
LONGEST CONVEX LATTICE CHAINS

IMRE BÁRÁNY AND EDGARDO ROLDÁN-PENSADO

Abstract. Let T be a triangle with two specified vertices v0, v1 ∈ Z2. A
convex lattice chain in T from v0 to v1 is defined naturally (see the next

paragraph). In this paper we prove what the maximal length of a convex

lattice chain is if the area of T is fixed (and large). It is also shown that the
solution is unique apart from lattice preserving affine transformations.

1. Introduction and main result

Given a convex body K ⊂ R2 and t > 0, let n be the largest possible number of
vertices that a convex lattice polygon contained in tK can have. In [2], I. Bárány
and M. Prodromou study the number n and determine its asymptotic behaviour
as t → ∞. In order to do this, they define m(T ) as the maximum number of
vertices that a convex lattice chain within a triangle T can have (see [2] for precise
definitions). The behaviour of m(tT ) is described in terms of the area of T as
t→∞. We ask a similar question here, but remove the factor t.

Define G to be the set of triangles T in the plane with two specified vertices, v0
and v1, belonging to Z2, the integer lattice. Distinct points p0, p1, . . . , pn ∈ Z2 ∩ T
form a convex lattice chain in T (from v0 to v1) if p0 = v0 and pn = v1 and
the convex hull of {p0, . . . , pn} has exactly n + 1 vertices, namely p0, . . . , pn. The
length of this convex chain is n. Let `(T ) denote the largest n such that T contains
a convex lattice chain of length n (from v0 to v1). This paper is about the maximal
value of `(T ) when the area, |T |, of T is fixed. Here is our main result, which is
made more precise in Theorem 2.1 in Section 2 below.

Theorem 1.1. There is t0 > 0 such that for all triangles T ∈ G with |T | > t0

1

8
(`(T )− 1)`(T )2 ≤ |T |,

and this estimate cannot be improved.

A few things have been known about `(T ). Andrews [1] showed in 1963 that the
area of a convex lattice n-gon is at least constant times n3. Andrews’s result is in
fact more general and applies in any dimension. It has been proved in [6] and [3]
that the value of the constant is at least 1/(8π2), implying in our case that

|T | ≥ |conv{p0, p1, . . . , pn}| ≥
(n+ 1)3

8π2
.

Consequently
1

8π2
`(T )3 ≤ |T |.
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Another, and simpler, bound on `(T ) comes when using the lattice width, w(T ),
of T . This is defined (cf [5] or [3]) more generally for a compact convex set K ⊂ R2

as

w(K) = min{w(K, z) : z ∈ Z2, z 6= (0, 0)}, where

w(K, z) = max{z(x− y) : x, y ∈ K}.
A vector z ∈ Z2 for which the minimum is attained is called the lattice width direc-
tion of K. It is clear that at most bw(K) + 1c consecutive lattice lines orthogonal
to z intersect K. As every lattice line contains at most two points from a convex
lattice chain, the bound

`(T ) ≤ 2w(T ) + 1

is immediate.
We mention that `(T ), just like |T | and w(T ), is invariant under lattice preserving

affine transformations. Thus the use of the lattice width is very natural here. This
invariance is important and will be used later. For instance, we assume from now
on (and can do so without loss of generality), that one specified vertex of T , namely
v0, coincides with the origin.

Here is another result from [2] concerning the typical behaviour of `(T ). Let
T ∈ G (with v0 = (0, 0) now) and assume λ → ∞ so that λv1 ∈ Z2. Theorem 4.1
from [2] says that

lim
λ→∞

λ−2/3`(λT ) =
6

(2π)2/3
3
√
|T |.

This result can be strengthened. For T ∈ G define w(T ) = w(T )|T |−1/3.

Theorem 1.2. There are constants C,D > 0 such that if T ∈ G with w(T ) > C,
then ∣∣∣∣`(T )− 6

(2π)2/3
3
√
|T |
∣∣∣∣ ≤ D logw(T )

w(T )
.

This determines the behaviour of `(T ) when w(T ) > C 3
√
|T |. Note that for a

typical “fat” triangle T , w(T ) is of order
√
|T |. For the rest `(T ) is of order w(T ).

The proof of Theorem 1.2 is almost identical with that of Theorem 4.1 in [2] and
is therefore omitted.

In [3] another extremal problem is considered, namely, the determination of
the minimal area that a convex lattice n-gon can have. Although our question is
different, the proof and methods show some similarity.

