and let H be a hyperplane. If z and
z′ denote the Santaló points of K and KH , respectively, then z′ ∈ H , and V (Kz) � V ((KH )z

′
).

This statement is more explicit in Theorem 1 of M. Meyer and S. Reisner [39] (see the proof
of Theorem 13 in [39]).

3. Proof of Theorem 1.4

The following lemma is the basis of the proof of Theorem 1.4.

Lemma 3.1. Let K be a convex body in Rn. If δBM(K,Bn) > 1 + ε for ε > 0, then there exists
a convex body C with axial rotational symmetry that results from K as a limit of subsequent
Steiner symmetrizations and affine transformations, and satisfies δBM(C,Bn) > 1 + γ ε, where
γ > 0 depends only on n. Moreover if K is o-symmetric, then so is C.

Proof. We may assume that V (K) = κn and K is in weak isotropic position. Using the c � 1
from (6), we claim that there exists some u ∈ Sn−1 such that

(i) either hK(u) � 1 + ε
4 and V (K\Bn) � γ̃ ε for γ̃ = 1

4c2n

∫
Bn〈u,x〉2 dx, or

(ii) hK(u) � 1 − γ̃
nκn

ε.

To prove this statement, let hK attain its maximum on Sn−1 at v ∈ Sn−1, and its minimum at
w ∈ Sn−1. If hK(w) � 1 − ε

4 , then u = w works, thus we may assume hK(w) � 1 − ε
4 . Since

δBM(K,Bn) > 1 + ε, it follows that hK(v) � 1 + ε
4 . Now if V (K\Bn) � γ̃ ε, then we are done

again, hence we may assume V (Bn\K) = V (K\Bn) � γ̃ ε. We conclude that hK(w) � 1− γ̃
nκn

ε,
which completes the proof of (i) and (ii).

Let C be the image of K after applying first Schwarz rounding (see P.M. Gruber [22, p. 178])
in the direction of u, and secondly the linear transformation that dilates by the factor hK(u)−1

in the direction of u, and by the factor hK(u)
1

n−1 orthogonal to u. Since Schwarz rounding can
be obtained as the limit of repeated applications of Steiner symmetrizations through hyperplanes
containing the line Ru, we have V (C) = V (K) and o is the centroid of C (see Section 2.2). The
linear transformation following the Schwarz rounding ensures that u ∈ ∂C.

Let h = hK(u) and h̃ = hK(−u). In the case of (ii), LK � LBn yields

∫
C

〈u,x〉2 dx =
1∫

0

r2
∣∣C(u, r)

∣∣dr +
h̃/h∫
0

r2
∣∣C(−u, r)

∣∣dr

=
1∫

0

r2h
∣∣K(u,hr)

∣∣dr +
h̃/h∫
0

r2h
∣∣K(−u,hr)

∣∣dr
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= 1

h2

( h∫
0

s2
∣∣K(u, s)

∣∣ds +
h̃∫

0

s2
∣∣K(u, s)

∣∣ds

)

= 1

h2

∫
K

〈u,x〉2 dx

= 1

h2
L2

Kκ
n+2
n

n

� 1

h2

∫
Bn

〈u,x〉2 dx

>

(
1 + γ̃

nκn

ε

)∫
Bn

〈u,x〉2 dx. (9)

In the case of (i), we have K ⊂ c
√

nBn according to (6). It follows that∫
C

〈u,x〉2 dx = 1

h2

∫
K

〈u,x〉2 dx

<
1

h2

(∫
Bn

〈u,x〉2 dx + c2nV
(
K\Bn

))

�
1 + ε

4

h2

∫
Bn

〈u,x〉2 dx

<

(
1 − ε

8

)∫
Bn

〈u,x〉2 dx. (10)

Let δBM(C,Bn) = 1 + η, where we may assume that η ∈ (0,1). Since C has axial rota-
tional symmetry around Ru, and o is the centroid of C, there exists γ1 > 0 depending only
on n, and an o-symmetric ellipsoid E with axial rotational symmetry around Ru such that
E ⊂ C ⊂ (1 + γ1η)E. It follows by V (C) = V (Bn) and u ∈ ∂C that there exists γ2 > 0 de-
pending only on n such that

(1 + γ2η)−1Bn ⊂ C ⊂ (1 + γ2η)Bn.

Therefore, we conclude Lemma 3.1 by (10) in the case of (i), and by (9) in the case of (ii). �
Let us write W(M) to denote the mean width of a planar compact convex set M . In particular

πW(M) is the perimeter of M . Writing R(M) and r(M) to denote the circum- and the inradius
of M , and A(M) to denote the area of M , the Bonnesen inequality (appearing first in W. Blaschke
[8], see H. Groemer [19] for more references) states

W(M)2 − 4

π
A(M) �

(
R(M) − r(M)

)2
. (11)
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To prove Theorem 1.4 for convex bodies in Rn, we need the following statement.

