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Extremal problems for convex lattice polytopes:
a survey

Imre Bárány

Abstract. What is the minimal area that a convex lattice polygon with ex-
actly n vertices can have? This question, and several similar ones, are consid-
ered in this survey.

1. Jarńık’s result

We start with a sample problem and its solution. It was in 1926 that Vojtech
Jarńık [19] posed the following question. Let γ ⊂ R2 be a closed convex curve of
length at most `. Assume that the radius of curvature at every point of γ exists,
is positive, and is smaller that 7`. How many lattice points can such a curve γ
contain? The answer from [19] is that it contains at most

(1)
3

3
√

2π
`2/3 + O(`1/3)

lattice points and that this estimate is best possible. In other words,

(2) max |γ ∩ Z2| = 3
3
√

2π
`2/3 + O(`1/3),

where the maximum is taken over all convex curves satisfying the above conditions.
Convex lattice polygons appear on the scene instantly: the set

P = conv(γ ∩ Z2)

is a convex lattice polygon inscribed in γ (provided γ contains at least 3 lattice
points). Thus we can turn the problem around and ask the following. What is the
minimal perimeter ` that a convex lattice polygon with exactly n vertices can have.
Formulae 1 and 2 essentially say that

(3) ` =
√

6π

9
n3/2 + O(n3/4).

We will see later in Section 8, in a more general setting, how the proof goes.
This is the type of question we are going to discuss in this survey.
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2. The list of problems

In this section we state the problems we are going to consider. First we intro-
duce notation and terminology.

A convex body in Rd is a convex compact set with non-empty interior. We
write Kd for the family of all convex bodies in Rd. As usual, a convex lattice
polytope in Rd is the convex hull of finitely many points from the d-dimensional
integer lattice Zd. The set of d-dimensional convex lattice polytopes with nonempty
interior will be denoted by Pd. Clearly, Pd ⊂ Kd. For a polytope P ⊂ Rd we write
fi(P ) for the number of i-dimensional faces of P . In particular, f0(P ) is the number
of vertices and fd−1(P ) is the number of facets. Finally, V (K) and S(K) stand for
the volume and surface area of the convex body K ∈ Kd.

Here comes the list of problems.

Minimal volume. Determine

Vd(n) = min{V (P ) : P ∈ Pd, f0(P ) = n}.

Minimal surface area. Determine

Sd(n) = min{S(P ) : P ∈ Pd, f0(P ) = n}.

Minimal lattice width. The width of a convex body K ∈ Kd in direction z ∈ Zd

(z 6= 0) is defined as

w(K, z) = max{z(x− y) : x, y ∈ K}.
The lattice width of K (cf. [22] and [20]) is

w(K) = min{w(K, z) : z ∈ Zd, z 6= 0}.
The minimal lattice width problem asks for the determination of

wd(n) = min{w(P ) : P ∈ Pd, f0(P ) = n}.
We will see later that this question is of little interest.

Arnold’s question. In [3] V. I. Arnold posed the following problem. Two lattice
polytopes P, Q ∈ Pd are called equivalent if there is a lattice preserving affine
transformation carrying P to Q. This is clearly an equivalence relation. Equivalent
lattice polytopes have the same volume. Write Nd(V ) for the number of equivalence
classes of lattice polytopes that have volume at most V .

Arnold’s question was to investigate Nd(V ) and to determine the order of mag-
nitude of log Nd(V ). The problem is related to the number of ways a homogeneous
polynomial with d variables can behave near the origin. It is also connected to the
minimal volume question as we will soon see.

The question is not an extremal problem on lattice polytopes but is very close
to what this survey is about. That is why I treat it here.

Maximal polytopes in K. Assume K ⊂ Rd is “large”. Determine

max{f0(P ) : P ∈ Pd, P ⊂ K}.
This problem, in fact, asks for the maximal size subset of K∩Zd which is in convex
position. (A set is in convex position if none of its points is contained in the convex
hull of the others.) This question is, again, closely related to the minimal volume
problem.
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In the next five sections we consider the above problems for all dimensions
d ≥ 2. In every case we find the order of magnitude of the extremum. Asymptotic
estimates are available for d = 2 only (save for the lattice width which is of no
interest anyway). In the planar case the asymptotic behaviour of the extrema,
and even their limiting shapes, will be explained in the final four sections. This
survey contains hardly any new result. Although I have tried to avoid proofs,
sometimes I felt a sketch would help the reader in understanding the ideas and
the methods. I intended to point out some connections between extremal convex
lattice polygons and approximation questions, and affine surface area. There are
further connections, for instance to random polytopes and to Sylvester’s famous
four-point-problem. But this survey is too short to contain them all.

On the technical side we will use the “big Oh” and “little oh” notation, together
with Vinogradov’s very convenient ¿ and À symbols. So f(x) ¿ g(x) means that
there is constant c such that f(x) ≤ cg(x) for all values of x. This constant of
course does not depend on x, but does depend on dimension. So, for instance,
Theorem 3.1 below means that there is a constant cd > 0 depending only on d such
that f0(P )

d+1
d−1 ≤ cdV (P ) for all P ∈ Pd.

