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1. Projective spaces made of vector spaces over skew fields

Definition 1.1. Let n ≥ 1. Let V be an (n+1)-dimensional vector space over a skew field
F . The space of its 1-dimensional linear subspaces is called an n-dimensional projective
space over F . It is denoted by P (V ).

A k -dimensional projective subspace is P (W ), where W is a (k + 1)-dimensional
linear subspace of V .

Proposition 1.2. Intersection of subspaces is a subspace. Also we have⋂
i∈I

P (Wi) = P (
⋂
i∈I

Wi).
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For every S ⊂ P (W ) there is a unique smallest projective subspace [S] containing S . We
have

[∪i∈IP (Wi)] = P (
∑
i∈I

Wi).

Denote [∪i∈IP (Wi)] by
∑

i∈I P (Wi).

Proposition 1.3. We have

dimP (W1) ∩ P (W2) + dimP (W1) + P (W2) = dimP (W1) + dimP (W2).

Note that for affine subspaces this does not hold.

Definition 1.4. Homogenous coordinates: the point (x1, . . . , xn+1) ∈ Fn+1 is equivalent
to (λx1, . . . , λxn+1) for every λ ∈ F , λ ̸= 0. Its class is denoted by

(x1 : . . . : xn+1).

Every point (x1 : . . . : xn+1) can be written as

(x1 : . . . : xn : 1) or (x1 : . . . : xn : 0).

The point (x1 : . . . : xn : 0) is called the point in the direction of (x1, . . . , xn), this is the
ideal point ∞ in the lines parallel to (x1, . . . , xn). Often we imagine that Fn sits inside
Fn+1 as

(x1, . . . , xn) 7→ (x1, . . . , xn, 1).

Obviously three points P,Q,R are collinear (that is they are in the same projective
line) iff all representatives p, q, r are in a 2-dimensional linear subspace, that is p, q, r are
linearly dependent. There are such representatives that p = q + r .

Definition 1.5. Two triangles ABC and A′B′C ′ are perspective from the point P if
AA′P , BB′P , CC ′P are collinear. The triangles ABC and A′B′C ′ are perspective from
the line e if all the following three lines intersect each other in one-one point:

AB,A′B′, e BC,B′C ′, e AC,A′C ′, e

Theorem 1.6 (Desargues). In a projective space two triangles are perspective from a point
iff they are perspective from a line.

Theorem 1.7 (Pappos). Let e and f be lines in a plane, e ∩ f = p. Let A,B,C ̸= p be
distinct points in e and let A′, B′, C ′ ̸= p be distinct points in f . The following statement
is true for a skew field iff the field is commutative: the points BC ′ ∩B′C , AC ′ ∩A′C and
AB′ ∩A′B are collinear.

2. Projective spaces by axioms

Definition 2.1. Let X be a set, n ≥ 0 and S−1,S0, . . . ,Sn ⊂ P(X), these are the
i-dimensional subspaces. Then

(X,S−1,S0, . . . ,Sn)

is an n-dimensional projective space if

(1) S−1 = {∅} ,
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(2) S0 = {{P} : P ∈ X} ,
(3) Sn = {X} ,
(4) intersection of subspaces is a subspace (so there is generated subspace and “+”),
(5) if i ̸= j , then Si ∩ Sj = ∅ ,
(6) for every subspace W1 , W2 we have

dimW1 ∩W2 + dimW1 +W2 = dimW1 + dimW2,

(7) there are n + 2 points in X such that no n + 1 among them are in an (n − 1)-
dimensional subspace (these are points in general position).

Proposition 2.2. A projective space over any (non-commutative) field satisfies these
axioms.

Proposition 2.3. If W1 ⊂ W2 , then dimW1 ≤ dimW2 . dimW1 = dimW2 iff W1 = W2 .

We denote by pq the subspace {p}+ {q} .

Proposition 2.4. If W ̸= ∅, p /∈ W , then W + {p} =
⋃

q∈W pq .

Proposition 2.5. If W ⊂ X , then W is a subspace iff for every p, q ∈ W,p ̸= q we have
pq ⊂ W .

Proposition 2.6. Suppose (X,S−1,S0, . . . ,Sn) and (X,S ′
−1,S ′

0, . . . ,S ′
n) are two projec-

tive space structures on X . If S1 = S ′
1 , then the two structures are the same.

Definition 2.7. Let W ∈ Sk . For every 0 ≤ i ≤ k let SW
i = {V ∈ Si : V ⊂ W} .

Proposition 2.8. (W,SW
−1,SW

0 , . . . ,SW
k ) is a k -dimensional projective space.

Corollary 2.9. Every projective line has at least three points.

Definition 2.10. Let (X,S−1,S0, . . . ,Sn) an n-dimensional projective space. For every
W ∈ Si let

W⊥ = {H ∈ Sn−1 : W ⊂ H}.
Take X∗ = Sn−1 and S∗

i = {W⊥ : W ∈ Sn−i−1} . Then
(X∗,S∗

−1,S∗
0 , . . . ,S∗

n)

is called the dual projective space.

Proposition 2.11 (no proof). The space (X∗,S∗
−1,S∗

0 , . . . ,S∗
n) is an n-dimensional pro-

jective space.

The so-called principle of duality is that if we have a statement about a projective
space, then by taking the dual space we get a new statement for the dual projective space.
Then i-dimensional spaces are replaced by (n− i−1)-dimensional spaces, “∩” is replaced
by “+”, “⊂” is by “⊃”.

Theorem 2.12 (no proof). Desargues theorem follows for at least 3-dimensional projec-
tive spaces. For 2-dimensional projective spaces Desargues theorem does not hold neces-
sarily.

Definition 2.13. Let (X,S−1,S0, . . . ,Sn) and (X ′,S ′
−1,S ′

0, . . . ,S ′
n) be projective spaces.

The bijective map Φ: X → X ′ is a collineation if we have A ∈ Sk iff Φ(A) ∈ S ′
k .
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Proposition 2.14. Suppose Φ is a bijection. Then Φ is a collineation iff every 3 collinear
points have collinear Φ-images.

Theorem 2.15. In a projective space every two k -dimensional subspaces are isomorphic.

Theorem 2.16. Let X and X ′ be two n-dimensional projective spaces and let W ⊂ X
and W ′ ⊂ X ′ be k -dimensional subspaces for 2 ≤ k ≤ n−1. If W and W ′ are isomorphic,
then X and X ′ are also isomorphic.

We prove another theorem which implies this.

Theorem 2.17. Let H,H ′ be hyperplanes in X and X ′ , respectively, where dimX =
dimX ′ ≥ 3. Let Φ: H → H ′ be a collineation. Let A,B /∈ H , A ̸= B and A′, B′ /∈ H ′ ,
A′ ̸= B′ . Suppose AB ∩ H = C and A′B′ ∩ H ′ = C ′ with Φ(C) = C ′ . Then there

is a unique collineation Φ̃ : X → X ′ such that it is an extension of Φ and Φ̃(A) = A′ ,

Φ̃(B) = B′ .

Note that A′, B′, C ′ are collinear.

