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Abstract

We deal with different properties of a smooth and strictly convex body that depend on the
behavior of the planar sections of the body parallel to and close to a given tangent plane.
The first topic is boundary points where any given convex domain in the tangent plane can
be approximated by a sequence of suitably rescaled planar sections (so-called p-universal
points). In the second topic, the given convex body is the unit ball of a Minkowski space,
and oscillation properties of bisectors and trisectors in that space are considered. In either
case it turns out that geometrically irregular behavior is typical, when considered from the
viewpoint of Baire category.

1 Introduction

As the title indicates, this paper treats two seemingly unrelated topics. However, the proof
schemes in both cases are so similar that a joint treatment is appropriate. Both topics are
manifestations of the repeatedly observed phenomenon that certain ‘pathological’ objects,
constructed with some effort in special cases, turn out to be typical, and often in a stronger
form, when considered under the aspect of Baire categories.

The space Kd of convex bodies (nonempty, compact, convex sets) in Euclidean space Rd,
equipped with the Hausdorff metric δ, is a complete metric space and thus a Baire space.
This means that in Kd the intersection of countably many dense open sets is dense. A subset
of Kd is called meager or of first category if it is a countable union of nowhere dense subsets.
The complement of a meager set contains the intersection of countably many dense open sets
and hence is dense. Therefore, meager subsets of a Baire space can be considered as ‘small’.
If P is a property that elements of a Baire space can have, one says that most elements have
property P , or that a typical element has this property, if the subset of elements not having
property P is meager. In that case, property P is also called generic. As an example, we
mention that most convex bodies in Kd are smooth and strictly convex (‘smooth’ means that
at each boundary point of K there is a unique support plane). In fact, the set Kd∗ of smooth
and strictly convex bodies is a dense Gδ set in Kd (a Gδ set is, by definition, the intersection
of countably many open sets), and thus itself a Baire space (a fact which will be used below).
For surveys of Baire category results in convexity, we refer to Zamfirescu [16, 17, 18] and
Gruber [4, 5].
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supported by Hungarian National Foundation Grants no 78439 and 83767.
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Our first topic is universal points of convex bodies. Let K be a smooth convex body in
R3. Let z be a boundary point of K, let T be the tangent plane (unique support plane) of
K at z, and let T (t) be the plane parallel to T , at distance t > 0 from it, and intersecting
K (supposing that t is sufficiently small). A convex body M ⊂ T is called a limit section of
K at z if there is a null sequence (ti)i∈N such that suitable homothets of the intersections
T (ti) ∩ K converge to M . For example, if the boundary surface of K is of class C2 with
positive curvatures, then every limit section is an ellipse, homothetic to the Dupin indicatrix
(see, e.g., [13]). The point z is called a p-universal point of K if every convex body M ⊂ T is
a limit section of K at z. (The ‘p’ refers to parallel sections.) This concept was introduced
by Melzak [10]. He constructed a convex body in R3 for which the set of p-universal points
is dense in the boundary. We show that this behavior, in a stronger form, is typical.

Theorem 1. For most convex bodies in K3
∗, most boundary points are p-universal.

Here the second ‘most’ refers, of course, to the boundary of a convex body, which is itself
a Baire space.

The theorem and its proof extend to higher dimensions, but since no essentially new ideas
are required, we refrain from this. The proof is given in Section 2.

Our second topic concerns bisectors in Minkowski spaces, that is, in finite-dimensional
real normed spaces. A comprehensive survey of bisectors and related notions in Minkowski
spaces is given in Section 4 of the article by Martini and Swanepoel [9]. Here we first restrict
ourselves to the two-dimensional case. Let ‖ · ‖ be a norm on R2, with unit ball K, which is
assumed to be smooth and strictly convex. For different points p, q ∈ R2 the (p, q)-bisector
is the set

Bp,q := {x ∈ R2 : ‖x− p‖ = ‖x− q‖}.
If the norm is Euclidean, then all bisectors are straight lines, and consequently the Voronoi
diagram of a locally finite point set has convex cells. Motivated by applications to algo-
rithms, Klein [7, 8], (see also [1]), investigated Voronoi diagrams for more general metrics
and suggested (among other conditions) that ‘nice’ metrics should have the property that the
intersection of any two bisectors has only finitely many connected components. Corbalan,
Mazon and Recio [3] constructed a norm on R2 which is not nice in this sense. To explain
this, let K ∈ K2 be the unit ball of a norm, and for given different points p, q ∈ R2 let Gp, Gq
be the lines through p and q, respectively, whose directions are normal to p − q. The latter
means (see [14]) that the direction is parallel to z, where z is a point of K where the tangent
line is parallel to p − q; see Figure 1. The bisector Bp,q is contained in the open strip Sp,q
bounded by Gp and Gq.

