
ON THE POWER OF LINEAR DEPENDENCIES

IMRE BÁRÁNY

Abstract. Simple as they may be, linear dependencies have proved
very useful in many ways. In this survey several geometric applications
of linear dependencies are discussed, focusing on rearrangements of sums
and on sums with ±1 signs.

1. Introduction

Linear algebra is a basic and powerful tool in many areas of mathematics.
In combinatorics, for instance, there are several cases when the size of a set
can be bounded by a number n because the elements of the set are associated
with vectors in Rn, and these vectors turn out to be linearly independent.
The excellent book [1] by Babai and Frankl (which is unfortunately, still
unpublished) contains thousands of beautiful applications of the so-called
linear algebra method.

This article describes another kind of use of linear algebra, this time in
geometry. The method uses linear dependencies and is often referred to as
the method of floating variables. The same method is used at other places
as well, for instance in discrepancy theory, in the Beck-Fiala theorem [7] or
[8], and in probability theory, [9]. Here we focus on rearrangement of sums
and on sums with ±1 signs.

In what follows the setting is the d-dimensional Euclidean space Rd, to-
gether with a (Minkowski) norm, || · || whose unit ball is denoted by B or Bd.
We write N for the set of natural numbers and [n] for the set {1, 2, . . . , n}
where n ∈ N. We assume that V ⊂ B is a finite set.

2. The Steinitz lemma

Assume V ⊂ B is finite and
∑

v∈V v = 0. The question, due to Riemann
and Lévy, is whether there is an ordering, v1, v2, . . . , vn, of the elements of
V such that all partial sums along this order are bounded by a number
that only depends on B. The answer is yes. An incomplete proof came from
Lévy [17] in 1905. The first complete proof, from 1913, is due to Steinitz [20],
and that’s why it is usually called the Steinitz Lemma.

Theorem 2.1. Given a finite set V ⊂ B with
∑

v∈V v = 0, where B is the
unit ball of a norm in Rd, there is an ordering v1, v2, . . . , vn of the elements
of V such that for all k ∈ [n]

k∑

1

vi ∈ dB.

So all partial sums are contained in a blown-up copy of the unit ball, with
blow-up factor d. We will return to the value of the blow-up factor later.
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Let’s see first the proof of Theorem 2.1, which is our first application of
linear dependencies.

Proof. The key step is the construction of sets Vd+1 ⊂ · · · ⊂ Vn−1 ⊂ Vn =
V where |Vk| = k, together with functions αk : Vk → [0, 1] satisfying

∑

v∈Vk

αk(v)v = 0

∑

v∈Vk

αk(v) = k − d.

So the functions αk(.) are linear dependencies on Vk, with coefficients in
[0, 1] that sum to k − d.

The construction goes by backward induction. The starting case k = n
is easy: Vn = V and αn = (n− d)/n satisfy the requirements. Assume now
that Vk and αk have been constructed, and consider the auxiliary system∑

v∈Vk

β(v)v = 0,

∑

v∈Vk

β(v) = k − 1− d,

0 ≤ β(v) ≤ 1 for all v ∈ Vk.

Write P for the set of functions β : Vk → [0, 1] satisfying this auxiliary
system. The elements of P can and will be regarded as vectors in Rk whose
components are indexed by the elements of Vk.

Note that P is non-empty since β(v) = k−1−d
k−d αk(v) belongs to P . Thus P

is a convex polytope, lying in the unit cube of Rk. Let β∗(.) be an extreme
point of P .

We claim now that β∗(v) = 0 for some v ∈ Vk. Indeed, assume β∗(v) > 0
for all v ∈ Vk. The auxiliary system has d + 1 equations and k variables, so
at least k − (d + 1) of the inequalities β∗(v) ≤ 1 are satisfied as equalities
(the inequalities β∗(v) ≥ 0 are all strict). Then

∑
v∈Vk

β∗(v) > k − d − 1
(we use k > d + 1 here), which contradicts one of the conditions defining P .

Let v∗ ∈ Vk be an element with β∗(v∗) = 0, and define Vk−1 = Vk \ {v∗}
and αk−1(v) = β∗(v) for all v ∈ Vk−1. All conditions are satisfied for Vk−1

and αk−1. The construction is finished.
Now we ready to order the elements of V . For k = n, n− 1, . . . , d + 2 we

set, quite naturally,
vk = Vk \ Vk−1.