Definition 2.18. Let X be a projective plane, φ : X → X a collineation and e ∈ S1 a
line. If φ fixes all the points of e , then e is the axis of φ . If O ∈ X is such that every
line going through O is mapped into itself by φ , then O is a center of φ . If φ has axis
and center, then it is a central-axial collineation.

Proposition 2.19 (no proof). On a Desarguesian plane some φ has an axis iff φ has a
center.

Let e be a line on a plane X , let A,B,A′, B′ ∈ X−e , A ̸= B and A′ ̸= B′ . Suppose
that AB ∩ e = A′B′ ∩ e .

Theorem 2.20. There is a unique central-axial collineation φ : X → X with axis e and
φ(A) = A′ , φ(B) = B′ iff Desargues theorem holds on the plane X .

Theorem 2.21 (no proof). A Desarguesian plane is isomorphic to a projective plane over
a skew-field.

3. Projective spaces over fields

Definition 3.1. We denote the group of collineations of the n-dimensional projective
space FPn by coll(FPn).

Definition 3.2. For an A ∈ GL(n+ 1,F) let [A] : FPn → FPn denote the map

[v] 7→ [Av].

Proposition 3.3. The map [A] is a collineation because [A] maps k -dimensional pro-
jective subspaces to k -dimensional projective subspaces. Also [A ◦ B] = [A] ◦ [B] and
[A]−1 = [A−1]. The group PGL(n + 1,F) of the maps of the form [A] is a subgroup of
coll(FPn).

Definition 3.4. Let φ be an automorphism of the field F . Then [φ] : FPn → FPn is
defined by

(x1 : . . . : xn+1) 7→ (φ(x1) : . . . : φ(xn+1)).
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Proposition 3.5. For the map
φ̃ : Fn+1 → Fn+1

(x1, . . . , xn+1) 7→ (φ(x1), . . . , φ(xn+1))

we have φ̃(x+y) = φ̃(x)+φ̃(y) and φ̃(λx) = φ(λ)φ̃(x). Then φ̃ maps (k+1)-dimensional
linear subspaces to (k + 1)-dimensional linear subspaces so φ̃ induces a collineation

[φ] : FPn → FPn.

Also [φ1 ◦ φ2] = [φ1] ◦ [φ2] and [φ]−1 = [φ−1]. This group of the maps of the form [φ]

denoted by Ãut(F) is a subgroup of coll(FPn).

Lemma 3.6. Let A1, . . . , An+2 ∈ X and B1, . . . , Bn+2 ∈ X be points in general position
in an n-dimensional projective space. Then there is a unique φ ∈ PGL(n + 1,F) such
that for every 1 ≤ i ≤ n we have φ(Ai) = Bi .

Lemma 3.7 (sketchy proof). Let

A1 = (1 : 0 : . . . : 0), A2 = (0 : 1 : . . . : 0), . . . , An = (0 : . . . : 1 : 0),

O = (0 : . . . 0 : 1), U = (1 : . . . 1 : 1).

Let φ ∈ coll(FPn). Then φ ∈ Ãut(F) iff φ keeps the points A1, . . . , An, O, U fixed.

Theorem 3.8. We have

coll(FPn) = PGL(n+ 1,F)⋊ Ãut(F).
That is every φ ∈ coll(FPn) can be written uniquely as

φ = φ2 ◦ φ1

for φ1 ∈ Ãut(F) and φ2 ∈ PGL(n + 1,F), moreover PGL(n + 1,F) ◁ coll(FPn) and

Ãut(F) ∩ PGL(n+ 1,F) = {idFPn}.

Some parts of the proof follow from the next statements.

Definition 3.9. Let A,B,C,D be distinct points in a line. Suppose A = [a] and B = [b] .
Then suppose that C = [γ1a + γ2b] and D = [δ1a + δ2b] . The cross-ratio (ABCD) is
defined to be the field element

γ2
γ1

:
δ2
δ1
.

Proposition 3.10. The cross-ratio has the following properties.

(1) The cross-ratio does not depend on the representatives a and b.
(2)

(ABCD) =
1

(BACD)
=

1

(ABDC)
.

(3) (ABCD) is never equal to 0 or 1.
(4) If A,B,C are collinear distinct points and λ ∈ F, λ ̸= 0, 1, then there is a unique Dλ

with
(ABCD)λ = λ.

(5) If (ABCD) = (ABCD∗), then D = D∗ .
(6) For a line [a] + [b] let Pλ be [a+ λb] for λ ∈ F. Then

(PλPµPνPτ ) =
λ− ν

ν − µ
:
λ− τ

τ − µ
.
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(7) For φ1 ∈ PGL(n+ 1,F), φ2 ∈ Ãut(F), φ2 = [φ] we have
(a)

(φ1(A)φ1(B)φ1(C)φ1(D)) = (ABCD),

(b)
(φ2(A)φ2(B)φ2(C)φ2(D)) = φ((ABCD)).

Corollary 3.11. A collineation is in PGL(n+ 1,F) iff it preserves cross-ratio.

Proposition 3.12. The group PGL(n+ 1,F) is a normal subgroup of coll(FPn).

Theorem 3.13 (no proof). For arbitrary lines e, f and a map φ : e → f the following
are equivalent.

(a) φ can be extended to an element of PGL(n+ 1,F),
(b) φ keeps cross-ratio.

Proposition 3.14. Let A,B,C ∈ e and A′, B′, C ′ ∈ f be three-three distinct points in the
lines e and f . Then there is a unique cross-ratio keeping φ : e → f such that φ(A) = A′ ,
φ(B) = B′ , φ(C) = C ′ .

Proposition 3.15.

(1) For a line e the collineations φ : e → e keeping the cross-ratio form a group, it is
equal to PGL(2,F).

(2) The action of this group is simply transitive on the ordered triples of points of the line
e.

(3) A cross-ratio keeping map φ : e → e can have 0, 1 or 2 fixpoints if φ ̸= id.

Definition 3.16. A cross-ratio keeping map φ : e → e with 0 fixpoint is elliptic, with 1
fixpoint it is parabolic, with 2 fixpoints it is hyperbolic.

4. Cross-ratio keeping maps with charF ̸= 2.

Let e = [a] + [b] and then the points of e of the form [xa + yb] correspond to the
point (x : y) ∈ FP 1 . The cross-ratio keeping maps of FP 1 are[(

a b
c d

)]
where ad ̸= bc . Then[(

a b
c d

)]([(
x
y

)])
=

[(
a b
c d

)(
x
y

)]
.

If φ = [L] , then the fixpoints of φ are represented by the eigenvectors of L .

Proposition 4.1. If L =

[(
a b
c d

)]
, then according to the value of

D = (trL)2 − 4detL

we have that

(1) if D ̸= 0 and
√
D ∈ F exists, then φ is hyperbolic,

(2) if D ̸= 0 and
√
D ∈ F does not exists, then φ is elliptic,
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(3) if D = 0 and L has only one eigenvector, then φ is parabolic,
(4) if D = 0 and L has two independent eigenvectors, then φ = id.