2. Reformulation

We can turn around the question by asking the following minimization problem,
to be called Min(n):

minimize |T | subject to T ∈ G, `(T ) = n.

Let Tn (n ≥ 3) be the triangle with vertices v0 = p0 = (0, 0), v1 = ( 1
2n(n− 1), n)

and v2 = ( 1
2n(n − 1), 12n). Thus |Tn| = 1

8 (n − 1)n2. For a fixed n define pk =

( 1
2n(n − 1) − 1

2 (n − k)(n − k − 1), k) for k = 0, . . . , n. It is easy to check that
p0, . . . , pn is a convex lattice chain of length n in Tn from v0 to v1. Note that
w(Tn) = n so this is the range where the lattice width bound and the area bound
from the previous section are about equal. Here comes the more precise form of
Theorem 1.1.
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Theorem 2.1. There is n0 > 0 such that for all n > n0 the following holds. If the
triangle T ∈ G contains a convex lattice chain of length n, then

1

8
(n− 1)n2 ≤ |T |.

Equality holds here iff T is the image of Tn under a lattice preserving affine trans-
formation.

Almost all the paper is devoted to the proof of this result. The value we obtain
for n0 is very large, and can be made explicit, but we have not tried to determine
it.

There are two cases we know of where Tn is not the minimizer for Min(n),
namely:

• when n = 3. Let p0, p1, p2, p3 be equal to (0, 0), (1, 0), (2, 1), (2, 2)
respectively. Then |T | = 2 which is smaller (by 1/4) than the expected
|T3| = 9

4 .
• when n = 5. Let p0, p1, p2, p3, p4 and p5 be equal to (0, 0) (1, 0), (3, 1),

(4, 2), (6, 5) and (7, 7) respectively, then |T | = 49
4 which is smaller than

|T5| = 25
2 , again by 1/4.

3. Reduction

We assume from now on that the points p0, p1, . . . , pn lie in this order on the
perimeter of their convex hull. Let zi = pi − pi−1, i = 1, . . . , n, these are the
edge vectors of the convex lattice chain and determine the convex lattice chain
completely. For Tn this is just the vectors (0, 1), (1, 1), (2, 1), . . . , (n − 1, 1). By
ordering the vectors zi by increasing slope, we can construct a convex lattice chain
having them as edge vectors and every convex lattice chain defines the minimal
area triangle T that contains it. Define P to be the set of primitive vectors in Z2,
that is (a, b) ∈ Z2 is in P if a and b have no common divisor (apart from ±1).

For the reduction we consider the set Hn of triangles 4 satisfying the conditions

• the origin is a vertex of 4,
• |4 ∩ P| = n,
• each side of 4 contains a point from P.

Every 4 ∈ Hn gives rise to a convex lattice chain with n edges, and every
convex lattice chain defines the minimal area triangle that contains it. This way
every 4 ∈ Hn gives rise to a triangle T (4). For example, the triangle 4n =
conv{(0, 0), (0, 1), (n− 1, 1)} gives T (4n) = Tn.

Lemma 3.1. Let T be a minimizer for the problem Min(n), with {z1, . . . , zn}
being the corresponding set of edge vectors. Then there is 4 ∈ Hn with 4 ∩ P =
{z1, . . . , zn}.

Proof. All the edge vectors z1, . . . , zn are in P as otherwise the area of T can
be decreased. The vertices of T are v0 = 0, v1, v2. Let P be the parallelogram with
vertices v0, v2, v1, v3 = v1 − v2. (Recall that T contains a convex lattice chain of
length n from v0 = 0 to v1.)

Let C = pos{v2, v3} be the cone with apex 0 and generators v2, v3. Then all
zi ∈ C and also, C = pos{z1, zn} clearly. Let T ∗ be the triangle that is cut off from
C by the line L parallel with the one through v2 and v3 that contains v1. We will
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Figure 1. Points for Lemma 3.1

use a simple fact from elementary plane geometry: If a parallelogram is contained
in T ∗, is different from P and one of its vertices is 0, then its area is less than |P |.

Let u2 and u3 be points on the segments [0, v2] and [0, v3] respectively so that
[u2, u3] is parallel with L, the triangle 4 = conv{0, u2, u3} contains z1, . . . , zn, and
some edge vector, say zi, is on the segment [u2, u3]. This segment is unique (see
Fig. 1).