The remaining d + 1 vectors are ordered arbitrarily.
We check, finally, that all partial sums are contained in dB. This is trivial

for the first d partial sums. Assume now that k ≥ d + 1.
k∑

1

vi =
∑

v∈Vk

v =
∑

v∈Vk

v −
∑

v∈Vk

αk(v)v =
∑

v∈Vk

(1− αk(v))v.

Taking norms and using that 1− αk(v) ≥ 0 and ||v|| ≤ 1 gives

||
k∑

1

vi|| ≤
∑

v∈Vk

(1− αk(v)) = k − (k − d) = d. ¤
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This splendid proof, due to Grinberg and Sevastyanov [13], is a stream-
lined version of an earlier one by Sevastyanov [21]. Steinitz’s original proof
also used linear dependencies, and gave constant 2d instead of d. Yet an-
other proof, from Bárány [3], using linear dependencies again, gave blow-up
factor 1.5d.

It comes as a surprise that the norm plays a rather marginal role. I
describe now another proof, due to Kadets [15], in which the norm is im-
portant. The proof works for the Euclidean norm B2 and gives the weaker
blow-up factor Cd =

√
(4d − 1)/3. It goes by induction on dimension and

the case d = 1 is very simple: one takes positive elements as long as the sum
stays below 1, then one takes negative elements as long as the sum is above
−1, and so on. For the induction step d − 1 → d, let V ⊂ B2 be a finite
set with

∑
v∈V v = 0. We choose a subset W ⊂ V for which ||∑v∈W v||

is maximal among all subsets of V , and set a =
∑

v∈W v. For v ∈ V let v
denote its orthogonal projection onto the subspace A orthogonal to a, and
set va = v − v. It follows from the maximality of W that, for all v ∈ W , va

points the same direction as a, and, for all v /∈ W , va points the opposite
direction. Further, each v ∈ A and has Euclidean norm at most one in A
which is the d− 1-dimensional Euclidean space. Also,

∑
v∈W v = 0. By the

induction hypothesis, there is an ordering v1, v2 . . . of the vectors in W with
all partial sums of the vi having Euclidean length at most Cd−1. The same
applies to the set V \W , so its elements can be ordered as w1, w2, . . . with all
partial sums of the wj shorter than or equal to Cd−1. The sequences v1, . . .
and w1, . . . are then interlaced making sure (using the method given for the
case d = 1) that the absolute value of the a-component of each partial sum
is at most 1. Then the square of each partial sum of the interlaced sequence
is at most 4C2

d−1 + 1 = C2
d as one can easily see.

This is quite a neat proof, yet the other one is superior: it works for all
(even non-symmetric) norms, gives a far better bound, and is much more
elegant, as far as I can judge.

3. The story of the Steinitz lemma

The story actually began with Riemann who showed that a conditionally
convergent series (of real numbers) can be made to converge, by a suitable
rearrangement of the series, to any real number. What happens with a con-
ditionally convergent series of d-dimensional vectors? Let U = {u1, u2, . . . }
be the vectors in the series, and let σU be the set of points that it can be
made to converge by rearrangements. It turns out that σU is always an
affine subspace of Rd. For d = 1 this is equivalent to Riemann’s result. In
higher dimensions the problem quickly reduces to the statement of what
is called now Steinitz Lemma, with arbitrary norm and arbitrary constant
depending only on dimension. This is what Steinitz proved in [20].

The smallest constant the Steinitz lemma holds with is a number, to be
denoted by S(B), that depends only on the unit ball B. It is called the
Steinitz constant of B. Theorem 2.1 says that S(B) ≤ d for all B in Rd.
This norm need not be symmetric: a quick look at the last step of the proof
shows that ||λv|| ≤ λ||v|| was only used with λ ≥ 0. For non-symmetric
norms, the estimate S(B) ≤ d is best possible. In the example proving this,
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B is a simplex in Rd with its center of gravity at the origin, and V consists
of the vectors pointing to the vertices of this simplex.

Yet, of course, S(B) might be much smaller than d for any particular
norm. Write Bp for the unit ball of the `p norm in Rd, or Bd

p if we wish to
stress the dimension of the underlying space. It is easy to see that S(B1) ≥
d/2, so the order of magnitude for symmetric norms cannot be improved.
In 1931 Bergström [9] proved that S(B2) =

√
5/2 for d = 2, a surprisingly

precise result. The lower bound comes from a construction consisting of n/2
copies of the vector (

√
1− t2,−t), n/2 copies of the vector (−√1− t2,−t)

where t = 1/n, and the vector (0, 1). This is essentially n/2 copies of a
slightly modified e1 and −e1 compensated by e2. In higher dimensions, the
analogous example shows that S(Bd

2) ≥ √
d + 3/2. It has been conjectured

that
S(Bd

2) = O(d1/2).