Proposition 3.2. If M is a planar compact convex set in R2 with an axis of symmetry satis-
fying δBM(K,B2) > 1 + ε for ε ∈ (0,1), then there exist orthogonal lines l1 and l2 such that
δBM((Kl1)l2 ,B

2) > 1 + c′ε2 for c′ = 0.001.

Proof. Let l be the line of symmetry of K . We may assume that A(K) = π , and that l intersects
K in a segment of length 2 whose midpoint is o.

First we try Steiner symmetrization through l, and the line l′ that is orthogonal to l through o.
If δBM((Kl)l′ ,B2) > 1 + c′ε2, then we are done. Otherwise there is an ellipse E whose principal
axis is contained in l and l′ such that

E ⊂ (Kl)l′ ⊂ (
1 + c′ε2)E.

We deduce that

(
1 + c′ε2)−3

B2 ⊂ (Kl)l′ . (12)

Since δBM(K,B2) > 1 + ε, it follows that R(K) − r(K) � ε/2. Therefore, the Bonnesen in-
equality (11) yields

W(K) � 2 ·
(

1 + ε2

16

) 1
2

.

In particular, if the distance of x1, x2 ∈ ∂K is the diameter of K , then

‖x1 − x2‖ > 2 · (1 + c′ε2)5
.

Next let s be the segment orthogonal to x1 −x2 and of length 2(1+c′ε2)−3. Since K is symmetric
through l, (12) yields that s′ ⊂ K for a translate s′ of s. We deduce that the convex hull Q of
x1, x2 and s′ satisfies

A(Q) > 2 · (1 + c′ε2)2
.

Let l1 be the line determined by x1 and x2, let l2 be an orthogonal line, and let K ′ = (Kl1)l2 .
Then K ′ contains a quadrilateral of area larger than (1 + c′ε2)2 · 2

π
A(K ′), which in turn yields

that δBM(K ′,B2) > 1 + c′ε2. �
Proof of Theorem 1.4. If K is o-symmetric, then Lemma 3.1 yields Theorem 1.4. Even if K is
not o-symmetric, we may assume that K has rotational symmetry around Ru for some u ∈ Sn−1

and satisfies δBM(K,Bn) > 1 + γ ε for the γ in Lemma 3.1. We deduce by Proposition 3.2 that
there exist orthogonal hyperplanes H1 and H2 containing o such that H1 ∩ H2 is orthogonal to u,
and δBM(K̃,Bn) > 1 + c′γ 2ε2 for K̃ = (KH1)H2 and the absolute constant c′ of Proposition 3.2.
Since K̃ is o-symmetric, the o-symmetric case of Lemma 3.1 applied to K̃ yields Theorem 1.4
for K . �
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4. Stability of the False Centre Theorem in a special case

For any convex body K in Rn, P.W. Aitchison, C.M. Petty, C.A. Rogers [1] and D.G. Larman
[30] proved the False Centre Theorem, which states that if there exists a point p such that all
hyperplane sections of K by hyperplanes passing through p are centrally symmetric, then K is
either symmetric through p or an ellipsoid. An important part of their proof is concerned with
the case when K is o-symmetric and has axial rotational symmetry. We will deal with this special
case in Lemma 4.2.

We measure how close a compact convex set M is to be centrally symmetric by the so-called
Minkowski measure of symmetry q(M). It is defined by (see, e.g., B. Grünbaum [23])

q(M) = min
{
λ � 1: ∃x ∈ M,−(M − x) ⊂ λ(M − x)

}
.

Obviously, q(M) = 1 if and only if M is centrally symmetric. Moreover, it is known essentially
since the time of H. Minkowski that q(M) � n for M ⊂ Rn, where equality holds only for n-di-
mensional simplices. To prove Lemma 4.2, we need the following estimate:

Proposition 4.1. Let g be a positive concave function on (−�,�) for � > 0, and let M be the
compact convex set that is the closure of the convex hull of the graphs of g and −g. If q(M) �
1 + ε for ε > 0, then for any t ∈ (0, �), we have

(
1 + 2�ε

� − t

)−1

g(t) � g(−t) �
(

1 + 2�ε

� − t

)
g(t).

Proof. We may assume that � = 1. Writing u to denote the first coordinate unit vector, the
condition q(M) � 1 + ε yields that M ⊂ −(1 + ε)M + pu, where |p| � ε. In particular, for any
t ∈ (0,1), we have

g(−t) � (1 + ε)g

(
t + p

1 + ε

)
.