We say that z is a point of strong oscillation if any line in the open strip Sp,q intersects
the bisector Bp,q at arbitrarily large distances from p, q. (If one pair (p, q) has this property,
then all homothetic pairs have the same property.) If this holds, then the intersection of the
bisectors of p, q and of p + z, q + z has infinitely many components. Corbalan, Mazon and
Recio constructed a unit ball K with a point z with a slightly weaker property, from which
they concluded that the corresponding norm is not ‘nice’. We prove here a stronger result.
We denote the set of unit balls of smooth and strictly convex norms on Rd by Kd∗o.

Theorem 2. For most convex bodies in K2
∗o, most boundary points are points of strong

oscillation.

We prove this result in Section 3. The reader will notice that here the symmetry of the
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Figure 1: The triangle op′q′ on the right is similar to the triangle xpq on the left, and p′

(resp. q′) is the unit vector in direction x− p (and x− q).

norm is not essential, if bisectors Bp,q are only considered on one side of the line through p
and q. For simplicity, we present only the symmetric case.

For bisectors in Minkowski spaces of dimension d > 2, some typical irregularity properties
can be deduced by considering two-dimensional subspaces and using the methods applied for
Theorem 2. Which more general irregularity properties are typical, has not been investigated.

In three-dimensional space, we shall also consider ‘trisectors’ in R3, that is, the sets of
points having the same distance from three given, affinely independent points, with respect
to a given norm. In the typical case, they have even more bizarre properties than bisectors, as
will be made precise and proved in Section 5. In this case, an extension to higher dimensions
meets with some difficulties, as is briefly explained at the end of Section 5.

2 Proof of Theorem 1

On Rd, we use the standard scalar product 〈·, ·〉 and its induced norm, denoted by | · |. By
B0(x, r) we denote the open ball in Rd with center x and radius r > 0.

The proof scheme for our theorems is modelled after that for Theorem 2.6.4 in [12], which
in turn used ideas from Schneider [11] and Zamfirescu [16]. For the sake of easier reading, we
first describe this proof scheme in general terms and in a simplified version, neglecting the
refinements that will later be necessary. Let P denote a property that a boundary point x of
a convex body K can have. For a boundary point x of K ∈ Kd∗, we write P [K,x] if x has the
property P , and ¬P [K,x] otherwise. In each of the considered cases, we aim to show that
P [K,x] holds for most boundary points x of most convex bodies K. For this, we define, for
each K ∈ Kd∗, closed sets Ak(K) ⊂ bdK, k ∈ N, with

K(¬P ) := {x ∈ bdK : ¬P [K,x]} =
⋃
k∈N

Ak(K).

Then we define the sets

Ck,m := {K ∈ Kd∗ : ∃x ∈ bdK such that B0(x, 1/m) ∩ bdK ⊂ Ak(K)}
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for m ∈ N and show that Ck,m is closed and nowhere dense in Kd∗, and that

Kd∗(¬P ) := {K ∈ Kd∗ : K(¬P ) is not meager in bd K} ⊂
⋃

k,m∈N
Ck,m.

Since each Ck,m is closed and nowhere dense, the set Kd∗(¬P ) is meager in Kd∗. Hence, most
bodies K ∈ Kd∗ belong to Kd∗ \Kd∗(¬P ), that is, they have the property that K(¬P ) is meager
in bd K, in other words, that P holds for most x ∈ bdK.

In the subsequent applications of this scheme, the essential differences are in the proof
that Ck,m is nowhere dense, which requires explicit geometric constructions.

To begin with the proof of Theorem 1, we fix a unit vector u ∈ R3 and let U be the
two-dimensional subspace of R3 orthogonal to u. By N (U) we denote the set of normalized
convex bodies in U , that is, those with mean width one and Steiner point (see [12], p. 42,
for these notions) at the origin. Each convex body which lies in a plane parallel to U and is
not a singleton, has a unique homothetic copy in N (U).