But even the much weaker S(Bd
2) = o(d) estimate seems to be out of reach

though quite a few mathematicians have tried.
The case of the maximum norm, B∞, is also open. An example can be

built from a d+1 by d+1 Hadamard matrix: its first row is the all 1 vector,
and the vectors in V are the d + 1 columns of this matrix with the first
coordinate deleted. It is not hard to see that the squared Euclidean norm of
the sum of k vectors from V is k(d+1−k). This shows, when k = (d+1)/2,
that one coordinate of the sum is at least (d + 1)/

√
4d in absolute value,

implying that the conjecture,

S(Bd
∞) = O(d1/2),

if true, is best possible. But again, there is no proof in sight even for the
much weaker S(Bd∞) = o(d) estimate.

The Steinitz Lemma has many applications. It is used, or can be used
to prove Lyapunov’s theorem stating that the image of an atomless vector
valued measure is always convex. In Operations Research, the Lemma has
been applied to scheduling problems. In particular, it was used to find
optimal flow shop and job shop schedules in polynomial time under some
mild conditions, although these scheduling problems are NP-hard in general.
See the excellent survey by Sevastyanov [22], or some of the original works
[3], [21]. Halperin and Ando [14] cite 290 papers related to the Steinitz
Lemma up to 1989, by now the number must be much higher.

4. Signed sum

In this section V ⊂ B is a finite set, again, and we want to find signs
ε(v) = 1 or −1 for all v ∈ V such that

∑
v∈V ε(v)v is not too large. In the

following theorem, which is from Bárány, Grinberg [4], we work with the
Euclidean ball B2.

Theorem 4.1. Under the above conditions there are signs ε(v) such that
∑

v∈V

ε(v)v ∈
√

dB.
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The example when V consists of d pairwise orthogonal unit vectors shows
that the above estimate is best possible.

Proof. The proof is in two steps. For the first one, consider the set of
linear dependencies α : V → [−1, 1], that is, functions satisfying

∑

v∈V

α(v)v = 0 and − 1 ≤ α(v) ≤ 1 for all v ∈ V.

These functions form a convex polytope in the ±1 cube of RV , of dimension
at least n−d (where |V | = n). This polytope is non-empty since it contains
the origin. At an extreme point, α∗ say, of this polytope many α∗(v) ∈
{−1, 1}. Precisely, the set of vectors v ∈ V with −1 < α∗(v) < 1 are linearly
independent since otherwise α∗ is not an extreme point. For simpler notation
we assume that this happens for the vectors v1, . . . , vk, where, obviously,
k ≤ d. For the rest of the vectors vi (with i ∈ {k + 1, . . . , n}), we have
α∗(vi) = αi ∈ {−1, 1}.

Define now u =
∑n

k+1 αivi and set

(4.1) Q =

{
k∑

1

βivi : βi ∈ [−1, 1]

}
.

Clearly, Q is a parallelotope whose sides have Euclidean length at most 2.
What we have shown so far is that 0 ∈ u + Q.

The second step in the proof is geometric. We claim that if a point a lies
in a parallelotope Q defined by k linearly independent vectors v1, . . . , vk as
in (4.1) with ||vi|| ≤ 1, then Q has a vertex at distance at most

√
k from a.

The theorem follows from this since k ≤ d.
We prove the claim by induction on k. The case k = 1 is trivial. In the

induction step k−1 → k, we assume that a is in the interior of Q as otherwise
a is on a facet of Q which is itself a parallelotope of dimension k−1 and the
induction works. Now put a Euclidean ball, B(a), centered at a, into Q and
increase its radius as long as you can with B(a) still remaining in Q. The
maximal B(a) contained in Q has a point, say b, on the boundary of Q. Then
b is contained in a face F of Q which is a k − 1-dimensional parallelotope,
whose defining vectors are of unit length at most. By induction, F has a
vertex, w say, at distance at most

√
k − 1 from b. Of course, w is a vertex

of Q as well. As B(a) touches F at b, a − b is orthogonal to F . Further,
||a − b|| ≤ 1 as otherwise a ball of radius larger than 1 would be contained
in Q which is impossible. Now

||a− w||2 = (a− w)2 = (a− b)2 + (b− w)2 ≤ 1 + (k − 1) = k,

finishing the proof. ¤
The first step of the proof works for every norm but the second, more

geometric step, does not. In general, in the second step one can only guar-
antee distance d from a vertex. A point a in a parallelotope Q of side length
2 in norm B, may be far away from all vertices of Q. The straightforward
example of the `1 norm shows that every vertex of the ±1 cube in Rd is at
distance d from the origin.