There are, of course, several other problems, extremal or otherwise, concerning
convex lattice polytopes. Most of them are outside the scope of this survey. The
interested reader should consult for instance the thorough survey by Gritzmann and
Wills [17] or the beautiful paper by Kannan and Lovász [20]. Some more specific
questions are treated in [14] and [21].

3. Minimal volume

Of all the problems listed above, that of the minimal volume seems the most
natural. The reason is perhaps that it is invariant under lattice preserving affine
transformations, and also because its solution helps with the other questions. A
lower bound, of the right order of magnitude, was found in a pioneering paper [2]
of G. E. Andrews in 1963.

Theorem 3.1. For all P ∈ Pd,

f0(P )
d+1
d−1 ¿ V (P ),

where the implied constant depends only on d.

The proof is hard. By now there are several other proofs available, by Konyagin
and Sevastyanov [23], Schmidt [28], Bárány and Vershik [12], Bárány and Larman
[8], and Reisner, Schütt and Werner [27]. All of them are based on different ideas
and none of them are simple. We will show later how the answer to Arnold’s
question implies Andrews’s theorem.

The following even more general statement is true. A tower of P ∈ Pd is a
chain of faces, F0 ⊂ F1 ⊂ · · · ⊂ Fd−1, of P with dimFi = i. Write T (P ) for the
number of towers of P . Clearly, fi(P ) ≤ T (P ) for every i.

Theorem 3.2. For all P ∈ Pd

T (P )
d+1
d−1 ¿ V (P )

where the implied constant depends only on d.
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This was proved in [23] and [8]. The result implies, of course, that

(4) fi(P )
d+1
d−1 ¿ V (P ) for all i = 0, 1, . . . , d− 1.

Actually, Andrews’ proof of Theorem 3.1 is based on proving (4) first for i = d− 1,
the facets of P .

We mention in passing the following question which is from polytope theory.

Open problem 1. Is there a constant cd depending only on d such that for every
polytope P ∈ Kd

T (P ) ≤ cd(f0(P ) + f1(P ) + · · ·+ fd−1(P )).

The bound given in Theorem 3.1 is best possible, apart from the implied con-
stant. This is shown by two examples. The first is due to Arnold [3]. We explain it
first in the planar case. Let P be the convex hull of the points (x, x2) where x ∈ Z
and −(n − 1)/2 ≤ x ≤ (n − 1)/2 when n is odd, and −(n − 2)/2 ≤ x ≤ n/2 when
n is even. Trivially, f0(P ) = n. It is very easy to check that the area of P is very
close to n3/12.

In higher dimensions P is the convex hull of lattice points on the paraboloid
x2

1 + · · ·+x2
d−1 = xd restricted to xd ≤ r. It is simple to see that f0(P ) À rd−1 and

V (P ) ¿ rd+1. This shows that the estimate in Theorem 3.1 is of the right order of
magnitude for all d ≥ 2.

The other construction, which is due to Bárány and Larman [8], is equally easy
to describe, but proving its properties is harder. Let Bd be the Euclidean unit ball
of Rd and set

Pr = conv(rBd ∩ Zd),
where r is a parameter. The polytope Pr is the integer convex hull of rBd. It is
clear that V (Pr) = rdV (Bd)(1 + o(1)). The next task is to estimate f0(Pr).

Theorem 3.3.
f0(Pr) À rd d−1

d+1 .

The proof is based on estimating the volume missed by Pr.

Lemma 3.4. V (rBd \ Pr) ¿ rd d−1
d+1 .

The proof of the Lemma uses the Flatness Theorem (cf [22], [20]) saying that
the lattice width of a convex body K ∈ Kd with K ∩ Zd = ∅ is bounded by a
number depending only on d.

Next we use a result from the theory of approximation of convex bodies by
polytopes. It is well known (cf [18] for instance) that a polytope with n vertices
and inscribed in Bd misses À n−

2
d−1 volume of Bd. After suitable scaling we get

(f0(Pr))
− 2

d−1 ¿ V (rBd \ Pr)
V (Bd)

¿ rd d−1
d+1−d = r−

2d
d+1 .

This implies Theorem 3.3 immediately.
The method works for fi(Pr) as well (by suitably extending the approximation

result from vertices to i-dimensional faces, see Bárány [6] or Böröczky [15]), and
gives

fi(Pr) À rd d−1
d+1 , for all i = 0, 1, . . . , d− 1.

Of course, T (P ) ≥ f0(P ) implies that T (Pr) À rd d−1
d+1 as well.
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Remark. The unit ball Bd does not play any special role here. Let K ∈ Kd

be a convex body containing 0 in its interior. Assume the boundary of K is
smooth and at every point its principal curvatures are separated from 0 and in-
finity (by constants depending only on dimension). Then the integer convex hull
Pr = conv(rK ∩ Zd) of rK satisfies fi(Pr) À rd d−1

d+1 for all i.

The results in this section show that Vd(n), the minimal volume a convex lattice
d-polytope with n vertices can have, is of order n

d+1
d−1 . The following question is

very natural.

Open problem 2. Decide whether

lim
n→∞

n−
d+1
d−1 Vd(n)

exists or not. If it does exist, what is its value?