Corollary 4.2. If F is algebraically closed, then there is no elliptic map in PGL(2,F).

Definition 4.3. The map φ is an involution if φ ̸= id and φ2 = id .

Theorem 4.4. Suppose φ corresponds to the matrix

(
a b
c d

)
. The map φ is an invo-

lution iff a+ d = 0.

Proposition 4.5. Involutions are not parabolic.

Corollary 4.6. If F is algebraically closed, then every involution is hyperbolic.

Theorem 4.7. Suppose A,A′, B,B′ ∈ e and {A,A′} ∩ {B,B′} = ∅. Then there is a
unique involution φ : e → e such that φ(A) = A′ and φ(B) = B′ .

Theorem 4.8. Every cross-ratio keeping map is a composition of two involutions.

5. Algebraic hypersurfaces

Definition 5.1. Let P be a degree ≤ d polynomial in n variables, that is

P (x1, . . . , xn) =
∑

i1+···+in≤d

ai1,...,inx
i1
1 · · ·xinn .

Their vector space over F is denoted by P≤d
n . The set of roots of P ∈ P≤d

n is the set

ΓP = {(x1, . . . , xn) ∈ Fn|P (x1, . . . , xn) = 0}.

A degree ≤ d affine algebraic hypersurface is the equivalence class of non-zero polynomials
in P≤d

n where two polynomials P1 and P2 are equivalent if P1 = λP2 for some λ ∈ F .
The space of such affine algebraic hypersurfaces is

P
(
P≤d
n

)
,

which is a projective space of dimension
(
n+d
d

)
− 1. The homogenization of P ∈ P≤d

n is
the polynomial of degree d in n+ 1 variables defined by

P (x1, . . . , xn+1) =
∑

i1+···+in≤d

ai1,...,inx
i1
1 · · ·xinn x

d−
∑n

j=1 ij
n+1 .

Such polynomials are denoted by Pd
n+1 . A projective algebraic hypersurface of degree

d is the equivalence class of a non-zero homogeneous polynomial in Pd
n+1 where two

polynomials P 1 and P 2 are equivalent if P 1 = λP 2 for some λ ∈ F . The space of such
projective algebraic hypersurfaces is the projective space

P
(
Pd

n+1

)
.

The set of roots of P ∈ Pd
n+1 is the set

ΓP = {(x1 : . . . : xn+1) ∈ FPn|P (x1, . . . , xn+1) = 0}.
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If

Fn ⊂ FPn

(x1, . . . , xn) 7→ (x1 : . . . : xn : 1)

is the embedding of the affine space Fn , then we have

ΓP ∩ Fn = ΓP .

Definition 5.2. A pencil of projective algebraic hypersurfces is a line in the projective

space P
(
Pd

n+1

)
. For two elements [P 1] and [P 2] in P

(
Pd

n+1

)
the elements [αP 1+βP 2]

form the pencil.

Theorem 5.3. For a given pencil a point A ∈ FPn is a point of every set of roots of the
elements in the pencil or A is in exactly only one such set of roots.

If d = 2, then the elements of the vector space P2
n+1 are in one-to-one correspondence

with the symmetric matrices made of their coefficients.

Definition 5.4. If A is such matrix, then the symmetric bilinear map {x, y} is defined
to be xTAy .

Notice that P2
n+1 is the quadratic form of {·, ·} .

Definition 5.5. The points [x] and [y] are conjugate with respect to the hypersurface
[A] if {x, y} = 0. In notation [x] ∼ [y] .

Of course [x] ∼ [x] iff [x] is in the hypersurface.

If [x] ∈ FPn , then the set of conjugate points is

{[y]|xTAy = 0}.
This is equal to the entire space FPn or to a hyperplane.

Definition 5.6. This hyperplane is called the polar of the point [x] . The surface [A] is
regular if detA ̸= 0. The point [x] is the pole of the hyperplane.

Proposition 5.7. Every hyperplane is the polar of exactly one point.

Theorem 5.8 (no proof). The relation between pole and polar for a regular 2-curve
is an isomorphism (collineation) between the projective space and its dual space. Such
isomorphism is called a correlation.

Definition 5.9. A tangent line is a line e which intersects a hypersurface in one single
point or it is fully contained in the hypersurface.

Theorem 5.10. Let [p] be a point in the regular hypersurface [A] and let e be a line
which goes through [p]. Then e is tangent to [A] iff e is contained in the polar of [p].

Definition 5.11. The tangent hyperplane of the regular [A] at [p] is the polar of [p] .

Theorem 5.12. Let P be a point in the projective space and let [A] be a regular hyper-
surface. The set of tangency points in [A] of the tangent lines of [A] going through P is
equal to the intersection of [A] and the polar of P .
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Definition 5.13. Two hypersurfaces [A] and [B] are projective equivalent if for some
L ∈ GL(n+ 1,F) and for some λ ∈ F , λ ̸= 0, we have

B = λLTAL.

Theorem 5.14 (From linear algebra). For every symmetric bilinear form there is a basis
such that the matrix of the form is diagonal.

Theorem 5.15. If A is a symmetric matrix, then the hypersurface [A] is projective
equivalent to a hypersurface given by a diagonal matrix. If F is algebraically closed, then
we can suppose that in the diagonal there are only 1 and 0. So then every hypersurface
is projective equivalent to

x21 + · · ·+ x2r = 0

for some r ≤ n+ 1 and two such hypersurfaces are equivalent iff the corresponding value
r is the same.

Corollary 5.16. For example, for n = 2 and F = C the possible hypersurfaces are
x21 = 0, x21 + x22 = 0 and the regular x21 + x22 + x23 = 0.

Proposition 5.17. If F = R, then there is a basis such that in the diagonal of the
corresponding LTAL there are only p copies of 1, r copies of −1 and some 0. The value
p+ r is invariant under projective equivalence. Every hypersurface is projective equivalent
to

x21 + · · ·+ x2p − x2p+1 − · · · − x2p+r = 0

for some p+ r ≤ n+1 and two such hypersurfaces are equivalent iff the corresponding set
{p, r} is the same.

Corollary 5.18. For example, for n = 2 and F = R the possible hypersurfaces are
x21 = 0, x21 + x22 = 0, the regular x21 + x22 + x23 = 0 and the regular x21 + x22 − x23 = 0. At
the embedding R2 ↪→ RP 2 , (x1, x2) 7→ (x1 : x2 : 1), the last one is a unit circle.

6. Spherical geometry

Let G be a sphere in R3 with radius r > 0 and center 0.

Definition 6.1. The straight lines in G are the circles whose planes go through 0.

If A,B ∈ G , then there is a unique line through them if −A ̸= B , that is A and B
are not antipodal. The intersection of two lines is a set of two antipodal points.

Definition 6.2. If A,B ∈ G , then their spherical distance d(A,B) is equal to the length
of the shorter arc connecting them on a connecting line.

Then d(A,B) = rα , where α is the angle ≤ π between the vectors OA and OB .
Three points on G which are not on one line determine a spherical triangle. Then there
are no antipodal points among them so the shortest connecting arcs exist and they are
the sides of the spherical triangle.