The situation is better for the B∞ norm, because then every point of the
parallelotope Q is closer than 6

√
d from some of its vertices. This is a result
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due to Spencer [19] and, independently to Gluskin[12], who was relying on
earlier work of Kashin [16]. It is an interesting fact that Spencer finds the
signs by a combination of the pigeon hole principle and random methods,
while Gluskin and Kashin use volume estimates and Minkowski’s theorem
on lattice points in 0-symmetric convex bodies.

In connection with this we mention a striking question of J Komlós (cf.
[2] or [19]). He asks whether there is a universal constant C such that for
every d ≥ 1 and for every finite V ⊂ Bd

2 , there are signs ε(v) for each v ∈ V
such that

∑
v∈V ε(v)v ∈ CBd∞. The best result so far in this direction is that

of Banaszczyk [2]. He showed the existence of signs such that the signed
sum lies in C(d)Bd∞ where the constant C(d) is of order

√
log d.

5. Signing vector sequences

In this section U will denote a sequence, u1, u2, . . . from the unit ball
B ⊂ Rd. This time B is symmetric, and the sequence may be finite or
infinite. We wish to find signs εi ∈ {−1, +1} such that all partial sums∑n

1 εiui are bounded by a constant depending only on B. The following
result is from Bárány, Grinberg [4].

Theorem 5.1. Under the above conditions there are signs εi such that for
all n ∈ N

n∑

1

εiui ∈ (2d− 1)B.

Proof. We will only prove that all partial sums are in 2dB. The improve-
ment to 2d− 1 is explained in the remark after this proof.

We start again with a construction, which is the prime example of the
method of “floating variables”.

Define Uk = {u1, u2, . . . , uk+d}, k = 0, 1, 2, . . . . We are going to con-
struct mappings βk : Uk → [−1, 1] and subsets Wk ⊂ Uk with the following
properties (for all k):

(i)
∑

Uk
βk(u)u = 0,

(ii) βk(u) ∈ {−1, 1} whenever u ∈ Wk,
(iii) |Wk| = k and Wk ⊂ Wk+1 and βk+1(u) = βk(u) if u ∈ Wk.
The construction is by induction on k. For k = 0, W0 = ∅ and β0(·) = 0

clearly suffice. Now assume that βk and Wk have been constructed and
satisfy (i), (ii), and |Wk| = k from (iii). The d + 1 vectors in Uk+1 \Wk are
linearly dependent, so there are γ(u) ∈ R not all zero such that

∑

Uk+1\Wk

γ(u)u = 0.

Putting βk(uk+d+1) = 0, we have
∑

Wk

βk(u)u +
∑

Uk+1\Wk

(βk(u) + tγ(u))u = 0

for all t ∈ R. For t = 0 all coefficients lie in [−1, 1]. Hence for a suitable
t = t∗, all coefficients still belong to [−1, 1], and βk(u) + tγ(u) ∈ {−1, 1} for
some u∗ ∈ Uk+1 \Wk. Set now Wk+1 = Wk ∪ {u∗} and βk+1(u) = βk(u), if
u ∈ Wk, and βk+1(u) = βk(u) + t∗γ(u), if u ∈ Uk+1 \Wk. Then Wk+1 and
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βk+1 satisfy (i) and (ii) and |Wk+1| = k+1 from (iii). Moreover, Wk ⊂ Wk+1

and βk+1(u) = βk(u) for all u ∈ Wk.
We now define the signs εi. Set εi = 1 if ui ∈ Wk and βk(ui) = 1 for

some k, and set εi = −1 if ui ∈ Wk and βk(ui) = −1 for some k. As
βk(u) stabilizes, that is, βk(u) = βk+1(u) = βk+2(u) = . . . once u ∈ Wk,
this definition is correct for all vectors that appear in some Wk. For the
remaining (at most d) vectors one can set εi = ±1 arbitrarily.

Again, we have to check the partial sums. The first d (actually, the first
2d) partial sums lie automatically in 2dB. For n > d define k = n − d.
Denoting εi by ε(ui) or simply by ε(u) we have

n∑

1

εiui =
∑

u∈Uk

ε(u)u =
∑

u∈Uk

ε(u)u−
∑

u∈Uk

βk(u)u

=
∑

u∈Uk

(ε(u)− βk(u))u =
∑

u∈Uk\Wk

(ε(u)− βk(u))u.