Recall that δ denotes the Hausdorff metric, defined by

δ(L,M) := max{max
x∈L

min
y∈M
|x− y|,max

x∈M
min
y∈L
|x− y|}

for convex bodies L,M . If L,M are not singletons, we define their homothetic distance by

h(L,M) := δ

(
L− s(L)
w(L)

,
M − s(M)
w(M)

)
, (1)

where s denotes the Steiner point and w is the mean width.

By S2 := {x ∈ R3 : |x| = 1} we denote the unit sphere of R3. On S2 \ {±u} we
can choose two continuous vector functions A,B such that for each v ∈ S2 \ {±u}, the
triple (v,A(v), B(v)) is a positively oriented orthonormal frame (with respect to some fixed
orientation of R3). If we fix a positively oriented orthonormal frame (u, a, b) (so that a, b ∈ U),
there is a unique continuous mapping ρ : S2 \ {±u} → SO(3) such that ρ(v)(u, a, b) =
(v,A(v), B(v)).

Now we fix a convex body L ∈ N (U), and for v ∈ S2 \ {±u}, we define

L(v) := ρ(v)L+ v.

Then L(v) is a congruent copy of L lying in the tangent plane of S2 at v and having its
Steiner point at v. Moreover, L(v) depends continuously on v.

Let K ∈ K3
∗. At each point z ∈ bdK, there is a unique outer unit normal vector to K,

which we denote by ν(z) (in this notation, we suppress the dependence on K, which will be
clear from the context). This defines a continuous mapping ν : bdK → S2, also known as
the Gauss map of K. For n ∈ N, we define

bdnK := {z ∈ bdK : |〈ν(z), u〉| ≤ 1− (1/n)}.

This is a closed set. For z ∈ bdK and t > 0, let TK,z,t be the plane that is parallel to
the (unique) support plane of K at z, at distance t from it and on the same side as K. Its
intersection with K will play an essential role in the following, we denote it by

K(z, t) := TK,z,t ∩K.
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For n, k ∈ N we define

An,k(K) := {z ∈ bdnK : h(K(z, t), L(ν(z))) ≥ 1/k ∀ t ∈ (0, 1/k]} .
(Formally, we define h(∅, ·) := −1.)

Claim 1. An,k(K) is closed.

Proof. Let n, k ∈ N. Let (zj)j∈N be a sequence in An,k(K) converging to z; then z ∈ bdnK.
Let t ∈ (0, 1/k]; then h(K(zj , t), L(ν(zj))) ≥ 1/k for all j (in particular, K(zj , t) 6= ∅).
For j → ∞, we have TK,zj ,t → TK,z,t (in the usual topology for the space of planes) and
hence K(zj , t) → K(z, t) (by [12], Theorem 1.8.8). Since the function z 7→ L(ν(z)) and the
homothetic distance h are continuous, it follows that h(K(z, t), L(ν(z))) ≥ 1/k and hence
that z ∈ An,k(K). This proves the claim. �

For n, k,m ∈ N we define

Cn,k,m :=
{
K ∈ K3

∗ : ∃x ∈ bdnK with B0(x, 1/m) ∩ bdnK ⊂ An,k(K)
}
.

Claim 2. Cn,k,m is closed in K3
∗.

Proof. Let (Kj)j∈N be a sequence in Cn,k,m converging to some K ∈ K3
∗. For j ∈ N we

can choose xj ∈ bdnKj such that B0(xj , 1/m) ∩ bdnKj ⊂ An,k(Kj). The sequence (xj)j∈N
has a convergent subsequence, and we may assume that the sequence itself converges to
some point x. Then x ∈ bdnK. Let y ∈ B0(x, 1/m) ∩ bdK. For each j ∈ N, we can
choose a point yj ∈ bdKj such that yj → y for j → ∞ (cf. [12], Theorem 1.8.7). Let
0 < t ≤ 1/k. For sufficiently large j we have |xj − yj | < 1/m and thus yj ∈ An,k(Kj).
Therefore, h(Kj(yj , t), L(ν(yj))) ≥ 1/k. Since Kj(yj , t)→ K(y, t) for j →∞, it follows that
h(K(y, t), L(ν(y))) ≥ 1/k and hence that y ∈ An,k(K). Since y ∈ B0(x, 1/m) ∩ bdnK was
arbitrary, we obtain that B0(x, 1/m) ∩ bdK ⊂ An,k(K). This means that K ∈ Cn,k,m. We
have proved that Cn,k,m is closed in K3

∗. �

Claim 3. Cn,k,m is nowhere dense in K3
∗.