We show now that 4 ∩ P = {z1, . . . , zn}. Assume the contrary, then there
is a z ∈ P ∩ 4 which is not an edge vector. Replace zi by z. The new edge
vectors define a new convex lattice chain that determines (uniquely) a new triangle
W = conv{0, w1, w2} with minimal area that contains the convex lattice chain from
0 and w1. The parallelogram with vertices 0, w2, w1, w1 − w2 is contained in T ∗.
This is very easy when zi is different from z1 or zn, and not hard to see otherwise.
The fact implies then that its area is smaller than |P | which shows, in turn, that
|W | < |T |. But W contains a convex lattice chain of length n which is impossible
as T is a minimizer for Min(n). So indeed 4∩ P = {z1, . . . , zn}.

The last thing to check is that every side of 4 contains some zj . This follows
from z1 ∈ [0, v2] and zn ∈ [0, v3], therefore 4 ∈ Hn. �

Consider now the following problem, to be called Red(n):

minimize |T (4)| subject to 4 ∈ Hn.
Theorem 3.1. For n > n0 the triangle 4n is a solution to Red(n). This solution
is unique apart from a lattice preserving affine transformation.

It suffices to prove this theorem only. The plan for the proof is given next.

4. Plan of proof

First we bring4 ∈ Hn into standard position by a lattice preserving affine trans-
formation as follows. Set w(4) = w and choose a lattice preserving affine transfor-
mation so that the lattice width direction of 4 is (0, 1). Let (0, 0), (e, a), (c, b) be
the vertices of 4. We can assume that 0 ≤ e ≤ a, |b| ≤ a and ac− be = 2|4| > 0,
by applying a suitable lattice preserving affine transformation.

Let h be the length of the longest horizontal chord, H, of 4. Then |4| = 1
2wh.

We have to consider two separate cases.
Case 1. When b ≥ 0. Then w = a and (c, b) is an endpoint of H.
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Case 2. When b < 0. Then w = a− b and (0, 0) is an endpoint of H.
It is not hard to see in both cases that c/2 ≤ h ≤ c.

For later use we record the inequality

(4.1)
cw

4
≤ |4| ≤ cw

2
.

Now let S =
∑
z∈4∩P z. The area of T = T (4) can be determined in terms of

4 by

(4.2) |T | = det((c, b), S) det(S, (e, a))

2 det((c, b), (e, a))
=

(cSy − bSx)(aSx − eSy)

4|4|
.

It is well known that the density of P in Z2 is 6
π2 (e.g. Theorem 459 in [4]). So

in a typical triangle 4, we expect the number of primitive lattice points in 4 to
be close to 6

π2 |4| and their sum S to be close to 6
π2 |4|g, where g is the centre of

gravity of 4. If this were the case, it follows from (4.2) that |T | is close to 4|4|3
π4

and |T |n3 ≈ π2

54 >
1
8 .

In the first step of the proof we formalize this argument for triangles with large
lattice width. Namely, we show the existence of a finite w0 such that for w > w0

the inequality |T |n3 >
1
8 holds.

In the second step we assume that w ≤ w0, and show, by subtle though lengthy

and technical estimates, that |T |n3 >
1
8 for w ≥ 250 if n, and then c, are large enough.

After this we are left with finitely many cases, roughly 2502 of them. Here we
suppose again that c is large enough. In each case the limit of T (4)/n3 can be
exactly expressed as a rational function of the parameters a, b. The third step of the
proof is carried out by a computer using Mathematica [7], and consists of careful

checking of these cases. The outcome is, again, that |T |n3 > 1
8 , apart from 3 special

cases that are treated in the last step of the proof separately.

5. Large lattice width

Here we prove that 4 ∈ Hn does not solve Red(n) if the lattice width of 4 is
large enough.

Lemma 5.1. There is w0 > 0 so that if 4 ∈ Hn and w(4) > w0 then |T | =
|T (4)| > 1

8n
3.

Proof. We assume that w = w(4) is large. In this section we use Vino-
gradov’s convenient f(c, w) � g(c, w) notation meaning, in our case, the exis-
tence of constants D1, D2 > 0 such that f(c, w) ≤ D1g(c, w) for all c ≥ w ≥ D2

(here c ≥ w follows from w(4) = w). For instance
∑w
d=1

|µ(d)|
d � logw, since∑w

d=1
|µ(d)|
d < 1 + logw � logw.

We apply a commonly used method involving the Möbius function.

n =
∑
z∈T∩P

1 =
∑

z∈4∩Z2

∑
d|z

µ(d) =

w∑
d=1

µ(d)#

(
Z2 ∩ 1

d
4
)
.