If t+p
1+ε

� t , then, considering the points (−1,0), (t, g(t)) and (
t+p
1+ε

, g(
t+p
1+ε

)) of ∂M , leads to

g

(
t + p

1 + ε

)
�

1 + t+p
1+ε

1 + t
· g(t) � 1

1 + ε
·
(

1 + 2ε

1 + t

)
· g(t),

and if t+p
1+ε

� t , then

g

(
t + p

1 + ε

)
�

1 − t+p
1+ε

1 − t
· g(t) � 1

1 + ε
·
(

1 + 2ε

1 − t

)
· g(t).

In turn, we conclude the required upper bound for g(−t). To get the lower bound, one applies
the same argument for h(t) = g(−t). �
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Lemma 4.2. Let K be an o-symmetric convex body in Rn, n � 3, with axial rotational symmetry.
If δBM(K,Bn) > 1 + ε for ε > 0, then there exists a hyperplane H intersecting 2

3K such that
q(H ∩ K) � 1 + c1ε

3| log ε|−1, where c1 > 0 is an absolute constant.

Remark. In the proof we only use hyperplanes that pass through one of the endpoints of the axis
of K , therefore we do have a stability version of the False Centre Theorem in this special case.
We believe that in Lemma 4.2, the term ε3| log ε|−1 can be improved to ε.

Proof. The proof is based on ideas of P.W. Aitchison, C.M. Petty, C.A. Rogers [1]. We may
assume that u,−u ∈ ∂K where u ∈ Sn−1 and Ru is the axis of symmetry of K . We prove the
lemma in the following form. There exists a positive absolute constant c̃ such that if ε ∈ (0,4−4)

and q(H ∩ K) � 1 + ε holds for any hyperplane H intersecting 2
3K and containing −u, then

δBM(K,Bn) � 1 + c̃ε
1
3 | log ε|. To prove this statement, we may assume that ∂K is C1.

By the symmetry of K , we may assume that n = 3. Let v ∈ S2 be orthogonal to u, and let
L be the linear plane spanned by u and v. There exists a non-negative even concave function r

on [−1,1] such that tu + r(t)v ∈ ∂K for t ∈ [−1,1] and r(0) = 1. This r is differentiable on
(−1,1) because ∂K is C1. To prove that K is close to some ellipsoid is equivalent to showing
that the function

f (t) = 1 − r(t)2

t2

is essentially the constant one function on (0,1). In this proof, the implied constant in O(·) is
always some absolute constant.

For m ∈ (0, 1
4 ], let H be the plane containing −u and (1 − m)u + r(1 − m)v, whose normal

vectors are contained in L, and let η = r(1−m)
2−m

be the “slope” of H ∩ L. In particular, if l ⊂ H is
a line orthogonal to L and passing through the point tu+η(1+ t)v, t ∈ (−1,1−m), then it inter-
sects K in a segment of length 2

√
r(t)2 − η2(1 + t)2. Since q(H ∩ K) � 1 + ε, Proposition 4.1

yields for any t ∈ [0,1 − m) that

r(−t − m)2 − η2(1 − t − m)2

⎧⎨⎩�
(
1 + (2−m)ε

1−m−t

)2
(r(t)2 − η2(1 + t)2),

�
(
1 + (2−m)ε

1−m−t

)−2
(r(t)2 − η2(1 + t)2).

In particular, if t ∈ [0,1 − 2m], then

r(t)2 − r(t + m)2 = η2(2t + m)(2 − m) + O

(
ε

1 − t

)
. (13)

For t = 0, we have

m2f (m) = 1 − r(m)2 = η2m(2 − m) + O(ε) = m · r(1 − m)2

2 − m
+ O(ε). (14)

If t ∈ [m,1 − 2m], then (13) can be written in the form
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(t + m)2f (t + m) − t2f (t) = η2(2t + m)(2 − m) + O

(
ε

1 − t

)
= (

2tm + m2)f (m) + O

(
(2t + m)ε

m

)
,

therefore,

f (t + m) = t2

(t + m)2
f (t) + 2tm + m2

(t + m)2
f (m) + O

(
ε

mt

)
. (15)

We deduce by (15) and induction that if i = 2, . . . , 
 1
m

− 1�, then

f (im) = f (m) + O

(
i−1∑
j=1

ε

jm2

)
= f (m) + O

(
ε| logm|

m2

)
. (16)

We define

m̃ = 1

4
ε− 1
3 | log ε|− 1

3 �
.