Definition 6.3. The angle between two arcs in G intersecting each other at a point is
equal to the angle between the two tangent vectors to these arcs at that point.



10 GEOMETRY NOTES

Let A,B,C ∈ G be the vertices of a spherical triangle. Then α at A is the same as
the angle between the two half-planes determined by the triples A , −A , B and A , −A ,
C .

Definition 6.4. For a spherical triangle A,B,C there is a spherical triangle A∗, B∗, C∗

defined by

(1) OA∗ ⊥ OB,OC ,
(2) OB∗ ⊥ OA,OC and
(3) OC∗ ⊥ OA,OB .

This is called the polar triangle A∗B∗C∗ of the triangle ABC . The vertices of the polar
triangle are determined by the condition that d(A,A∗) < rπ/2, d(B,B∗) < rπ/2 and
d(C,C∗) < rπ/2.

Proposition 6.5. The polar triangle of a polar triangle is the original triangle.

Proposition 6.6.

α∗ + a/r = β∗ + b/r = γ∗ + c/r = α+ a∗/r = β + b∗/r = γ + c∗/r.

In the following suppose that r = 1.

Proposition 6.7. If a, b, c denote the vectors OA, OB , OC , then the vectors pointing
to the vertices of the polar triangle are

a∗ =
b× c

|b× c|
, b∗ =

c× a

|c× a|
, c∗ =

a× b

|a× b|
.

Theorem 6.8. For a triangle we have

sin a

sinα
=

sin b

sinβ
=

sin c

sin γ
.

Theorem 6.9. For a triangle we have

cos c = cos a cos b+ sin a sin b cos γ.

Corollary 6.10. By applying this to the polar triangle we get

cos c∗ = cos a∗ cos b∗ + sin a∗ sin b∗ cos γ∗

which implies

− cos γ = cosα cosβ − sinα sinβ cos c

so the angles determine the side lengths a, b, c .

Theorem 6.11. For the side lengths of a triangle we have a+ b > c.

Corollary 6.12. We have a+ b+ c < 2π and α+ β + γ > π .

Definition 6.13. The value α+ β + γ − π is the spherical excess of the triangle.

Theorem 6.14. The area of a spherical triangle is equal to the spherical excess

α+ β + γ − π.
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7. Hyperbolic Geometry

In Rn ⊕ R we have the vectors (x, t) with x ∈ Rn , t ∈ R . The last coordinate
will help in computations though it is not a “time” coordinate in special relativity. Let
A ∈ R(n+1)×(n+1) be the diagonal matrix

1 0 · · · 0
0 1 0 · · ·

...
0

0 · · · 0 −1

 .

We define the scalar product

{ξ, η} = ξTAη,

{ξ, η} = ⟨x, y⟩ − tt′

if ξ = (x, t) and η = (y, t′). The subgroup of GL(n + 1,R) keeping {·, ·} fixed is called
Lorentz group. The group of the affin isomorphisms of the form v → Av + b , where A is
in the Lorentz group, is called the Poincaré group. The structure (Rn+1, {·, ·}) is called
Minkowski spacetime.

Definition 7.1. If ξ ∈ Rn+1 , then

(1) if {ξ, ξ} < 0, then ξ is time-like,
(2) if {ξ, ξ} > 0, then ξ is space-like,
(3) if {ξ, ξ} = 0, then ξ is light-like.

In special relativity a point (observer) can move only along paths γ(s) with time-
like tangent vectors γ′(s), their simultaneous world (existing at the same moment) is
infinitesimally the hyperplane {γ′(s), z} = 0.

For the points ξ = (x, t) and η = (y, t′) the equation

{η − ξ, η − ξ} = 0, that is |y − x|2 = (t′ − t)2,

where η varies and ξ is fixed, defines a cone called the light cone at ξ .

The path γ : [a, b] → Rn+1 is time-like (space-like) if γ′ is time-like (space-like, re-
spectively) all along.

Definition 7.2. The length of a space-like path is∫ b

a

√
{γ′(s), γ′(s)}ds,

this gives the length of objects in the 3-dimensional world at a moment. The so-called
proper time of a time-like path is∫ b

a

√
{−γ′(s),−γ′(s)}ds,

this gives the time passed along the path in the spacetime in the relative world of the
moving point.
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Theorem 7.3. The orbits of the Lorentz group are the hypersurfaces {ξ, ξ} = C for the
constant numbers C ̸= 0. If C < 0, then the orbit has two connected components, if
C > 0, then the orbit has one connected component. The light-cone {ξ, ξ} = 0 consists of
two orbits: the set {0} and the other points.

Definition 7.4. The n-dimensional hyperbolic space Hn is the quotient of the orbit

H̃n = {ξ ∈ Rn+1|{ξ, ξ} = −1}
by the relation (x, t) ∼ −(x, t). So Hn is connected and homeomorphic to Rn . Often we
consider Hn to be

H̃n
+ = {(x, t) ∈ H̃n|t > 0}.

Recall that a tangent line to an algebraic hypersurface of order 2 in Rn+1 is a line
in the affine space Rn+1 which is intersecting the surface in one point or contained in the
surface. The direction vectors of the tangent line (considered as having starting point in
the surface) are called tangent vectors.

Proposition 7.5. At a point ξ ∈ H̃n some η ∈ Rn+1 is a tangent vector to H̃n iff
{ξ, η} = 0.

Another definition for tangent vectors is the following.

Definition 7.6. The speed vectors of the curves going through a point in a hypersurface
form a vector space which is called the tangent space of the surface at the point.

Proposition 7.7. The previous statement holds with this definition of the tangent vectors
too.

Proposition 7.8. The vector space Vξ of the tangent vectors at a point ξ ∈ H̃n is a
Euclidean space with the restriction of the Lorentz metric {·, ·}, which is positive definite
on Vξ .

Definition 7.9. The k -dimensional subspaces of Hn are the sets of the form

H̃n ∩ Σ

factored out by the equivalence relation (x, t) ∼ −(x, t), where Σ is a (k+1)-dimensional

linear subspace of Rn+1 intersecting H̃n . The lines in the hyperbolic space Hn are the
1-dimensional subspaces.

Proposition 7.10. Through every two points ξ, η ∈ H̃n
+ there is a unique line. The

distance between ξ and η is defined to be the length of this arc (as we defined the length
of arcs which are space-like, in the integral we use {·, ·}). Let v be the tangent vector at
ξ to this arc, where {v, v} = 1. Then

γ(s) = (ch s)ξ + (sh s)v

is a parametrization of this arc by arc-length, that is the distance between γ(a) and γ(b)
is equal to b− a.

Corollary 7.11. The distance between γ(0) = ξ and γ(d) = η is equal to d− 0 = d . So

η = (chd)ξ + (sh d)v

and by applying {·, ξ} for both sides we get

{ξ, η} = −chd.
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Definition 7.12. Suppose two differentiable oriented arcs in H̃n
+ intersect each other at

p ∈ H̃n
+ . Then the angle between them is α for which 0 ≤ α ≤ π and

cosα = {v1, v2},

where v1,2 are the unit length tangent vectors to the two arcs (note that the tangent space
at p is a Euclidean space with {·, ·} as scalar product).