Here the term #
(
Z2 ∩ 1

d4
)

is approximately equal to
∣∣ 1
d4
∣∣ = 1

d2 |4|, so we may

write
∣∣Z2 ∩ 1

d4
∣∣ = 1

d2 |4|+ E(d) where E(d) is an error term. Then

(5.1) n = |4|
w∑
d=1

µ(d)

d2
+

w∑
d=1

µ(d)E(d).
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The target is to estimate the error term E =
∑w
d=1 µ(d)E(d). To this end for

every z ∈ Z2, define Qz to be the square of side length 1 with centre z and sides
parallel to the axis. We define the sets

Γ+
d =

{
z ∈ Z2 : z 6∈ 1

d
4 and Qz ∩

1

d
4 6= ∅

}
,

Γ−d =

{
z ∈ Z2 : z ∈ 1

d
4 and Qz \

1

d
4 6= ∅

}
.

Thus Γ+
d and Γ−d are the centres of the boundary squares Qz the ones that intersect

the boundary of 1
d4.

Claim 5.1. |Γ+
d |+ |Γ

−
d | ≤ 2d cde+ 2dwd e+ 4� c+w

d .

Proof. The sides of the smallest axis parallel rectangle containing 1
d4 have

lengths c
d and w

d , which gives the bound on the number of boundary squares. �

Define now A+
d be the union over z ∈ Γ+

d of the sets Qz ∩ 1
d4 and A−d be the

union over z ∈ Γ−d of the sets Qz \ 1
d4. Clearly |A+

d | ≤ #Γ+
d and |A−d | ≤ #Γ−d .

Since we have #
(
Z2 ∩ 1

d4
)

=
∣∣ 1
d4
∣∣+ |A+

d | − |A
−
d |, it follows that

(5.2) E(d) = |A+
d | − |A

−
d | and so |E(d)| = ||A+

d | − |A
−
d || �

c+ w

d
.

Consequently ∣∣∣∣∣
w∑
d=1

µ(d)E(d)

∣∣∣∣∣� (c+ w) logw � c logw.

As cw � |4| � cw this implies that

(5.3)

∣∣∣∣∣n−
w∑
d=1

µ(d)

d2
|4|

∣∣∣∣∣� |4| logw

w
.

Estimating the sum of the primitive vectors in 4 is similar, just a little more
involved. Let g = 1

3 (e+ c, a+ b) be the centre of gravity of 4. Then

S =
∑

z∈4∩P2

z =
∑

z∈4∩Z2

∑
d|z

µ(d)z =

w∑
d=1

dµ(d)
∑
z∈ 1

d4

z

=|4|
w∑
d=1

µ(d)

d2
g +

w∑
d=1

dµ(d) ~E(d),(5.4)

where ~E(d) = (Ex(d), Ey(d)) ∈ R2 represents the error here. Since
∫

1
d4

zdz =
1
d2 |4|g, we have, similarly as in Claim 5.1, that

|Ex(d)| ≤

∣∣∣∣∣
∫
A+

d

xdz −
∫
A−d

xdz

∣∣∣∣∣� c(c+ w)

d2

and

|Ey(d)| ≤

∣∣∣∣∣
∫
A+

d

ydz −
∫
A−d

ydz

∣∣∣∣∣� w(c+ w)

d2
.
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For simpler writing we define σw =
∑w
d=1

µ(d)
d2 , and set Ex =

∑w
1 dµ(d)Ex(d)

and Ey =
∑w

1 dµ(d)Ey(d). Thus with notation S = (Sx, Sy) and g = (gx, gy),
Sx = σw|4|gx + Ex and Sy = σw|4|gy + Ey. Then

|Ex| =

∣∣∣∣∣
w∑
d=1

dµ(d)Ex(d)

∣∣∣∣∣� c2 logw and |Ey| =

∣∣∣∣∣
w∑
d=1

dµ(d)Ey(d)

∣∣∣∣∣� cw logw.

We use (4.2) to compute |T |. First

cSy − bSx =c(|4|σwgy + Ey)− b(|4|σwgx + Ex)

=|4|σw(cgy − bgx) + (cEy − bEx) = σw
2

3
|4|2 + (cEy − bEx)

and similarly

aSx − eSy =a(|4|σwgx + Ex)− e(|4|σwgy + Ey)

=|4|σw(agx − egy) + (aEx − eEy) = σw
2

3
|4|2 + (aEx − eEy),

where we used the fact that 2
3 |4| = cgy − bgx = agx − egy. So we have

(5.5) |T | = |4|3
(

1

3
σw +

cEy − bEx
2|4|2

)(
1

3
σw +

aEx − eEy
2|4|2

)
.