The answer is known only for d = 2 and is quite surprising (at least for the
author). We describe it in Section 9. The case of higher dimensions is beyond reach
at the moment; it seems to require significant new ideas.

4. Surface area

The isoperimetric inequality says that, for every K ∈ Kd,

S(K)d

V (K)d−1
≥ S(Bd)d

V (Bd)d−1
,

with equality if and only if K is a Euclidean ball. So Theorem 3.1 gives a lower
bound for the minimal surface area problem.

Theorem 4.1. For all P ∈ Pd,

f0(P )
d

d−1 ¿ S(P ).

Actually, this was proved by Andrews [1] in 1961, before Theorem 3.1. The
estimate is again best possible apart from the implied constant. This is shown by
the integer convex hull Pr. The minimal surface area problem is solved in “order
of magnitude” sense:

n
d+1

d ¿ Sd(n) ¿ n
d+1

d .

Open problem 2. Decide whether

lim
n→∞

n−
d+1

d Sd(n)

exists or not, if it does, what is its value.

The limit exists for d = 2. By Jarńık’s classical result (1) the minimal perimeter
that a convex lattice n-gon can have is

√
6πn3/2/9(1+o(1)). Jarńık’s method works

in a more general setting, when the perimeter is measured by some other norm of
R2. We return to this question in Section 8.
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5. Lattice width

This happens to be a question of little interest. First, assume d = 2 and
P ∈ P2 has exactly n vertices. Let z ∈ Z2 be the lattice width direction of P .
By the definition of lattice width exactly w(P ) + 1 lattice lines orthogonal to z
intersect P . Since every lattice line contains at most two vertices of P , we have
n ≤ 2(w(P ) + 1), implying ⌈n

2

⌉
− 1 ≤ w(P ).

The reader will have no difficulty finding a convex lattice polygon with n vertices
having lattice width exactly dn/2e − 1.

In higher dimension w(P ) = 1 is possible with f0(P ) taking arbitrarily large
values. Simply take two (d − 1)-dimensional lattice polytope having together n
vertices, one lying in the lattice hyperplane x1 = 0, and the other one in the lattice
hyperplane x1 = 1 of Rd. The convex hull of these two polytopes is a polytope in
Pd, of lattice width 1, with exactly n vertices.

So this problem is either trivial or ill posed. Maybe one should define some
kind of “successive lattice widths” and find the proper question.

6. Arnold’s question

The first result in this direction is due to Arnold. He shows in [3], in the planar
case, that

A1/3 ¿ log N2(A) ¿ A1/3 log A

as A goes to infinity. We write here A, instead of V , for the area of a convex lattice
polygon. Arnold’s proof is based on the estimate in Theorem 3.1 in the planar
case (that he found independently of Andrews [2]), and on the square lemma. This
lemma states that an aligned square of side length 36A contains a convex lattice
polygon from each equivalence class with area at most A. From this the upper
bound log N2(A) ¿ A1/3 log A follows easily, since N2(A) is at most the number of
ways the ¿ A1/3 vertices can be chosen from the (36A)2 lattice points contained
in the square of side length 36A.

The log A factor in the upper bound was removed by Bárány and Pach in [10]
showing that the order of magnitude of log N2(A) is A1/3.

Arnold’s question proved to be fertile, and Konyagin and Sevastyanov [23]
proved Theorem 3.1, again independently of Andrews [2]. They used it, together
with an extension of the square lemma, to show that

V
d−1
d+1 ¿ log Nd(V ) ¿ V

d−1
d+1 log V.

The extra log V factor, in every dimension, was removed in [12] by A M Vershik
and the present author.

Theorem 6.1. When d ≥ 2 and V →∞, then

V
d−1
d+1 ¿ log Nd(V ) ¿ V

d−1
d+1 .

The proof is based on several ideas from number theory, convexity, and geom-
etry of numbers. It uses the following extension of Arnold’s square lemma. First,
Zd

+ is defined to be the set of all a = (a1, . . . , ad) ∈ Zd with each ai > 0. Next,
given z ∈ Zd

+, we define the box of a as

Box(a) = {x ∈ Rd : 0 ≤ xi ≤ ai}.
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For simplicity set
∏

a =
∏d

1 ai. Here is the box lemma which replaces the square
lemma in the proof.

Lemma 6.2. For every P ∈ Pd there is an a ∈ Zd
+ with

∏
a ¿ V (P ) such that

an equivalent copy of P is contained in Box(a). The implied constant depends only
on d.

As the number of boxes with
∏

a ¿ V is less than V d (actually, much less),
the next step in the proof of the upper bound in Theorem 6.1 is the following fact.

Lemma 6.3. For every a ∈ Zd
+ the number of convex lattice polytopes contained

in Box(a) is at most
exp

{
cd(

∏
a)

d−1
d+1

}
,

where cd is a constant depending only on d.