Theorem 7.13. For a triangle in the hyperbolic space we have

ch c = ch bcha− sh bsh a cos γ.

Corollary 7.14. For a triangle we have a+ b > c .

Proposition 7.15. For a triangle with an angle π/2 (opposite to its side c) we have

(1) ch c = ch a ch b,
(2) cosα = th b

th c = sh b
ch b

ch c
sh c ,

(3) sinα = sh a
sh c ,

(4) cosβ = sinα ch b.

Theorem 7.16. Let e ⊂ Hn be a line and p /∈ e be a point. Then there is a unique point
q ∈ e such that the distance bewteen p and q is minimal. Also there is a unique point
q′ ∈ e such that the line pq′ is perpendicular to e. Moreover we have

q = q′.

Theorem 7.17. In a triangle

sinα : sinβ : sin γ = sh a : sh b : sh c.

Theorem 7.18. In a triangle

cos γ = − cosα cosβ + sinα sinβch c.

Theorem 7.19. In a triangle α+ β + γ < π .

Definition 7.20. The hyperbolic space H̃n has a model in RPn called the Beltrami-
Cayley-Klein model. For a point ξ = (x, t) ∈ H̃n we take the point [ξ] ∈ RPn and its
representative x/t in the affine hyperplane with last coordinate = 1.

Lemma 7.21. In this way H̃n is mapped bijectively onto a usual open unit disk in Rn .
The k -dimensional hyperbolic subspaces correspond to k -dimensional projective subspaces
intersecting this unit disk.

Theorem 7.22. If we have a hyperbolic line and two points x′, y′ on it and we have the
corresponding two points x, y on the corresponding projective line e in the unit disk, then
for the distance d between x′ and y′ we have

d =
| ln(xyuv)|

2
,

where (· · · ) denotes cross ratio and the points u and v are the intersections of the line e
with the boundary circle of the unit disk in the order uxyv .
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8. Topology

Definition 8.1. Let X be a set and Ω ⊂ P(X) such that

(1) ∅ ∈ Ω and X ∈ Ω,
(2) if Aα ∈ Ω for arbitrary indices α , then ∪αAα ∈ Ω,
(3) if Ai ∈ Ω for finitely many indices 1 ≤ i ≤ n , then ∩1≤i≤nAi ∈ Ω.

The elements of Ω are called the open sets of the topological space (X,Ω). A set F ⊂ X
is called closed if X − F is open.

Of course instead of these conditions we have the corresponding conditions for closed
sets too (finite union and arbitrary intersection instead of finite intersection and arbitrary
union, etc).

Definition 8.2. A neighborhood of a point x ∈ X is an open set Ux such that x ∈ Ux . (In
another version of these definitions a neighborhood is just an arbitrary set which contains
such an open set Ux . The provable interesting statements are the same.) If A ⊂ X , then
the interior of A is

intA = ∪{B ∈ Ω : B ⊂ A},
that is the largest open set in A . An interior point of A is an x ∈ X such that for some
neighborhood Ux of x we have Ux ⊂ A . An exterior point of A is a point in X having a
neighborhood disjoint from A . The frontier of A is the set

frA = {x ∈ X : for every neighborhood Ux we have Ux ∩A ̸= ∅ and Ux ∩ (X −A) ̸= ∅}.
The closure of a set A is the set

A = ∩{F ⊂ X : A ⊂ F and F is closed},
that is the smallest closed set containing A . We denote the set of exterior points of A by
extA .

Proposition 8.3. Let X be a topological space.

(1) For every A ⊂ X the set of interior points of A is equal to intA.
(2) We have

expA = int(X −A).

(3) For the space X we have

X = intA ⊔ frA ⊔ extA,

(4)
A = A ∪ frA,

(5)
A = intA ⊔ frA,

(6) A consists of the points p such that every neighborhood Up intersects A.
(7) If A ⊂ X , then the collection of all the sets of the form A∩U , where U ∈ Ω, gives a

topology on A denoted by ΩA and called the subspace topology. The space (A,ΩA) is
called a topological subspace of X .

Definition 8.4. A basis of a topological space (X,Ω) is a collection Σ of open sets such
that every U ∈ Ω is a union of some elements in Σ.
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For example for a metric space (X, d) the collection of open balls with all the possible
radii around all the possible centers in X form a basis, to prove this the only thing which
is not obvious is that a finite intersection of unions of open balls is a union of open balls
too.

Definition 8.5. The topology on X obtained in this way is called the topology induced
by the metric d and it is denoted by Ωd .

Proposition 8.6. If (X, d) is a metric space and A ⊂ X , then we have

(Ωd)A = Ω(d|A).

Definition 8.7. A map f : X → Y between two topological spaces (X,Ω) and (Y, τ) is
continuous if for every U ∈ τ we have f−1(U) ∈ Ω, that is the f -preimage of every open
set is open. The map f is continuous at a given point x ∈ X if for every neighborhood
Vf(x) of f(x) there is a neighborhood Ux of x such that f(Ux) ⊂ Vf(x) .

Proposition 8.8. For a map f : X → Y the following are equivalent.

(1) The map f is continuous.
(2) Every closed set in Y has closed f -preimage.
(3) Every basis open set in Y has open f -preimage.
(4) The map f is continuous at every point.

Proposition 8.9. The composition of two continuous maps is continuous.

Definition 8.10. A sequence xn converges to a point in a topological space X if for
every neighborhood Ux of x there is an N ∈ N such that for n > N we have xn ∈ Ux .
The map f : X → Y between two topological spaces X and Y is sequentially continuous
if for every sequence xn converging to some x ∈ X the sequence f(xn) converges to f(x).

Proposition 8.11 (no proof). If a map f : X → Y is continuous, then f is sequentially
continuous too. In a metric space a sequentially continuous map is also continuous.

Definition 8.12. A map f : X → Y between topological spaces is a homeomorphism if
it is a continuous bijection and f−1 is also continuous. In other words a set A ⊂ X is
open iff f(A) is open. If f is a homeomorphism, then X and Y are homeomorphic.

Clearly being homeomorphic is an equivalence relation.

Definition 8.13. A path between two points p, q ∈ X is a continuous map s : [0, 1] → X
such that s(0) = p and s(1) = q . The space X is path-connected if all points p, q ∈ X
can be connected by a path. The concatenation s1s2 of two paths s1 : [0, 1] → X and
s2 : [0, 1] → X is the map defined by

s1s2(t) =

{
s1(2t) 0 ≤ t ≤ 1/2

s2(2t− 1) 1/2 ≤ t ≤ 1.

Proposition 8.14. Suppose that X = ∪n
i=1Fi , where all Fi are closed. Let f : X → Y

be a map such that all restrictions f |Fi are continuous. Then f is continuous.

Proposition 8.15. Let f : X → Y be a continuous map. If X is path-connected, then
the subspace f(X) is path-connected.