Here |cEy|, |aEx|, |bEx| � c2w logw and |eEy| � cw2 logw, thus

|cEy − bEx| � c2w logw and |aEx − eEy| � c2w logw.

Using (4.1) it follows that∣∣∣∣|T | − σ2
w

9
|4|3

∣∣∣∣� |4|3( logw

w
+

log2 w

w2

)
� |4|3 logw

w
.

This inequality, together with (5.3) finishes the proof quickly. For suitable posi-
tive constants D1, D2, D3 we have

|T |
n3
≥

(
σ2
w

9 −D1
logw
w

)
|4|3(

σw +D2
logw
w

)3
|4|3

≥ 1

9σw
−D3

logw

w
.

As σw tends to 6
π2 as w → ∞, the right hand here tends to π2

54 = 0.18277 · · · > 1
8 .

This shows that, indeed, |T |n3 >
1
8 if w is large enough. �

Remark. This argument can show, with a more precise computation, that
|T |
n3 >

1
8 when w > 104. But we won’t need this explicit bound.

6. Auxiliary lemmas

We need some preparations for the case w ≤ w0. Recall that we keep the
parameters a, b, e fixed and wish to show that lim |T |/n3 > 1/8 as n → ∞, or
equivalently, as c→∞.

First we get rid of the parameter e: We simply change the triangle4 by replacing
its vertex (e, a) by (0, a). It is clear that the change in # (4∩ P) is at most w2,
and the change in Sx, Sy resp., is at most wc and w2 which is smaller order than
the corresponding error terms (as we shall see). We keep the notation 4 for the
new triangle.
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We also have in both Case 1 (when b ≥ 0) and Case 2 (when b < 0) that

|4| = ac

2
,

which will work better than (4.1).
We show now that |b| ≥ 1. Since the edge vector z1 ∈ Z2 of the convex lattice

chain lies on the segment [(0, 0), (c, b)], |b| < 1 implies b = 0, and then z1 = (1, 0)
is the only possibility. Removing this vector from the convex lattice chain can only
decrease the limit lim |T |/n3 and does not affect the lattice width direction, as one
can check easily. We assume further that a− b ≥ 1. This is evident in Case 2, and
if a− b < 1 in Case 1, then one can change a and b a little so that a− b ≥ 1 while
4∩ P remains unchanged.

Recall that in Case 1 w = a and in Case 2 a < w = a − b ≤ 2a since |b| ≤ a.
So w and a are comparable, and in the next section it will be more convenient to
work with a instead of w.

We will need a simple bound on
∑a

1 |µ(d)| and on
∑a

1
|µ(d)|
d .

Lemma 6.1. If a ≥ 44 then

a∑
d=1

|µ(d)| ≤ 2

3
a,

and if a ≥ 126 then
a∑
d=1

|µ(d)|
d
≤ 6

10
+

7

10
log a.

Proof. Let I be a set consisting of 36 consecutive positive integers and I ′ be
equal to I without the multiples of 4 and 9. Since µ(d) = 0 if d is divisible by a
square ∑

d∈I

|µ(d)| ≤
∑
d∈I′

1 =
2

3

∑
d∈I

1.

The rest is a simple checking that the result holds for a ∈ [44, 80].
For the other inequality we first show that∑

d∈I′

1

d
<

7

10

∑
d∈I

1

d

if all the elements of I are larger than 125. Note that this inequality is of the form

∑
d∈I′′

1

d+m
<

7

10

35∑
d=0

1

d+m
,

where m > 125 and I ′′ ⊂ [0, 35] is set I ′ reduced modulo 36 to the interval [0, 35].
There are 36 different possibilities for the set I ′′ depending on the value of m mod
36. For each of these cases, the inequality reduces to showing that a polynomial
in the variable m of degree at most 36 is positive for m > 125. After this the
only thing left is to verify the original inequality for a ∈ [126, 162]. Both can be
confirmed easily with the help of a computer.�



LONGEST CONVEX LATTICE CHAINS 9

Figure 2. A+
d and A−d near L and correction lines

7. Medium lattice width

Here we prove a strengthening of Lemma 5.1 for the case when w(4) is not too
small but at most w0. More precisely we show the following.

Lemma 7.1. There is n0 > 0 so that if 4 ∈ Hn, n > n0 and a > 250 then
|T | = |T (4)| > 1

8n
3.