The proof of this lemma is of interest, and we explain its basic idea. Given
a polytope P and one of its facets F , let v(F ) denote the outer normal vector to
P at F with length equal to S(F ), the (d − 1)-dimensional volume of F . As is
well-known, the sum of v(F ) for all facets of P is equal to zero,

∑

F

v(F ) = 0,

and these vectors linearly span Rd. The converse of this fact is known as Minkowski’s
theorem [14]: Given a system {v1, . . . , vn} of vectors with these properties, there is
a polytope P , unique up to translation, with exactly n facets, F1, . . . , Fn say, such
that v(Fi) = vi.

For a lattice polytope, the vector v(F ) satisfies

(5) v(F ) ∈ 1
(d− 1)!

Zd.

The proof of Lemma 6.3 only uses the fact that each v(F ) satisfies this condition
and that P ⊂ Box(a). It is based on an extension of Minkowski’s theorem, due to
Pogorelov [25], and an estimate for the number of ways a positive integer vector
can be written as a sum of other positive integer vectors.

Remark. There is an interesting issue here. Call a polytope P ∈ Kd dually integral
if condition (5) is satisfied for all facets of P . Thus lattice polytopes are dually
integral. Theorem 6.1 holds not only for lattice polytopes but for (equivalence
classes of) dually integral polytopes of volume at most V . Dually integral polytopes
seem to behave better than lattice polytopes. In particular, there might be some
hope for asymptotic estimates. We mention further that in the planar case lattice
polygons and dually integral polygons coincide. I think this is what helps with the
asymptotic results for d = 2.

The proof of the lower bound in Theorem 6.1 is easier. Consider P ∈ Pd with
n = f0(P ) À (V (P ))

d−1
d+1 , for instance Pr, the integer convex hull of rBd. Let X

be the set of vertices of P . For each nonempty subset Y of X, convY is a convex
lattice polytope in Rd, of volume at most V (P ). There are 2n − 1 such polytopes.
It is not hard to see that most of them are d-dimensional and very few of them are
equivalent. This shows the lower bound in Theorem 6.1.

We remark that this argument can be turned around and used for the proof
of Andrews’ Theorem 3.1. Suppose that P ∈ Pd and V (P ) ≤ V . By Lemma 6.2
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we can assume that P lies in some Box(a) with
∏

a ¿ V . Again, let X be the set
of vertices of P . For each (nonempty) subset Y of X, convY is a convex polytope
in the box. These polytopes are all distinct and their number is 2|X| − 1. By
Lemma 6.3,

2|X| − 1 ≤ exp
{

cd(
∏

a)
d−1
d+1

}
¿ exp

{
c′dV

d−1
d+1

}

with a suitable constant c′d, implying, in turn, that |X| = f0(P ) ¿ V
d−1
d+1 .

Theorem 6.1 immediately raises the following problem.

Open problem 4. Decide whether

lim
V→∞

V − d−1
d+1 log Nd(V )

exists or not. Determine the limit if it exists.

This problem looks hard. The answer is not known even in the planar case.
We return to this question in Section 10.

7. Maximal polytopes in K

We formulate the question slightly differently. Fix K ∈ Kd and consider the
lattice Zt = Zd

t = 1
t Z

d where t is large. In this way we replace the condition “K
is large” with “t is large”. From now on we may assume that V (K) = 1. Write
P(K, t) for the family of all convex Zt-lattice polytopes contained in K. Here a
Zt-lattice polytope is a polytope P ∈ Kd having all of its vertices in the lattice Zt.
Now the question is this. Determine

M(K, t) = max{f0(P ) : P ∈ P(K, t)}
asymptotically, or up to order of magnitude, as t →∞. M(K, t) is the same as the
maximal number of points in Zt ∩ K that are in convex position. The following
theorem gives the order of magnitude of M(K, t).

Theorem 7.1. For all K ∈ Kd of volume 1,

td
d−1
d+1 ¿K M(K, t) ¿ td

d−1
d+1 .

The implied constant in ¿K depends on K as well.

The proof of the upper bound follows from Theorem 3.1. If P is a Zt-lattice
polytope in K, then tP is an ordinary lattice polytope in tK. Thus

f0(P ) = f0(tP ) ¿ Vol (tP )
d−1
d+1 ≤ Vol (tK)

d−1
d+1 = td

d−1
d+1 ,

implying that M(K, t) ¿ td
d−1
d+1 . For the lower bound let E be the maximal volume

ellipsoid, inscribed in K. Then, according to the remark at the end of Section 3, the
integer convex hull of tE, that is, conv(tE ∩ Zd) has the right number of vertices.
The dependence on K only shows up in the fact that td

d−1
d+1 ¿ M(K, t) begins to

be true for larger and larger values of t, as the body K gets more and more flat, or
needle-like.

The asymptotic behaviour of M(K, t) is only known in the planar case. We
describe it in Section 11.
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8. Minimal perimeter

From now on we are going to work in the planar case. We fix the extra notation
needed. A nonzero vector z ∈ Z2 is called primitive if its components are relatively
prime. Let P ⊂ Z2 be the set of all primitive vectors in Z2. It is wellknown that
the density of P in Z2 is 6/π2. We will need more precise estimates related to this
fact. They are best formulated in the following simple lemma that has been known,
in several different forms, for ages.