Definition 8.16. If for all points p, q ∈ X , where p ̸= q , there exist disjoint neighbor-
hoods Up and Uq , then the space is called a Hausdorff space. Another name for these
spaces is T2 space.
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Proposition 8.17. A metric space is a Hausdorff space.

Definition 8.18. The distance between a point x and a set A ⊂ X in a metric space
(X, d) is defined as

d(x,A) = inf{d(x, a) : a ∈ A}.

Proposition 8.19.

(1) We have d(x,A) = 0 iff x ∈ A.
(2) The map d(·, A) : X → [0,∞) is continuous.

So for non-empty disjoint closed subsets A,B ⊂ X the map

fA,B =
d(·, A)

d(·, A) + d(·, B)

is continuous and takes the values 0 and 1 on A and B , respectively.

Proposition 8.20. A metric space is normal, that is for all closed subsets A,B ⊂ X ,
where A∩B = ∅, there exist disjoint neighborhoods UA and UB of A and B , respectively.

Definition 8.21.

(1) A topological space X is compact if for every open covering {Uα}α∈A of X there
is a finite subcovering {Uαi}1≤i≤k .

(2) A space is a Lindelöf space if for every open covering {Uα}α∈A of X there is an
at most countable subcovering {Uαi}i∈N .

(3) A space is called M2 if it has a countable collection of basis open sets.
(4) A space X is called sequentially compact if every sequence an in X has a conver-

gent subsequence ank
with a limit point x0 ∈ X , that is for every neighborhood

Ux0 there is an N such that k ≥ N implies ank
∈ Ux0 .

Proposition 8.22. Let f : X → Y be a continuous map. If X is compact, then the
subspace f(X) is compact.

Proposition 8.23.

(1) A sequentially compact space X satisfies the Cantor property: if

F1 ⊃ F2 ⊃ · · · ⊃ · · ·
is a decreasing sequence of non-empty closed subsets in X , then ∩∞

i=1Fi ̸= ∅.
(2) Let X be a space which has the Cantor property. If there are countably many closed

subsets of X such that the intersections of any finitely many sets among them are
non-empty, then the intersection of all of these sets is also non-empty.

(3) If the space X has the Cantor property, then every countable open covering of X has
a finite subcovering.

(4) An M2 space is also Lindelöf.
(5) If a space satisfies the Cantor property and it is M2 , then it is compact.
(6) A sequentially compact metric space X is separable, that is, it has an at most countable

subset whose closure is equal to X .
(7) A separable metric space is M2 .

Definition 8.24. A subset A ⊂ X of a topological space is dense if its closure is equal
to X . This is equivalent to that A intersects every open subset of X as we can see easily.
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So in fact we proved that a sequentially compact metric space X has a countable
dense subset.

Theorem 8.25. A sequentially compact metric space is compact.

Definition 8.26. Let (X, d) be a metric space and A ⊂ X . Let ε > 0. The set A is
an ε-net if the union of the open balls centered at the points of A and having radius ε
covers X . The metric space (X, d) is totally bounded if for every ε > 0 it has an ε-net
consisting of finitely many points.

Proposition 8.27. A complete subspace of a metric space is closed. A closed subspace of
a complete metric space is complete.

Proposition 8.28 (no proof). If a metric space is compact, then it is complete.

Theorem 8.29. A metric space is compact iff it is complete and totally bounded. In a
complete metric space X a subset A is compact iff A is totally bounded and closed.

Later we will study the space of compact non-empty subsets of a metric space X and
show that it is a metric space too.

9. Quaternions

A complex number is a 2× 2 real matrix of the form(
x y
−y x

)
that we denote also by x+ iy .

Definition 9.1. A quaternion is a 2× 2 complex matrix of the form(
α β

−β α

)
and the set of quaternions is denoted by H .

The quaternions H is a skew-field (non-commutative field), the multiplication is the
matrix multiplication. If q ∈ H , q ̸= 0, then there exists a multiplicative inverse q−1 of
q . We have det q = |α|2 + |β|2 = 0 iff q = 0. Then

q−1 =
1

det q

(
. . .
. . .

)
for some 2× 2 complex matrix. We use the following notations.

1 =

(
1 0
0 1

)
i =

(
i 0
0 −i

)
j =

(
0 1
−1 0

)
k =

(
0 i
i 0

)
In terms of 4× 4 real matrices we have

1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 i =


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0
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j =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 k =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 .

Then 1, i, j, k is a basis in H as in a vector space over R . As a vector space over R
the quaternions H is isomorphic to R4 . If q = x+ iy+ jz+ kw , then we have x+ iy = α
and z + iw = β . We have

|q|2 = x2 + y2 + z2 + w2 = |α|2 + |β|2 = det q.

Then

|q1q2| = |q1||q2|

so the unit length quaternions form a subgroup of the multiplicative group H∗ of H .

The real numbers R is a linear subspace of H by the inclusion

x 7→
(

x 0
0 x

)
.

The orthogonal complement of this R is denoted by R⊥ and it is equal to R3 , that is the
space of purely imaginary quaternions generated by i, j, k . If q = x+ iy + jz + kw , then
Re(q) = x is the real part of q and Im(q) = iy + jz + kw is the imaginary part of q .
Then

|q|2 = x2 − Im(q)2

since Im(q)2 = −(y2 + z2 + w2). We orient R3 so that i, j, k is the positive orientation.

Proposition 9.2. If a, b ∈ R3 , then for the multiplication of purely imaginary quaternions
we have

ab = −⟨a, b⟩+ a× b.

The real part of ab is equal to −⟨a, b⟩ and the imaginary part of ab is equal to a× b.

Proposition 9.3. Let q ∈ H. Then q ∈ R iff for every p ∈ H the equation qp = pq
holds. So the center of H is R.

For a q ∈ H , q ̸= 0, we define the map

ϱq : H → H

by

x 7→ qxq−1.

Then ϱ is a linear map over R and it is orthogonal:

|ϱq(x)| = |q||x||q−1| = |x|

so ϱq ∈ O(4).

Proposition 9.4. We have det ϱq = 1 so ϱq ∈ SO(4).
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The restriction ϱq|R is equal to the identity map idR so ϱq keeps fixed R⊥ too. We
denote ϱq|R3 by ϱ̂q . The matrix of ϱq in the basis 1, i, j, k is equal to

1 0 0 0
0
0
0

[ϱ̂q]i,j,k


which implies that ϱ̂q ∈ SO(3).

Theorem 9.5. The map

ϱ̂ : H∗ → SO(3)

q 7→ ϱ̂q

is a group homomorphism. Its kernel is isomorphic to the non-zero real numbers R∗ . The
map ϱ̂ is surjective. So we have the group isomorphism

H∗/R∗ ∼= SO(3).

The restriction ϱ̂ to the group S3 of quaternions of length 1 is also surjective. So we have

S3/{1,−1} ∼= SO(3).

It’s easy to show that this implies that SO(3) is homeomorphic to RP 3 .

Note that the unit sphere S3 is equal to the set{(
α β

−β α

)
∈ C2×2 : |α|2 + |β|2 = 1

}
.