Proof. By Lemma 5.1 w ≤ w0, and so c → ∞ as n → ∞. We show that

for some ε > 0, limc→∞
|T (4)|
n3 > 1

8 + ε when a > 250 and w ≤ w0. Since here

both |T (4)| and n3 are of order c3 we can ignore smaller order terms during the
computations.

We want to have sharper and explicit estimates instead of (5.2) and (5.4). For

simpler notation set 4̃ = 1
d4, let ã = a

d , b̃ = b
d , and c̃ = c

d .

We begin with Case 1, so a = w. We are going to estimate E(d) = |A+
d | − |A

−
d |

again. The triangle 4̃ has a lower side L = [(0, 0), (0, ã)] and upper one U =

[(0, 0), (c̃, b̃)]. We ignore the boundary cells on its vertical side since they cause only
a minimal (O(1)) error. Figure 2 shows that A+

d ∪A
−
d near L (resp. U) consists of

triangles, bounded by L (and U), and horizontal segments (on the lines y = m+ 1
2 ,

m an integer) and vertical segments of unit length (on the lines x = m + 1
2 , m

an integer). These triangle alternately belong to A+
d and A−d and two consecutive

triangles have almost the same area. We modify these triangles by moving the
unit segment containing their vertical side so that L (resp. U) halves the new
unit segment. This is called a correction. Each correction changes the sum of the
signed area of the two triangles it affects by at most 1

2 . After correction consecutive

triangles have the same area so they cancel in E(d) = |A+
d | − |A

−
d |.

Even more generally the following holds. Call a valid period any vertical strip
of width c̃

b̃
between the lines x = 0 and x = c̃. Then the sum of the signed areas of

the triangles in A+
d and A−d near L in a valid strip equals zero.

Consequently the contribution of |A+
d | − |A

−
d | from triangles near L is at most

the area of one of the triangles, which is c̃

8b̃
if b̃ ≥ 1. There is no valid period if

b̃ < 1, and then the contribution of |A+
d | − |A

−
d | near L is at most c̃

2 .
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Similarly, the contribution of |A+
d | − |A

−
d | near U is at most c̃

8(ã−b̃)
if ã − b̃ ≥ 1

and c̃
2 if ã− b̃ < 1. Then, ignoring the correction terms,

|E| =|
a∑
1

µ(d)E(d)| ≤
a∑
1

|µ(d)|||A+
d | − |A

−
d ||

≤
b∑
1

c

8b
|µ(d)|+

a∑
b

c

2

|µ(d)|
d

+

a−b∑
1

c

8(a− b)
|µ(d)|+

a∑
a−b

c

2

|µ(d)|
d

≤

[
c

8

(
1

b

b∑
1

|µ(d)|+ 1

a− b

a−b∑
1

|µ(d)|

)
+
c

2

(
a∑
b

|µ(d)|
d

+

a∑
a−b

|µ(d)|
d

)]
.

Here we can assume by symmetry that b ≤ a − b. The first term in the square
brackets is bounded using Lemma 6.1 by c

2 (1 + 2
3 ). For the second term we can use

the method as in the proof of Lemma 6.1 as follows: Let µ∗(d) = 0 if 4 or 9 divides
d and µ∗(d) = 1 otherwise. Then

a∑
b

|µ(d)|
d

+

a∑
a−b

|µ(d)|
d
≤

a∑
b

µ∗(d)

d
+

a∑
a−b

µ∗(d)

d

≤
a∑

b−36m

µ∗(d)

d
+

a∑
a−b+36m

µ∗(d)

d
,

for every positive integer m such that b − 36m > 0. Choose m so that 1 ≤ b0 =
b− 36m ≤ 36. Then

a∑
b

|µ(d)|
d

+

a∑
a−b

|µ(d)|
d
≤

a∑
b0

µ∗(d)

d
+

a∑
a−b0

µ∗(d)

d
(7.1)

≤
a∑
1

µ∗(d)

d
+

a∑
a−36

µ∗(d)

d
≤
(

6

10
+

7

10
log a

)
+

24

250− 36
.

Therefore we have the bound

|E| < c

2

(
2.3789 +

7

10
log a

)
.