By definition, m̃ satisfies

ε| log m̃|
m̃2

= O(m̃) and m̃ � 1

8
. (17)

We claim that

f (im̃) = 1 + O(m̃) for i = 1, . . . ,
1

m̃
− 1. (18)

First we observe that according to (16), (17), and the definition of f , we have

f (im̃) = f (1 − m̃) + O(m̃) � (1 − m̃)−2 + O(m̃) = 1 + O(m̃)

for i = 1, . . . , 1
m̃

− 1. On the other hand, it follows by (14) that

r(1 − m̃)2 = (2 − m̃)m̃ f (m̃) + O

(
ε

m̃

)
= O(m̃).

In particular,

f (1 − m̃) = 1 − r(1 − m̃)2

(1 − m̃)2
� 1 − O(m̃)

(1 − m̃)2
� 1 − O(m̃),

which in turn yields (18) by (16) and (17).
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Finally we verify that if m̃ � t � 1 − m̃, then

f (t) = 1 + O(m̃) for t ∈ [m̃,1 − m̃]. (19)

First let t ∈ [ 1
2 ,1 − m̃]. In this case,

f ′(t) = −2r(t)r ′(t)t − 2(1 − r(t)2)

t3
� −16

as r ′(t) � 0. Since there exists an integer i � 1
m̃

− 2 such that 1
2 � im̃ � t � (i + 1)m̃, we

deduce (19) from (16) and (17).
Next let t ∈ [m̃, 1

2 ]. There exist integers j and i such that m ∈ [m̃,2m̃] holds for m = t/j , and
im ∈ [ 1

2 ,1 − m], thus (16) and the previous case of (19) yield

f (t) = f (jm) = f (m) + O

(
ε| logm|

m2

)
= f (im) + O

(
ε| logm|

m2

)
= 1 + O(m̃).

With this, we have proved (19), which in turn yields Lemma 4.2. �
From Lemma 4.2 we immediately obtain:

Corollary 4.3. Let K be an o-symmetric convex body in Rn with axial rotational symmetry. If
δBM(K,Bn) > 1 + ε for ε > 0, then there exist u ∈ Sn−1 and a ∈ (0, 2

3 ) such that

q
(
K

(
u,hK(u)t

))
� 1 + c2ε

3| log ε|−1 for t ∈ (
a, a + c2ε

3| log ε|−1),
where c2 > 0 is an absolute constant.

5. Proof of Theorem 1.1

We will need a stability version of the Brunn–Minkowski inequality. According to V.I. Diskant
[13], if M is a compact convex set of dimension n − 1 with q(M) � 1 + τ , then∣∣∣∣1

2
(M − M)

∣∣∣∣ �
(
1 + γ τn−1)|M|, (20)

for γ > 0 depending on n (see also H. Groemer [19]). Here no explicit γ is known. Actually
H. Groemer [18] proved a stability estimate with explicit γ but with the exponent n instead
of n − 1.

In this section, γ1, γ2, . . . denote positive constants depending only on n. We prove Theo-
rem 1.1 in the following equivalent form: If K is a convex body in Rn with Santaló point z and
δBM(K,Bn) > 1 + ε for ε > 0, then (21) holds.

It follows from Theorem 1.4 and Lemma 2.1 that there exists an o-symmetric convex
body C with axial rotational symmetry such that δBM(C,Bn) > 1 + γ1ε

2 and V (K)V (Kz) �
V (C)V (Co). In particular, Co is an o-symmetric convex body with axial rotational symmetry
and satisfies δBM(Co,Bn) > 1 + γ1ε

2. According to Corollary 4.3, there exist u ∈ Sn−1 and
a ∈ (0, 2

3 ) such that
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q
(
Co

(
u,hCo(u)t

))
� 1 + γ2ε

6| log ε|−1 for t ∈ (
a, a + γ2ε

6| log ε|−1).
We may assume that hCo(u) = 1.

Let C̃ = Cu⊥ . Since the convexity of Co yields |Co(u, t)| � 4−(n−1)|Co(u,0)| if t � 3
4 , we

deduce from (7), (8) and (20) that

V
(
C̃o

)
� 2

1∫
0

∣∣C̃o(u, t)
∣∣dt � 2

1∫
0

∣∣Co(u, t)
∣∣dt + γ3

∣∣Co(u,0)
∣∣ε6n| log ε|−n.

On the one hand, V (Co) � 2|Co(u,0)| by the Fubini Theorem and the Brunn–Minkowski in-
equality (7). Therefore,

V (K)V
(
Kz

)
� V (C)V

(
Co

)
�

(
1 − γ4ε

6n| log ε|−n
)
V (C̃)V

(
C̃o

)
�

(
1 − γ4ε

6n| log ε|−n
)
κ2
n, (21)

which concludes the proof of Theorem 1.1.
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