Recall that U(n) = {A ∈ Cn×n : AA∗ = I} and SU(n) denotes the subgroup of U(n)
consisting of the matrices of determinant equal to 1.

Proposition 9.6. We have S3 = SU(2).

For q1, q2 ∈ S3 we define the map Φq1,q2(x) = q1xq
−1
2 . Then we have

Φ: S3 × S3 → O(4)

(q1, q2) 7→ Φq1,q2

since |q1xq−1
2 | = |q1||x||q−1

2 | = |x| .

Proposition 9.7. Φ maps into SO(4).

Proposition 9.8. The map Φ is surjective and it is a group homomorphism between the
groups S3 × S3 and SO(4). The kernel of Φ is the group {(−1,−1), (1, 1)} having two
elements. We have the group isomorphism

SO(4) ∼= S3 × S3/{(−1,−1), (1, 1)}.
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10. Compact subsets in a metric space and Hausdorff metric

For a metric space (X, d) and a subset A ⊂ X and for an ε > 0 we have the notation

B(A, ε) = {x ∈ X| there is a y ∈ A such that d(x, y) < ε}.
Sometimes we write BX(A, ε) instead of this to show the metric d . Of course B(a, ε) for
a point a ∈ X is equal to the open ball around a with radius ε . Recall that in a metric
space a compact subset is also closed and bounded.

Definition 10.1. Let K1,K2 ⊂ X be compact subsets. Then there is an ε > 0 such that

K1 ⊂ B(K2, ε) and K2 ⊂ B(K1, ε).

The infimum of these ε is denoted by dH(K1,K2) and called the Hausdorff distance of
K1 and K2 .

Denote the collection of non-empty compact subsets of X by K .

Proposition 10.2. The map dH : K ×K → [0,∞) is a metric on the set K .

Theorem 10.3. Suppose the space (X, d) is complete and suppose that in X all the closed
balls are compact. Then the space (K, dH) is complete.

Theorem 10.4 (no proof). Suppose that (X, d) is compact. Then (K, dH) is compact.

Since now let X be the Euclidean space Rn . Then (K, dH) is complete. Denote by
C the collection of convex sets in K .

Proposition 10.5 (no proof). The space C is closed in K .

A simple corollary is that the metric space (C, dH |C) is complete.

Theorem 10.6. Let Ki ∈ K be a sequence. Suppose that all Ki is in a given closed ball.
Then there is a subsequence Knk

which converges to some K ∈ K . If Ki ∈ C , then K ∈ C
too.

Proposition 10.7. Let A,B,C ∈ C . Suppose C ⊂ intB and B ⊂ intA. Then the set

{K ∈ C : C ⊂ K ⊂ A}
contains an open neighborhood of B in the metric space (C, dH |C).

Recall that in an affine space a set is called a polytope if it is a convex hull of finitely
many points. Let P denote the set of convex polytopes in Rn .

Proposition 10.8. The subset P of C is dense in C .
Proposition 10.9. Let η > 1, K ∈ C , a ∈ intK and let Φa,η be the homothety with ratio
η and center a. Then there is a polytope P ∈ P such that P ⊂ K ⊂ Φa,η(P ).

With a more careful proof it is possible to get a polytope P ∈ P such that P ⊂ intK
and K ⊂ intΦa,η(P ), for this in the proof of the previous Proposition 10.8 we need to
reach P ⊂ intK instead of P ⊂ K .

Proposition 10.10. The n-dimensional Lebesgue measure λn : C → R is continuous on
the space (C, dH |C).
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10.1. Blaschke theorem, isodiametric inequality and Minkowski theorem. Let
K ⊂ Rn be a compact subset and H ⊂ Rn be a hyperplane. Let x ∈ H and denote by
ex the line perpendicular to H such that ex ∩H = x . Let Ix ⊂ ex be a compact interval
such that for the Lebesgue measure λ1 we have λ1(Ix) = λ1(ex∩K) and the middle point
of Ix is equal to x . Let Ix = ∅ if ex ∩K = ∅ .
Definition 10.11. The set

⋃
x∈H Ix is called the Steiner symmetrization of K with

respect to H and it is denoted by StH(K).

Proposition 10.12 (no proof). The Steiner symmetrization StH(K) of a compact set
K is compact. If K is convex, then StH(K) is also convex. By Fubini theorem λn(K) =
λn(StH(K)).

Proposition 10.13. For the diameters of K and StH(K) we have

diamK ≥ diamStH(K).

Theorem 10.14 (Blaschke). Suppose A is a non-empty closed subset of K . Also suppose
that there is a p ∈ Rn such that for every hyperplane containing p and for every K ∈ A
we have StH(K) ∈ A. Then A contains a compact ball centered at p with some radius
≥ 0.

Theorem 10.15 (Isodiametric inequality of Bieberbach). Let β(n) denote the volume of
the ball of unit radius in Rn . If K is a compact subset of Rn , then

λn(K) ≤ β(n)

(
diamK

2

)n

.

In other words among compact sets with a given diameter the ball has the largest volume.

In the following the symbols λn denote variables of polynomials so we denote the
Lebesgue measure (volume) of a Lebesgue measurable set A ⊂ Rn by Vn(A).

Theorem 10.16 (Minkowski). Let K1, . . . ,Km ∈ C and let λ1, . . . , λm ≥ 0. Then the
volume Vn(

∑m
i=1 λiKi) is an at most degree n homogeneous polynomial of the variables

λ1, . . . , λm .

Definition 10.17. Let K1, . . . ,Km ∈ C and let λ1, . . . , λm ≥ 0. Then

Vn(
m∑
i=1

λiKi) =
m∑

i1=1

m∑
i2=1

· · ·
m∑

in=1

wi1,i2,...,inλi1 · · ·λin ,

where the coefficients wi1,i2,...,in are uniquely determined if we suppose that they are
symmetric:

wi1,i2,...,in = wiσ(1),iσ(2),...,iσ(n)

for every permutation σ ∈ Sn . The numbers

wi1,i2,...,in

are called the mixed volumes of the convex sets K1, . . . ,Km .

Corollary 10.18. For a subset A ⊂ Rn let

B(A, λ) = {x ∈ Rn| there is a y ∈ A such that d(x, y) ≤ λ}.
Of course B(0, λ) ∈ C . If K ∈ C and λ, µ ≥ 0, then Vn(B(µK, λ)) = Vn(µK +λB(0, 1)) =
vnµ

0λn + · · · + v0µ
nλ0 , where v1, . . . , vn ∈ R . For µ = 1, λ = 0 we get Vn(K) = v0 and

for µ = 0, λ = 1 we get Vn(B(0, 1)) = β(n) = vn .
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Corollary 10.19. If K ∈ C and λ ≥ 0, then

Vn(B(K,λ)) = vnλ
n + · · ·+ v1λ+ v0,

where v0 = Vn(K) and vn = Vn(B(0, 1)).

10.2. Isoperimetric inequality. For a K ∈ C in this way we have the numbers vi(K) ∈
R , i = 0, . . . n , so we have the functions

vi : C → R
for i = 0, . . . n .