Proof. Since Cn,k,m is closed, the assertion says that Cn,k,m has no interior points relative
to K3

∗. Let n, k,m ∈ N. For given K ∈ K3
∗ and given ε > 0, we have to show that the

ε-neighborhood of K contains some element of K3
∗ \ Cn,k,m. Without loss of generality, we

assume that ε < 1/m.

By a cap of K we understand here the nonempty intersection of K with an open halfspace.
We can obviously choose finitely many caps C1, . . . , Cp of K such that the following holds:
(a) Ci ∩ Cj = ∅ for i 6= j,
(b) the convex body K ′ := K \⋃p

i=1Ci satisfies δ(K,K ′) < ε/2,
(c) for each x ∈ bdK, the ball B0(x, 1/(2m)) contains at least one of the caps C1, . . . , Cp,
(d) the distance of any point of any Ci from bdK is at most 1/(4m).

Let i ∈ {1, . . . , p}. Let Hi be the plane determining Ci, let ui be its unit normal vector
pointing from Hi to the cap. We choose a homothetic copy Li of L(ui) with Li ⊂ relint (Hi∩
K). Then we choose a point ci ∈ relintLi and numbers 0 < λi < µi such that Li + λiui ⊂
intCi, that ci + µiui ∈ intCi and that the cone with apex ci + µiui spanned by Li + λiui
contains K \ Ci in its interior. Then the convex body

C ′i := conv {(Hi ∩K) ∪ (Li + λiui) ∪ {ci + µiui}}
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is contained in the closure of the cap Ci. Further, the body

K ′′ := K ′ ∪ C ′1 ∪ · · · ∪ C ′p
is convex and satisfies δ(K ′′,K) < ε/2 (by (b) above). The body K ′′ has the following
property. Let i ∈ {1, . . . , p}, and let Ti be the support plane of K ′′ parallel to Hi and
touching K ′′ at the point ci + µiui. All planes parallel to Ti, on the same side of Ti as Hi

and at a sufficiently small distance from Ti, intersect K ′′ in a convex set that is homothetic
to L(ui).

By a smoothing procedure, for example the one described in [12], pp. 158–160, we can,
for every α > 0, obtain a convex body Kα ∈ K3

∗ such that δ(K ′′,Kα) < α. By choosing
α < ε/2, we achieve that δ(Kα,K) < ε.

For i ∈ {1, . . . , p}, let Tαi be the support plane of Kα parallel to Hi and such that Ti
lies between Tαi and Hi. Let zαi be the (unique) point where it touches Kα. We can choose
0 < α < 1/(4m) so small that the following holds. For each i, there is a number ti < 1/k
such that

h(Kα(zαi , ti), L(ui)) < 1/k.

This means that zαi /∈ An,k(Kα).

Now let x ∈ bdKα. There exists a point x′′ ∈ bdK ′′ with |x− x′′| ≤ α < 1/(4m). If x′′

is contained in one of the caps C1, . . . , Cp, then by (d) above there is a point y ∈ bdK with
|x′′−y| < 1/(4m). If x′′ is not in one of the caps, then x′′ ∈ bdK, and we can take y = x′′. In
either case, |x− y| < 1/(2m). By (c) above, the ball B0(y, 1/(2m)) contains one of the caps,
say Ci, hence it contains the point zαi . We have |x − zαi | ≤ |x − y| + |y − zαi | < 1/m. Thus,
each ball B0(x, 1/m) with x ∈ bdKα contains some boundary point of Kα which is not in
An,k(Kα). Therefore, Kα /∈ Cn,k,m. Since δ(K,Kα) < ε, this proves that Cn,k,m is nowhere
dense in K3

∗. This finishes the proof of Claim 3. �

From now on, our notation exhibits the dependence on L, for later purposes. For K ∈ K3
∗,

we denote by bd′K the set of all boundary points of K except those with outer normal vectors
±u. For K ∈ K3

∗, we define

BL(K) := {z ∈ bd′K : lim inf
t→0

h(K(z, t), L(ν(z))) > 0}.