Lemma 8.1. Assume D ∈ K2 contains the origin in its interior. Suppose
f : R2 → R is a homogeneous map of degree α ≥ 0, that is, f(λx) = λαf(x) for
every x ∈ R2 and every λ ≥ 0, and |f(x)| ≤ 1 for all x ∈ D. Then

∑

z∈λD∩P

f(z) = λα+2

{
6
π2

∫

D

f(x)dx + O(λ−1 log λ)
}

.

Back to minimal perimeter now. The question is answered by Jarńık’s result
(3) or (2). In fact, Jarńık’s method works in a more general setting. Namely, let
D ∈ K2 be the unit ball of a (not necessarily symmetric) norm in R2. We only
assume that the centre of gravity of D is at the origin, that is,∫

D

zdz = 0

(with vector integration). As usual, the norm, or rather D-norm, of a vector z 6= 0
is

|z| = |z|D = max{t−1 : tz ∈ D, t > 0}.
For P ∈ Pd, let x1, . . . , xn denote the vertices of P along the perimeter in anti-
clockwise direction. Set zi = xi+1 − xi for i = 1, . . . , n, where n + 1 is identified
with 1. The perimeter of P when measured by the D-norm is

SD(P ) =
n∑
1

|zi|.

The minimal D-perimeter problem asks for the determination of

SD(n) = min{SD(P ) : P ∈ P2, f0(P ) = n}.
The solution, due to M Prodromou [26], follows Jarńık’s method with minor mod-
ifications. (For the `p norm this was proved by Stojakovic [30] earlier.)

Theorem 8.2. Under the above conditions

SD(n) = n
3
2

(
π

∫
D
|z|dz√

6(Area D)3
+ O(n−1 log n)

)
.

Proof. We only give a sketch. Assume P ∈ P2 has n vertices, and let z1, . . . , zn

be its edge-vectors as described above. Suppose that p1, . . . , pn are the shortest (in
D-norm) n vectors in P. In case of ambiguity, any n shortest vectors will do. Let
λ > 0 be the smallest number with

{p1, . . . , pn} ⊂ λD.

Thus all |pi| ≤ λ. Let U be the set of primitive vectors in λD, distinct from the
pi. Clearly, |u| = λ for each u ∈ U . Further, |U | = O(λ) as the boundary of λD
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contains at most O(λ) lattice points. Thus, by Lemma 8.1 with f(z) ≡ 1,

n = |λD ∩P| − |U | = 6
π2

λ2Area D(1 + O(λ−1 log λ)).

This is the asymptotic relation between n and λ.
We clearly have

n∑
1

|zi| ≥
n∑
1

|pi| =
∑

p∈P∩λD

|p| − λ|U |.

Here λ|U | = O(λ2), and the sum preceding it can again be estimated by Lemma 8.1
with f(z) = |z|:

∑

p∈P∩λD

|p| = 6
π2

λ3

∫

D

|z|dz(1 + O(λ−1 log λ).

Plugging in the value of λ as a function of n gives the lower bound in Theorem 8.2.
The next task is to construct a lattice polygon with n vertices and the same

perimeter. The n shortest primitive vectors almost produce such a polygon: the
trouble is that their sum is not zero. But it is almost zero! Indeed, summing the
first and second components of the pi = (xi, yi) separately we get, using again
Lemma 8.1 with f(z) = x where z = (x, y), that

n∑
1

xi =
∑

p=(x,y)∈λD

x + O(λ2) =
6
π2

λ3

(∫

D

xdz + O(λ−1 log λ)
)

= O(λ2 log λ),

since
∫

D
xdz = 0 because 0 is the centre of gravity of D. The same works for the

y component. Thus p0 =
∑n

1 pi ∈ Zd has D-norm O(λ2 log λ), and, of course,
−p0 + p1 + · · · + pn = 0. So the vectors −p0, p1, . . . , pn, as edges, form a unique
convex lattice polygon, with n + 1 edges (or n edges if −p0 = αpi for some pi and
α > 0.) This polygon has the right D-perimeter:

| − p0|+
∑

p∈P∩λD

|p| = 6
π2

λ3

∫

D

|z|dz(1 + O(λ−1 log λ).

If it has n + 1 edges, then replacing two consecutive edges by their sum produces
the required convex lattice n-gon.

Remark. The idea of the above proof is that, instead of the extremal polygon,
one should look for the edge set of the extremal polygon. As we will soon see, the
same approach works in other problems as well.

I mention further that Theorem 8.2 is slightly stronger than the one in Prodro-
mou [26] because she only considers norms with 0-symmetric unit ball.

Theorem 8.2 can be further strengthened because the minimizer Pn, that is,
the convex lattice n-gon with minimal perimeter, is almost completely determined
by the norm. After suitable normalization Pn tends to a fixed convex set, P ∈ K2,
which can be explicitly described. A convenient way to explain this uses the support
function hK : S1 → R of K ∈ K2. This is defined by hK(u) = max{u · x : x ∈ K};
see [14], for instance. As is wellknown, the support function hK determines the
convex body K uniquely.
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Theorem 8.3. Assume Pn is a minimizer for D translated so that its center
of gravity lies at the origin. Then

lim
n→∞

n−
3
2 hPn

(u) =
π

2
√

6(Area D)3

∫

D, u·x≥0

u · xdx.