The same general method applies to Ey =
∑a

1 dµ(d)Ey(d) where Ey(d) =∫
A+

d
ydz −

∫
A−d

ydz. The integral on the corrections is ã
2 , small again. On a valid

period the contribution in absolute value of the integral near L is at most c̃
6 and

the contribution of the final part is at most c̃
4 if b̃ ≥ 1. The same contribution near

U is at most c̃
24 + c̃

8(ã−b̃)
(̃b + 1) if ã − b̃ ≥ 1, and is 1

2 c̃ã if ã − b̃ < 1. This way we
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obtain, ignoring correction terms and using Lemma 6.1 again,

|Ey| =|
a∑
1

dµ(d)Ey(d)| ≤ c

6

b∑
1

|µ(d)|+ c

4

a∑
b

|µ(d)|

+

(
c

24
+

bc

8(a− b)

) a−b∑
1

|µ(d)|+ c

8(a− b)

a−b∑
1

d|µ(d)|+ ca

2

a∑
a−b

|µ(d)|
d

<
c

2

(
a

3
+
a+ 2b

18
+
a− b

6
+ a

a∑
a−b

|µ(d)|
d

)
<
c

2

(
1.1556a+

7

10
a log a

)
.

In this last part we used b > 0 and Lemma 6.1.
The estimate for Ex is similar. The correction term is O(c) this time. For the

integral on the triangles near L on a given valid period we get the bound c̃2

6b̃
if b̃ ≥ 1

and c̃2

6 if b̃ < 1. For those near U we have c̃2

6(ã−b̃)
if ã − b̃ ≥ 1 and c̃2

6 if ã − b̃ < 1.

This gives, ignoring the correction terms again,

|Ex| ≤
c2

6b

b∑
1

|µ(d)|+ c2

6

a∑
b

|µ(d)|
d

+
c2

6(b− a)

a−b∑
1

|µ(d)|+ c2

6

a∑
a−b

|µ(d)|
d

≤c
2

2

[
2

9
+

1

3

a∑
b

|µ(d)|
d

+
2

9
+

1

3

a∑
a−b

|µ(d)|
d

]

<
c2

2

(
0.6819 +

7

30
log a

)
.

Here we used Lemma 6.1 and (7.1).

Recall that σa =
∑a

1
µ(d)
d2 . We use equation (5.5), which is simpler this time as

e = 0:

|T | = |4|3
(

1

3
σa +

cEy − bEx
2|4|2

)(
1

3
σa +

aEx
2|4|2

)
.(7.2)

If a ≥ 250 then |σa − 6
π2 | <

∑∞
250

1
d2 < 0.004. Finally we use |cEy − bEx| ≤

|cEy|+ |bEx| to obtain

lim
n→∞

|T |
n3
≥

(
1
3σa −

1.8374+0.9334 log a
a

)(
1
3σa −

0.6819+0.2334 log a
a

)
(
σa + 2.3789+0.7 log a

a

)3 >
1

8
+ 10−5

when a ≥ 250. This finishes the proof of Case 1.
The proof in Case 2 is very similar. There are some necessary changes, but no

new idea or method. This time b is negative, so w = a − b and a ≥ −b ≥ 1. This

means that in (5.1) for instance, d runs from 1 to a instead of w and ã− b̃ is never
smaller than 1. It is easy to see that in this case we can obtain smaller bounds for

E, Ey and Ex than in Case 1 and so lim |T |
n2 >

1
8 + 10−5 when a ≥ 250. �

8. Small lattice width

We have reduced the problem to a relatively small amount of cases, to deal with
them all we use a computer. We assume again that e = 0. We use the Euler totient
function ϕ to compute n and S.
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We determine n in Case 1 the following way. Given an integer k ∈ [1, b], the
number of primitive points on the line y = k in 4 is ϕ(k) bc + O(k). The same

number for an integer k ∈ (b, a] is ϕ(k)
k

ca−ck
a−b + O(k). The O(k) terms are small,

and so is their sum.

n =

a∑
k=bb+1c

ϕ(k)

k

(
ca− ck
a− b

+O(k)

)
+

b∑
k=1

ϕ(k)

k

(c
b
k +O(k)

)
n

c
=

a

a− b

a∑
k=b

ϕ(k)

k
− 1

a− b

a∑
k=b

ϕ(k) +
1

b

b∑
k=1

ϕ(k) +O

(
1

c

)
,

The computation for Sx, Sy is similar:

(Sx, Sy) =

a∑
k=bb+1c

ϕ(k)

2k

(
ca− ck
a− b

+O(k)

)(
ca− ck
a− b

+O(k), 2k

)

+

b∑
k=1

ϕ(k)

2k

(c
b
k +O(k)

)(c
b
k +O(k), 2k

)
,

Sx
c2

=
a2

2(a− b)2
a∑
k=b

ϕ(k)

k
− a

(a− b)2
a∑
k=b

ϕ(k)

+
1

2(a− b)2
a∑
k=1

kϕ(k) +
1

2b2

b∑
k=1

kϕ(k) +O

(
1

c

)
,

Sy
c

=
a

a− b

a∑
k=b

ϕ(k)− 1

a− b

a∑
k=b

kϕ(k) +
1

b

b∑
k=1

kϕ(k) +O

(
1

c

)
.