We state that
BL(K) =

⋃
n,k∈N

An,k(K). (2)

Indeed,

z ∈ BL(K) ⇔ ∃n ∈ N : z ∈ bdnK ∧ lim inf
t→0

h(K(z, t), L(ν(z))) > 0

⇔ ∃n ∈ N : z ∈ bdnK ∃ ε > 0 ∃ t0 > 0 ∀ t < t0 : h(K(z, t), L(ν(z))) ≥ ε
⇔ ∃n ∈ N : z ∈ bdnK ∃ k ∈ N ∀ t < 1/k : h(K(z, t), L(ν(z))) ≥ 1/k

⇔ ∃n ∈ N ∃ k ∈ N : z ∈ An,k(K).

This proves (2).

For the set
K̃L := {K ∈ K3

∗ : BL(K) is not meager in bdK},
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we state that
K̃L ⊂

⋃
n,k,m∈N

Cn,k,m. (3)

In fact, let K ∈ K̃L. Then, by definition and (2),
⋃
n,k An,k(K) is not meager in bdK.

Therefore, not all sets An,k(K) can be nowhere dense. Let n, k be numbers such that An,k(K)
is not nowhere dense. Since An,k(K) is closed, it has nonempty interior relative to bdnK.
Thus, there are a point x ∈ bdnK and a number m ∈ N such that B0(x, 1/m) ∩ bdnK ⊂
An,k(K), which implies that K ∈ Cn,k,m and thus proves (3). Since we have proved that the
sets Cn,k,m are closed and nowhere dense in K3

∗, the set K̃L is meager in K3
∗. Hence, for most

K ∈ K3
∗, the set BL(K) is meager in bdK, which means that most points z ∈ bdK have the

property that
lim inf
t→0

h(K(z, t), L(ν(z))) = 0.

Now let L be a countable set of two-dimensional convex bodies which is dense in the space
N (U). The set

K̃ :=
⋃
L∈L
K̃L

is a countable union of meager sets and hence is itself meager in K3
∗. Therefore, most K ∈ K3

∗
belong to the set ⋂

L∈L

(
K3
∗ \ K̃L

)
and hence have the property that BL(K) is meager in bdK, for all L ∈ L, and thus the
property that the set

B(K) :=
⋃
L∈L

BL(K)

is meager in bdK. This means that most K ∈ K3
∗ have the property that, for most points

z ∈ bdK,
lim inf
t→0

h(K(z, t), L(ν(z))) = 0 for all L ∈ L. (4)

Let K ∈ K3
∗ and z ∈ bdK be such that (4) holds. Let M be any convex body in N (U).

To each n ∈ N, there exists a convex body Ln ∈ L such that δ(M,Ln) < 1/n. With ν(z)
being the outer unit normal vector of K at z, this implies that

δ(ρ(ν(z))M,ρ(ν(z))Ln) < 1/n.

By (4),
lim inf
t→0

h(K(z, t), ρ(ν(z))Ln) = 0,

hence there exists tn ∈ (0, 1/n) with h(K(z, tn), ρ(ν(z))Ln) < 1/n. By the definition of the
homothetic distance, this yields the existence of a homothety φn such that

δ(φnK(z, tn), ρ(ν(z))Ln) < 1/n,

which gives
δ(φnK(z, tn), ρ(ν(z))M) < 2/n.

Thus, we have proved the existence of a null sequence (tn)n∈N and a sequence (φn)n∈N of
homotheties such that

lim
n→∞

φnK(z, tn) = ρ(ν(z))M.
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Since here ρ(ν(z))M can be a homothet of any convex body of positive dimension in the
tangent plane to K at z (and since singletons are trivially limit sections), this completes the
proof of Theorem 1. �

Remark. In this proof we needed S2 \ {±u} to make the map L(·) continuous. This
cannot be done if L is defined on the whole of S2. But we could have used S2 \ {u} just as
well.

3 Proof of Theorem 2

The setting for Theorem 2 is R2, and we recall that K2
∗o denotes the set of unit balls of

smooth, strictly convex norms on R2. Thus, K2
∗o is the set of smooth and strictly convex

bodies in R2 with the origin o as center of symmetry and interior point.

First we remark that, for given K, the qualitative behavior of the bisector Bp,q depends
only on the direction of the line through p and q: if p− q = λ(p′ − q′) with λ > 0, then the
homothety carrying (p, q) to (p′, q′) maps Bp,q to Bp′,q′ .