It follows easily that h(u) = lim n−
3
2 hPn

(u) is the support function of a convex
set P ∈ K2, and P is the limit shape of the sequence Pn after suitable normalization.

9. Minimal area

For simpler notation we set A(n) = V2(n). In this section we explain, following
Bárány and Tokushige [11], why lim n−3A(n) exists and is, most likely, equal to
0.0185067...

Theorem 9.1. limn→∞ n−3A(n) exists.

We only give a sketch. A polygon Pn ∈ P with n vertices is called a minimizer
if Area Pn = A(n). Let K0 denote the family of all 0-symmetric convex bodies in
R2. Given C ∈ K0, set

A∗(C) =
1
8

∑

x,y∈C∩P

| det(x, y)|.

We consider the following extremal problem.

Min(n) = min{A∗(C) : C ∈ K0 and |C ∩P| = n}
The first step in the proof is the following

Claim 9.2. For even n ≥ 3, A(n) = Min(n).

For the proof of this claim one notes first that each edge of a minimizer
Pn is a primitive vector. Next one shows that, for even n, there is always a
centrally symmetric minimizer, Pn, say. The edges of Pn are then the vectors
z1, . . . , zk,−z1, . . . ,−zk, where n = 2k. It is clear that

A(n) = Area (Pn) =
∑

1≤i<j≤k

|det(zi, zj)|.

Set Cn = conv{±z1, . . . ,±zk}. One proves next that C ∩ P = {±z1, . . . ,±zk}. It
is simple to check that A∗(Cn) = Area Pn.

So we have reduced our problem from lattice polygons to the minimization
problem Min(n). Note that this reduction is fully in the spirit of the remark in the
previous section: we work with the edge set of the minimizer, rather than with the
minimizer itself.

Observe next that the solution C to the problem Min(n) is invariant under
lattice preserving linear transformations. Thus we may fix C in standard position.
This means that the lattice width of C is 2b = 2b(C) and is taken in direction
(0, 1). Let [−a, a] (where a = a(C)) be the intersection of C with the x axis. We
assume further that the tangent line to C at (a, 0) has slope at least 1; this is the
case when C is in standard position.

We are going to find the solution C to Min(n) in standard form. But first we
give two examples that will be illustrative and helpful.
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Example 1. Set C = conv{±(0, 1),±(1, 1), . . . ,±(k − 2, 1)}. Apart from lattice
preserving linear transformations, this is the unique C ∈ K0 with b(C) = 1 and
|C ∩P| = n where n = 2k. It is easy to see that A∗(C) = 1

48n3(1 + o(1)).

Example 2. Set C = rB2 with r > 0 chosen so that |C ∩ P| = n. One shows
readily that A∗(C) = 1

54n3(1 + o(1)).

It is generally expected that |C ∩ P| = 6
π2 Area C(1 + o(1)). But this is not

true when C is thin, for instance in Example 1. One can show (see [11]), however,
using the same standard methods that lead to Lemma 8.1, that∣∣∣∣|C ∩P| − 6

π2
Area C

∣∣∣∣ ¿ Area C · log b(C)
b(C)

.

A little more effort (cf [11]) gives∣∣∣∣∣8A∗(C)−
(

6
π2

)2 ∫

C

∫

C

|det(x, y)| dx dy

∣∣∣∣∣ ¿ (Area C)3 · log b(C)
b(C)

.

Remark. The last two inequalities measure how far the density of P in C is from
the expected 6/π2, and measure it as a function of a lattice invariant of C, namely
b(C). I think this is the crucial step in the proof of Theorem 9.1.

Busemann’s theorem [16] states that, among all K ∈ K0 with fixed area, the
integral

∫
C

∫
C
| det(x, y)| dxdy is the smallest for the Euclidean ball (or any other

ellipse) of the same area. This theorem, together with the last two inequalities,
easily implies the following.

Corollary 9.3. Assume b ≥ 2. Then

A∗(C) ≥
(

1
54
−D

log b(C)
b(C)

)
n3

where D is a universal constant.

The assumption b ≥ 2 is justified because the case b = 1 is completely covered
in Example 1, which, as we have seen, is not minimal.

Consider a minimizer, Cn, for Min(n). Set bn = b(Cn) and an = a(Cn). If
bn → ∞, then, by the corollary, lim inf n−3A(n) ≥ 1/54 which, together with
Example 2 would give that lim n−3A(n) = 1/54. Can it happen, though, that bn

does not go to infinity?
Yes, it can, and this is where the solution lies. If bn does not tend to infinity,

then bn = b along a subsequence n′ for some b ∈ Z2. Let Hn be the 2× 2 diagonal
matrix with diagonal elements 1/an and 1. The sequence of convex bodies Hn′Cn′ is
bounded. Consequently it contains a convergent subsequence, with limiting convex
body C∗, say. Define the 2×2 diagonal matrix Gn with diagonal elements λn and 1,
where λn > 0 is chosen so that GnC∗ contains exactly n primitive vectors. Setting
C∗n = GnC∗ it is not hard to check that

lim
A∗(Cn′)

n′3
= lim

A∗(C∗n)
n3

.