The area of T is
( c

bSy−Sx)Sx

2c/b = 1
2

(
Sy − b

cSx
)
Sx, so we want to bound

F1 =
(
Sy

c − b
Sx

c2 )Sx

c2

2
(
n
c

)3

from below.
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In Case 2, b is negative, but we change its sign and work with it. So (c,−b) is a
vertex of 4 and 1 ≤ b ≤ a. Doing a similar computation as in Case 1 we obtain

n

c
=

a

a+ b

a∑
k=1

ϕ(k)

k
− 1

a+ b

a∑
k=1

ϕ(k)

+
a

a+ b

b∑
k=1

ϕ(k)

k
−
(

1

b
− 1

a+ b

) b∑
k=1

ϕ(k) +O

(
1

c

)
,

Sx
c2

=
a2

2(a+ b)2

a∑
k=1

ϕ(k)

k
− a

(a+ b)2

a∑
k=1

ϕ(k)

+
1

2(a+ b)2

a∑
k=1

kϕ(k) +
a2

2(a+ b)2

b∑
k=1

ϕ(k)

k

+
a

(a+ b)2

b∑
k=1

ϕ(k) +

(
1

2(a+ b)2
− 1

2b2

) b∑
k=1

kϕ(k) +O

(
1

c

)
,

Sy
c

=
a

a+ b

a∑
k=1

ϕ(k)− 1

a+ b

a∑
k=1

kϕ(k)

− a

a+ b

b∑
k=1

ϕ(k) +

(
1

b
− 1

a+ b

) b∑
k=1

kϕ(k) +O

(
1

c

)
.

The area of T is
( c

bSy+Sx)Sx

2c/b = 1
2

(
Sy + b

cSx
)
Sx, so we want to bound

F2 =
(
Sy

c + bSx

c2 )Sx

c2

2
(
n
c

)3
from below.

As c → ∞ we can ignore the terms O
(
1
c

)
and fix the values ā = bac and

b̄ = bbc. Then for i = 1, 2, Fi is a rational function of the variables a and b.
Not all pairs (a, b) of real numbers come from one of these triangles, but we treat
Fi as a function defined on all real numbers. The infimum of Fi in the square
(a, b) ∈ [ā, ā + 1] × [b̄, b̄ + 1] can be computed exactly using the Mathematica
function MinValue.

If the infimum of Fi is larger than 1
8 and the infimum of n

c is positive, then it

follows that Fi is larger than 1
8 for all a ∈ [ā, ā + 1], b ∈ [b̄, b̄ + 1] when c is large

enough.
This was verified for all but three of the pairs (ā, b̄) determined by triangles 4

in standard position with a ≤ 250 and 1 ≤ |b| ≤ a. The pairs on which this could
not be verified are (ā, b̄) = (1, 1), (2, 1) in Case 1 and (ā, b̄) = (1, 1) in Case 2. We
now deal with these last three pairs.

If (ā, b̄) = (1, 1) in Case 1, then 4 ∩ P consists of the vectors (k, 1) for k =

0, . . . , n− 1. This is the only example for which |T |
n2(n−1) = 1

8 .

If (ā, b̄) = (2, 1) in Case 1, let (k, 1) be the rightmost point on the line y = 1
and let (l, 2) be the rightmost point on the line y = 2. Note that l must be an odd
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integer and that 2k > l. Then,

|T |
n2(n− 1)

=
(2k(1 + k) + (1 + l)2)(2k2 − (1 + l)2 + k(6 + 4l))

4k(1 + 2k + l)(3 + 2k + l)2

and it can be verified with the Mathematica function Reduce that under these
conditions this is larger than 1

8 if n ≥ 6.

In Case 2, when (ā, b̄) = (1, 1), let (k, 1) be the rightmost lattice point of 4 on
the line y = 1 and let (m,−1) and (m+ l,−1) be the first and last lattice points in
4 on the line y = −1. Then,

|T |
n3

=
(2 + k + k2 + l + l2 + 2(1 + k)m)(2 + k + k2 + l + l2 + 2(1 + l)m)

8(3 + k + l)3m

which can be verified, again with Mathematica, to be larger than 1
8 if n ≥ 9.
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