Lemma 10.20. Let K,L ∈ K . If we define

d′H(K,L) = inf{r > 0|K ⊂ B(L, r) and L ⊂ B(K, r)},
then we have

d′H(K,L) = dH(K,L).

Lemma 10.21. Let λ ≥ 0. Then the map Φ: C → C , K 7→ B(K,λ), is continuous with
respect to the Hausdorff metric.

Proof. Of course B(K,λ) = K + λB(0, 1). Let η > 0 and λ ≥ 0. Suppose that L ⊂
B(K, η). Then

B(L, λ) ⊂ B(B(K, η), λ) = B(K, η) + λB(0, 1) = K + ηB(0, 1) + λB(0, 1) =
K + λB(0, 1) + ηB(0, 1) = B(K,λ) + ηB(0, 1) = B(B(K,λ), η).

So if also K ⊂ B(L, η), then analogously

B(K,λ) ⊂ B(B(L, λ), η).
This means that if we find the infimum of all η > 0 such that

L ⊂ B(K, η) and K ⊂ B(L, η),
then it is greater or equal than the infimum of all η > 0 such that

B(L, λ) ⊂ B(B(K,λ), η) and B(K,λ) ⊂ B(B(L, λ), η).
So

dH(B(K,λ),B(L, λ)) ≤ dH(K,L).

This means that if an upper limit is given for the distance between B(L, λ) and B(K,λ),
then by choosing dH(K,L) small enough, the distance dH(B(L, λ),B(K,λ)) is also small
enough. In other words, the map Φ is continuous. □

Proposition 10.22. All functions vk : C → R, k = 0, . . . , n, are continuous.

Proof. For every i ≥ 0 let gi : C → R be the function defined by

gi(K) = Vn(B(K, i))

for K ∈ C . Of course the function gi is continuous because it is the composition of the
continuous maps Φ (for λ = i) and Vn . We are able to write the values vj(K) as some
algebraic expressions of all gi(K), this proves the statement. To see this let us consider
the system of linear equations

x0 = g0(K)
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x0 + · · ·+ xn = g1(K)

x0 + 2x1 + · · ·+ 2nxn = g2(K)

...

x0 + nx1 + · · ·+ nnxn = gn(K)

with coefficient matrix 
1 0 0 · · · 0
1 1 1 · · · 1
1 2 22 · · · 2n

...
1 n n2 · · · nn


whose determinant is non-zero (it is a Vandermonde matrix). So we can write the unique
solutions

x0, . . . , xn

as some algebraic expressions of the numbers g0(K), . . . , gn(K) by Cramer’s rule. Hence
x0, . . . , xn depend continuously on K ∈ C . On the other hand, if we consider the polyno-
mial

Vn(B(K,λ))

at λ = i , then we get

Vn(B(K, i)) = v0 + v1i+ · · ·+ vni
n

but since

gi(K) = Vn(B(K, i))

and the solution to the system of linear equations is unique, we get that

xk = vk

for k = 1, . . . , n . So every vk is a continuous function on C . □

Proposition 10.23. The Steiner symmetrization does not increase v1 . So if K ∈ C , then
v1(StH(K)) ≤ v1(K) for all hyperplanes H .

Proof. Note that StH(K) is also compact and convex (we did not prove these). Let ε > 0
and let H be an arbitrary hyperplane. By using Lemma 10.24 we have

B(StH(K), ε) = StH(K) + εB(0, 1) = StH(K) + εStH(B(0, 1)) ⊂ StH(K + εB(0, 1)) =
StH(B(K, ε)).

Since the volume Vn is monotone (larger set has larger volume), we have that

Vn(B(StH(K), ε)) ≤ Vn(StH(B(K, ε))).

Also Vn(StH(B(K, ε))) = Vn(B(K, ε)) because Steiner symmetrization keeps the volume
(Lebesgue measure). We have that

Vn(B(StH(K), ε)) = Vn(StH(K)) + εv1(StH(K)) + ε2Nε

and

Vn(B(K, ε)) = Vn(K) + εv1(K) + ε2Mε,

where Nε and Mε are bounded as ε → 0.
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Of course Vn(StH(K)) = Vn(K) so the inequality

Vn(B(StH(K), ε)) ≤ Vn(B(K, ε))

yields
εv1(StH(K)) + ε2Nε ≤ εv1(K) + ε2Mε

and by dividing by ε and taking the limit ε → 0 finally we get

v1(StH(K)) ≤ v1(K).

□

Lemma 10.24. Let K,L ∈ C and H be a hyperplane. Then

(1) for every 0 ≤ µ ≤ 1 we have

µStH(K) + (1− µ)StH(L) ⊂ StH(µK + (1− µ)L)

and
(2) for every µ, λ > 0 we have

µStH(K) + λStH(L) ⊂ StH(µK + λL).

Proof. The statement follows from an easy geometrical argument. □

Theorem 10.25 (Isoperimetric inequality). Let K ∈ C and denote by β(n) the volume
of B(0, 1). Then we have

v1(K)

nβ(n)
≥

(
Vn(K)

β(n)

)n−1
n

.

Proof. Take the set

A = {L ∈ C |Vn(K) = Vn(L) and v1(L) ≤ v1(K)}.
Then A ̸= ∅ because K ∈ A . Also A is a closed subset of the metric space (K, dH)
because the limit set in K of a convergent sequence in A is in C because C is a closed
subspace of K and the conditions defining the set A hold also for the limit set because
the functions Vn and v1 are continuous (hence sequentially continuous too) on C .

Finally, the set A is closed under Steiner symmetrization by the proved statement that
v1 is not increased then and by the unproved statement that the Steiner symmetrization
of a convex set is convex.

Hence we can apply Blaschke theorem and we get that A contains a closed ball B(a, r)
of radius r ≥ 0 and with a center a ∈ Rn .

Then we have
v1(K)

nβ(n)
≥ v1(B(a, r))

nβ(n)

because of the condition about v1 of the sets in A . We know that in general

Vn(B(K, ε))− Vn(K)

ε
= v1(K) + εNε

with bounded Nε as ε → 0. For K = B(a, r)
Vn(B(B(a, r), ε)) = Vn(B(a, r + ε)) = β(n)(r + ε)n
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so

Vn(B(B(a, r), ε))− Vn(B(a, r))
ε

=
β(n)(r + ε)n − β(n)rn

ε
= β(n)nrn−1 + εMε

with bounded Mε as ε → 0 which all together by ε → 0 imply that

v1(B(a, r)) = β(n)nrn−1.

So
v1(B(a, r))
nβ(n)

=
β(n)nrn−1

nβ(n)
= rn−1 =

(
β(n)rn

β(n)

)n−1
n

=

(
Vn(K)

β(n)

)n−1
n

where the last equation follows from β(n)rn = Vn(B(a, r)) = Vn(K) as the conditions for
elements in A require. Hence we obtain

v1(K)

nβ(n)
≥

(
Vn(K)

β(n)

)n−1
n

.

□