Note that the last sum has only d terms, because Uk \ Wk has exactly d
elements. We take the norm:

(5.1) ||
n∑

1

εiui|| ≤
∑

u∈Uk\Wk

|ε(u)− βn(u)| ≤ 2d,

since every term in the last sum is at most 2. ¤

Remark. Where can one get 2d − 1 instead of 2d in this proof? Well,
when choosing the suitable t∗ which gives u∗ ∈ Uk+1 the coefficient 1 or
−1, we can move from t = 0 to both positive or negative values of t, and
this degree of freedom helps. Here is a sketch of how this can be done. For
each k ≥ 1 one has a special element v ∈ Uk \Wk with the property that
βk+1(v) ≥ βk(v) if βk(v) > 0 and βk+1(v) ≤ βk(v) if βk(v) < 0. The special
element remains the same as long as v /∈ Wk. What can be reached this way
is that βk(v) has the same sign as long as v is special. Then |ε(v)−βk(v)| ≤ 1
for the special element in the sum over Uk \Wk in equation (5.1) and this
is where we get 2d − 1 instead of 2d. When the special v enters Wk we let
v = uk+d be the new special element, and the sign of βl(v) for l > k is going
to be the same as that of βk(v). There is no βl(v) for l < k so they can’t
influence the validity of (5.1) for the previous indices. The choice of the first
special element and the case when βk(v) never reaches ±1 needs extra care
which we leave to the interested reader.

The above proof gives, in fact, a good algorithm for finding a suitable
sign sequence. It is an almost on-line algorithm: it does not have to foresee
the whole sequence. At each moment, it only keeps a buffer of d vectors
with undecided signs. In fact, the previous remark shows that a buffer of
size d−1 suffices. But smaller buffer wouldn’t do. This was proved by Peng
and Yan [18].

The sign sequence constant, E(B), of the unit ball B is the smallest blow-
up factor for which Theorem 5.1 holds. By the same theorem, E(B) ≤ 2d−1
always holds for every symmetric norm in Rd. For individual norms, of
course, much better estimates are possible. The lower bounds for S(Bp)
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with p = 1, 2,∞ apply also to E(B). We will return to this question in
connection with Chobanyan’s remarkable transference theorem in Section 7.

One can set up the problem leading to Theorem 5.1 more generally.
Namely, assume we are given a sequence of sets V1, V2, . . . , with Vi ⊂ B
and 0 ∈ convVi for each i ∈ N. Can one choose vectors, ui ∈ Vi for each
i such that each partial sum

∑n
1 ui lies in cB with a suitable constant c

that depends only on the norm. The answer is yes, with c = 2d, and the
proof is similar to the one above, see [4]. The case of Theorem 5.1 is when
Vi = {ui,−ui}. Several other questions treated in this paper have similar
generalizations.

6. Partitioning a sequence

We now formulate Theorem 5.1 in a different form, suitable for gener-
alization. We need one more piece of notation: if U ′ = {ui1 , ui2 . . . } is a
subsequence of U with i1 < i2 < . . . , then let

∑
n U ′ denote the sum of all

uij with ij ≤ n. This unusual notation will be very convenient.
With this notation the statement of Theorem 5.1 is that U can be parti-

tioned into two subsequences U+ and U− such that for every n ∈ N∑
n

U+ −
∑

n

U− ∈ 2dB, and also
∑

n

U− −
∑

n

U+ ∈ 2dB.

The two statements here are equivalent since the norm is symmetric. Fur-
ther, of course, U+ (U−) consists of elements of U for which ε = +1
(ε = −1).

Adding
∑

n U to both sides and dividing by 2 gives
∑
n

U+ ∈ dB +
1
2

∑
n

U and
∑
n

U− ∈ dB +
1
2

∑
n

U.

The new formulation of the Theorem 5.1 is this. Under the same condi-
tions U can be partitioned into two subsequences U1 and U2 such that for
all j = 1, 2 and all n ∈ N

∑
n

U j ∈ dB +
1
2

∑
n

U.

Can one partition U into r subsequences with similar properties? The answer
is yes. The following theorem is from [5], and is an improved version of a
similar result by Doerr and Srivastav [11].