This shows that whenever we have a sequence of minimizers Cn′ , we can find a full
sequence C∗n, n = 4, 6, 8, . . . for which A∗(C∗n)/n3 has the same limit as A∗(C ′n)/n′3.

The last limit depends only on C∗, which, in turn, depends only on the 4b real
numbers given by the x-components of the points where the lines y = i intersect the
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boundary of C∗. This number can be reduced to b by showing that C∗ is symmetric
with respect to the coordinate axes. Suppose now that C∗ intersects the line y = i
in the interval [−xi, xi], i = 1, . . . , b. Thus C∗ is determined by the parameters
x1, . . . , xb. The xi > 0 form a decreasing and convex sequence. One can express
limA∗(C∗n)/n3 as a function of the xi:

lim
A∗(C∗n)

n3
=

f(x1, . . . , xb)

(4
∑b

i=1
φ(i)

i xi)3
,

where f(x1, . . . , xb) =
∑b

i=1

∑i
j=1 αijxix

2
j and the coefficients αij depend on i and

j and φ is Euler’s totient function. This leads to a minimization problem, one for
every b = 2, 3, . . . :

minimize f(x1, . . . , xb) subject to 4
b∑

i=1

φ(i)
i

xi = 1,

x1, . . . , xb > 0 is decreasing and convex.

The minimum, which clearly exists, is denoted by M(b). The limit in Theo-
rem 9.1 is not 1/54, if a single M(b) is smaller than 1/54. It turns out that M(8)
and M(9) are smaller, the smallest that was found is M(15) = 0.0185067... This
is smaller than 1/54 = 0.0185185... by about 10−5. Numerical computations show
that M(b) oscillates around 1/54 in ever smaller waves. Luckily, Corollary 9.3 im-
plies that for large enough b, M(b) cannot stay below M(15). The constant D in
Corollary 9.3 is about 5000 which gives the following theorem:

Theorem 9.4. limA(n)/n3 = minb≤1010 M(b).

The exact determination of the right hand side might be possible, although
there are 1010 extremum problems to solve. This number can be reduced further to
107 which is still far too many. Computational evidence (cf. [11]) suggests however
that M(b) is minimal at b = 15. This leads to the next open problem which is a
computational, and most likely solvable, question.

Open problem 5. Determine minb≤1010 M(b).

Remark. Busemann’s theorem suggests that the minimizer Cn is close to an
ellipse. This indeed seems to be the case: Cn is close to an ellipse with short axis
of length 15.5, and long axis of length 0.0125n. The resulting minimizer Pn is
close to a very oblong ellipse, whose half axes are of lengths 1.656n and 0.00357n2.
The minimizers Cn have a limiting shape, namely C∗, but only after one-sided
normalization. Again, there is a limit shape to the minimizers Pn after shrinking
in direction x by a factor of n2 and in direction y by a factor of n.

10. Arnold’s question: the planar case

In the spirit of Arnold’s question it is natural to ask how many convex lattice
polytopes there are in Box(a). The planar version of this question will be considered
in the present section. We set up the problem a little differently. Let K ∈ K2 be a
convex body, and recall the definition of P(K, t), which is the family of all convex
Zt-lattice polygons that are contained in K. How many such polygons are there,
and what do they look like? This beautiful and inspiring question is due to A M
Vershik.
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It comes as a pleasant surprise that log |P(K, t)| can be determined quite pre-
cisely. The following result is from [5].

Theorem 10.1. For every K ∈ K

lim
t→∞

t−2/3 log |P(K, t)| = 3 3

√
ζ(3)
4ζ(2)

A∗(K),

where A∗(K) is the maximal affine perimeter that a convex body contained in K
can have.

See Blaschke [13], Lutwak [24] or Bárány [5] for the definition and properties of
affine perimeter. It is shown in [5] that there is a unique convex body K0 ⊂ K whose
affine perimeter equals A∗(K). The correspondence K 7→ K0 gives a map K → K
which is affinely equivariant, that is, for every nondegenerate affine transformation
L, (LK)0 = L(K0). The unique K0 has interesting properties. For instance, it
contains no line segments on its boundary, and its boundary is a parabola arc
whenever it lies in the interior of K. See [10] for further properties of K0.

The convex polygons in P(K, t) have a limit shape: almost all of them are very
close to K0. This is the content of the next theorem, where δ(X, Y ) denotes the
Hausdorff distance of X, Y ⊂ R2.

Theorem 10.2. For every K ∈ K and every ε > 0,

lim
t→∞

|{P ∈ P(K, t) : δ(P, K0) < ε}|
|P(K, t)| = 1.

This theorem was first proved in the case when K is the unit square. Then
K0 is bounded by four parabola arcs, each touching consecutive edges of the unit
square at their midpoints. This case was proved by Vershik [31] and Bárány [4].
Sinai [29] gave a probabilistic proof, together with a central limit theorem on the
distribution of the convex Zt-lattice polygons lying in the vicinity of K0. The case
of general K ∈ K comes from [5]. We mention that this limit shape result is much
stronger than the one in Theorem 8.3; there are very few minimizers there for a
fixed n, while here the majority of the exp{ct2/3} convex lattice polygons are very
close to K0.