In the following proof of Theorem 2, we use the standard Euclidean structure of R2 for
auxiliary purposes (except that bisectors refer to the norm ‖ · ‖ induced by a given element
of K2

∗o). Let K ∈ K2
∗o be given. We fix an orientation of R2 and equip bdK with the induced

counterclockwise cyclic order. Let z ∈ bdK, and let T be a support line of K at z. For
sufficiently small t > 0, the line T (t) parallel to T , at distance t from it, and on the same side
of T as K, intersects the segment [o, z] in a point c(z, t). Let a(z, t), b(z, t) be the intersection
points of T (t) with bdK such that a(z, t), z, b(z, t) follow each other in this order. Define

R(K, z, t) := |a(z, t)− c(z, t)|, L(K, z, t) := |b(z, t)− c(z, t)|.

It is not difficult to see (or compare [3]) that z is a point of strong oscillation for K if and
only if

lim inf
t→0

R(K, z, t)
L(K, z, t)

= 0 and lim sup
t→0

R(K, z, t)
L(K, z, t)

=∞. (5)

For k ∈ N we define the set

Ak(K) :=
{
z ∈ bdK :

R(K, z, t)
L(K, z, t)

≥ 1
k

for 0 < t ≤ 1/k
}
.

(If the quotient R(K, z, t)/L(K, z, t) is not defined since t is too large, we set it formally equal
to −1.)

Claim 4. Ak(K) is closed.

Proof. Since K is smooth and strictly convex, it is easy to see that the points c(z, t), a(z, t),
b(z, t) defined above are continuous functions of z and t. Therefore, also R(K, z, t) and
L(K, z, t) are continuous. Now let (zj)j∈N be a sequence in Ak(K) converging to z ∈ bdK.
For fixed t ∈ (0, 1/k], we have R(K, zj , t)/L(K, zj , t) ≥ 1/k for all j ∈ N, and from the
mentioned continuity it follows that R(K, z, t)/L(K, z, t) ≥ 1/k. Since this holds for all
t ∈ (0, 1/k], we have z ∈ Ak(K). Thus, Ak(K) is closed. �

For k,m ∈ N we define

Ck,m :=
{
K ∈ K2

∗o : ∃x ∈ bdK such that B0(x, 1/m) ∩ bdK ⊂ Ak(K)
}
.
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Claim 5. Ck,m is closed in K2
∗.

Proof. Let (Kj)j∈N be a sequence in Ck,m converging to some K ∈ K2
∗o. For j ∈ N, we can

choose xj ∈ bdKj such that B0(xj , 1/m) ∩ bdKj ⊂ Ak(Kj). The sequence (xj)j∈N has a
convergent subsequence, and we may assume that the sequence itself converges to some point
x. Then x ∈ bdK. Let y ∈ B0(x, 1/m) ∩ bdK. For each j ∈ N, we can choose a point
yj ∈ bdK such that yj → y for j → ∞. For sufficiently large j we have |xj − yj | < 1/m
and thus yj ∈ Ak(Kj). Therefore, R(Kj , yj , t)/L(Kj , yj , t) ≥ 1/k for 0 < t ≤ 1/k. Let
0 < t ≤ 1/k. It follows that R(K, y, t)/L(K, y, t) ≥ 1/k and hence that y ∈ Ak(K). Thus,
B0(x, 1/m) ∩ bdK ⊂ Ak(K). Therefore, K ∈ Ck,m. We have proved that Ck,m is closed in
K2
o. �

Claim 6. Ck,m is nowhere dense in K2
∗.

Proof. Since Ck,m is closed, we have to verify that Ck,m does not have interior points relative
to K2

∗o. Let k,m ∈ N be given. Let K ∈ K2
∗ be a given convex body, and let ε > 0. There

exists a o-symmetric convex polygon P with δ(K,P ) < ε/2 and such that for each boundary
point y of P , the ball B0(y, 1/(3m)) contains a vertex of P . In the present situation, we can
choose a rather elementary smoothing process. We replace each edge of P by a circular arc
of sufficiently large radius R, connecting its endpoints, so that the resulting figure remains
convex. Then we take the outer parallel body of the obtained convex body at distance α > 0
and denote the resulting convex body by K(R,α). It belongs to K2

∗o. Choosing R sufficiently
large and α sufficiently small, we can achieve that

δ(K(R,α), P ) < min
{
ε

2
,

1
3m

}
.

Then δ(K(R,α),K) < ε. This estimate remains true if we further increase R and decrease
α.