Theorem 6.1. Assume U ⊂ B is a sequence, and r ≥ 2 is an integer. Then
U can be partitioned into r subsequences U1, . . . , U r such that for all j ∈ [r]
and n ∈ N ∑

n

U j ∈ CdB +
1
r

∑
n

U,

where C is a universal constant which is smaller than 2.0005.

Proof. We only give a sketch. We set r = r0 + r1 with r0, r1 ∈ N whose
values will be chosen later. Then partition U into two subsequences U0 and
U1 so that, for all n ∈ N,

(6.1) r1

∑
n

U0 − r0

∑
n

U1 ∈ (r0 + r1)dB.
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This is accomplished by the same construction as in the proof of Theo-
rem 5.1, only the bounding interval [−1, 1] is to be changed to [−r0, r1].
Then we add r0

∑
n U to both sides of (6.1) and divide by r = (r0 + r1) to

obtain ∑
n

U0 ∈ dB +
r0

r

∑
n

U.

The same way we have
∑

n

U1 ∈ dB +
r1

r

∑
n

U.

The proof proceeds from here recursively, by choosing r0 = r00 + r01 and
splitting U0 into subsequences U00 and U01, just as U was split into U0 and
U1, and then splitting U00 and U01 further.

This recursion gives rise to a recursion tree. It is a binary tree whose
root is marked by r, its two children by r0 and r1, etc. It has to have r
leaves, each marked by 1. For the jth leaf, let bj denote the sum of the
reciprocals of the numbers on the nodes from this leaf to the root (including
the leaf but excluding the root). The recursion gives then a partition of U
into subsequences U1, . . . , U r such that for all j ∈ [r] and n ∈ N we have

∑
n

U j ∈ bjdB +
1
r

∑
n

U.

Thus the recursion tree is to be built in such a way that all bj be small.
This can be achieved, giving bj ≤ 2.0005 for all j ∈ [r], see [11] and [5] for
the details. ¤

7. A transference theorem

The methods for the Steinitz constant S(B) and the sign-sequence con-
stant E(B) are similar, and so are the bounds. Is there some deeper con-
nection between them? This is answered by the following beautiful result of
Chobanyan [10].

Theorem 7.1. Assume B is the unit ball of symmetric norm in Rd. Then
S(B) ≤ E(B).

The result shows that the sign-sequence problem is “easier” than the
rearrangement problem. One may wonder whether the opposite inequality,
that is, E(B) ≤ CS(B), holds with dimension independent constant C. It
does hold with C = 2d − 1 since S(B) ≥ 1 trivially and E(B) ≤ 2d − 1 by
Theorem 5.1, but this is not interesting.

We mention that Theorem 7.1 holds in any normed space, not necessary
finite dimensional. The proof below will show this.

Proof. Clearly both S(B) and E(B) are at least one. By the definition of
S(B), for every small η > 0 there is a is a finite V ⊂ B with

∑
v∈V v = 0,

such that V has an ordering v1, . . . , vn so that every partial sum along this
ordering lies in S(B)B, but for every ordering of V there is a partial sum
(along that ordering) which is outside of (S(B)− η)B.
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Choose a small η > 0 together with the finite V with the above properties.
Consider now the sign-sequence ε1, . . . , εn such that for all k ∈ [n],

k∑

1

εivi ∈ E(B)B.

By the definition of E(B) such a sign sequence exists. The vectors vi with
εi = +1, in the same order, form a sequence u1, u2, . . . , um, while the vectors
vi with εi = −1, in the opposite order, form a sequence um+1, um+2, . . . , un.
The sequence u1, . . . , un is a rearrangement of V . Then one partial sum, the
kth say, has norm greater than S(B)− η.

Assume k ≤ m. Then, clearly,
k∑

1

ui =
1
2

(
k∑

1

vi +
k∑

1

εivi

)
∈ 1

2
(S(B) + E(B))B.

This shows that S(B)− η < 1
2(S(B) + E(B)) implying

(7.1) S(B) < E(B) + 2η.

Assume now that k > m. Then
∑k

1 ui = −∑n
k+1 ui is outside (S(B) −

η)B. Consequently,
∑n

k+1 ui is outside (S(B) − η)B as well. But the last
sum is just the sum of the first n − k elements of the sequence v1, . . . , vn

that go with εi = −1. This sum is equal to

1
2

(
n−k∑

1

vi −
n−k∑

1

εivi

)
∈ 1

2
(S(B) + E(B))B,

again. This proves inequality (7.1) in all cases.
Finally, since (7.1) holds for all η > 0, we have S(B) ≤ E(B). ¤
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