More recently, Vershik and Zeitouni [32] established central limit theorems
about how big a fraction of P(K, t) is close to K0.

We now return to Arnold’s question when d = 2. The constant in the exponent
is still not known:

Open problem 6. Decide whether

lim
A→∞

A−
1
3 log N2(A)

exists or not. Determine the limit if it exists.
This is just a repetition of Open problem 4 for d = 2, but there is some

hope here. As we have seen in the proof of Theorem 6.1 for every convex lattice
polygon of area at most A, there is an equivalent lattice polygon contained in
Box(a, b) = {(x, y) ∈ R2 : 0 ≤ x ≤ a, 0 ≤ y ≤ b} with ab ≤ 6A. (This is the
planar version of the box lemma, with explicit constant 6.)

Write N(a, b) for the number of convex lattice polygons in Box(a, b). Which
box of area 6A contains the largest number of convex lattice polygons? As a, b go
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to infinity with their ratio bounded, the answer follows from Theorem 10.2:

N(a, b) = exp

{
6 3

√
2ζ(3)
ζ(2)

3
√

ab(1 + o(1))

}
.

It turns out that the same asymptotic formula is valid as long as a, b go to infinity
satisfying b ≤ a and a = o(b2). Moreover, N(a, b) becomes much less than that
when a ≥ ε0b

2 for a fixed small ε0 > 0. An interesting thing happens when a = εb2

and b →∞ and ε is small. Namely, the constant in the exponent changes to

6 3

√
2ζ(3)
ζ(2)

+ h(ε)

where h(ε) tends to zero and oscillates around zero infinitely often as ε → 0. This
observation, which is due to Gábor Halász (see [4]), shows that the maximum
N(a, b) when ab ≤ 6A behaves a little strangely. This phenomenon is similar to the
behaviour of the minimal area convex lattice n-gon. We close this section with

Open problem 7. Determine ε > 0 for which h(ε) is maximal.

11. Maximal polygons in K

In the planar case, M(K, t) can be determined asymptotically; see Bárány and
Prodromou [10].

Theorem 11.1. Under the above conditions,

lim
t→∞

t−2/3M(K, t) =
3

(2π)2/3
A∗(K).

Here A∗(K) is, again, the maximal affine perimeter a convex body inscribed in
K can have. As we know, AP (K0) = A∗(K) for a unique convex body K0 ⊂ K.
This unique K0, again, has the limit shape property.

Theorem 11.2. Let Qt denote any maximizer in the definition of M(K, t).
Then

lim
t→∞

δ(Qt,K0) = 0,

where δ denotes the Hausdorff distance.

This fact need not be surprising, especially after Theorem 10.2. There is an-
other connection worth explaining: the affine perimeter governs the approximability
of a smooth convex set K ∈ K2 in the following sense. Consider the best approx-
imating polygon Qn ∈ P, inscribed in K, with n vertices. Best here means that
Area (K\Qn) is the smallest for Qn among all such polygons. If K has C2 boundary,
then

Area (K \Qn) =
1
12

AP (K)3n−2(1 + o(1)).

So K0 is the worst approximable convex subset of K in the sense that it requires
the largest number of vertices for Qn in order to approximate it within ε say, that
is, to achieve Area (K \ Qn) < ε. Then one would expect many Zt-lattice points
in a small neighbourhood of the boundary of K0. That may be one reason why K0

is actually the limiting shape for maximal polygons (Theorem 11.2), and also why
the overwhelming majority of the polygons in P(K, t) lie in a small neighbourhood
of K0 (Theorem 10.2).
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Interestingly, Theorem 11.2, or rather its proof, can be used for a characteri-
zation of K0. Write C for the set of those C ∈ K whose centre of gravity is at the
origin, that is,

∫
C

zdz = 0. The radial function of C, ρC is a map from S1 → R

such that for a unit vector u ∈ S1 ρC(u) = max{t > 0 : tu ∈ C}. The condition∫
C

zdz = 0 translates (via a change of variables to polar coordinates) to
∫

S1
ρ(u)3du = 0,

here du denotes vector integration on S1. By Minkowski’s classical theorem (see
[14]), there is a unique (up to translation) convex body C∗ whose radius of curvature
in direction u is exactly R(u) = 1

3ρ3(u). The following characterization theorem,
which is due to Bárány and Prodromou [10], describes the sets K0 when K ∈ K2.

Theorem 11.3. For each K ∈ K2, there is a unique C ∈ C such that K0 is a
translated copy of C∗. Moreover, for every C ∈ C the set C∗ ∈ K2 has the largest
affine perimeter among all convex sets contained in C∗, that is, (C∗)0 = C∗.

This theorem immediately implies the following result.

Corollary 11.4. Assume K ∈ K2. Then K0 = K holds if and only if K
has well defined and continuous radius of curvature R(u) (for each u ∈ S1) and
3
√

3R(u) is the radial function of a convex set C ∈ C.
I find it quite remarkable that the motivation and proof method for a theorem

in ordinary convex geometry come from considering convex lattice polygons.
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