Let v be a vertex of P . Since P is a polygon, there is a line L (parallel to a support
line of P at v and cutting P close to the vertex v) with the following properties. The line L
intersects the segment [o, v] at a point c and the boundary of P at two points a and b, such
that a, v, b follow each other in this cyclic order on bdP and that

|a− c|
|b− c| <

1
2k
.

The support line S to K(R,α) parallel to L, and leaving v between L and S, touches K(R,α)
at a unique point z(R,α). We translate S by the vector from v to its nearest point in L, to
obtain a line L(R,α). This line intersects the segment [o, z(R,α)] at a point c(R,α) and the
boundary of K(R,α) at two points a(R,α) and b(R,α), such that a(R,α), z(R,α), b(R,α)
follow each other in this cyclic order on bdK(R,α). For R→∞ and α→ 0 we have

z(R,α)→ v, c(R,α)→ c, a(R,α)→ a, b(R,α)→ b.

Hence, for sufficiently large R and sufficiently small α we get

|z(R,α)− v| < 1
3m

and |a(R,α)− c(R,α)|
|b(R,α)− c(R,α)| <

1
k
. (6)
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Since P has only finitely many vertices, we can assume that these estimates hold indepen-
dently of the choice of the vertex v.

Now let x ∈ bdK(R,α). Let x′ be the point in P nearest to x. By the choice of P , there
exists a vertex v of P with v ∈ B0(x′, 1/(3m)). For this vertex, the above estimates are valid,
and we use the notation that was used above. By (6), the point z(R, y) does not belong to
the set Ak(K(R,α)). We have

|x− z(R,α)| ≤ |x− x′|+ |x′ − v|+ |v − z(R,α)| ≤ δ(K(R,α), P ) +
1

3m
+

1
3m

<
1
m
,

thus z(R,α) ∈ B0(x, 1/m). This proves that

B0(x, 1/m) ∩ bdK(R,α) 6⊂ Ak(K(R,α)).

Since x ∈ bdK(R,α) was arbitrary, we have shown that K(R,α) /∈ Ck,m. On the other hand,
K(R,α) is in the ε-neighborhood of K. Since ε > 0 was arbitrary, this completes the proof
of Claim 6. �

For K ∈ K2
∗o we define the boundary set

BK :=
{
z ∈ bdK : lim inf

t→0

R(K, z, t)
L(K, z, t)

> 0
}
.

With this, we define

K̃ := {K ∈ K2
∗o : BK is not meager in bdK}.

For z ∈ bdK we have

lim inf
t→0

R(K, z, t)
L(K, z, t)

> 0 ⇔ ∃ k ∈ N :
R(K, z, t)
L(K, z, t)

≥ 1
k
∀ t ∈ (0, 1/k]

⇔ ∃ k ∈ N : z ∈ Ak(K).

Therefore,

K̃ =

{
K ∈ K2

∗o :
⋃
k∈N

Ak(K) is not meager in bdK

}
.

Let K ∈ K̃. Then not all the sets Ak(K) are nowhere dense. Hence, there is a number
k ∈ N such that Ak(K) is not nowhere dense. Since the set Ak(K) is closed, it has nonempty
interior relative to bdK. Thus, there are a point x ∈ bdK and a number m ∈ N such that
B0(x, 1/m) ∩ bdK ⊂ Ak(K), which means that K ∈ Ck,m. We conclude that

K̃ ⊂
⋃

k,m∈N
Ck,m. (7)

Since the sets Ck,m are nowhere dense, the set K̃ is meager. Thus, most convex bodies K ∈ K2
∗o

have the property that BK is meager. In other words, most convex bodies K ∈ K2
∗o have the

property that most of its boundary points z satisfy

lim inf
t→0

R(K, z, t)
L(K, z, t)

= 0. (8)

In the same way (interchanging R and L in the definition of Ak(K)), we obtain that most
convex bodies K ∈ K2

∗o have the property that most of its boundary points z satisfy

lim inf
t→0

R(K, z, t)
L(K, z, t)

=∞. (9)

Hence, for most convex bodies K ∈ K2
∗o, most boundary points z have both properties, (8)

and (9). This proves Theorem 2.
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4 A common extension

The proof of Theorem 2 is based on the fact (expressed in (5)) that the point c(z, t) can divide
the segment K(z, t) = [a(z, t), b(z, t)] in arbitrary ratios. Theorem 1 can be strengthened to
give this statement as well in the following way. First one has to deal not just with convex
bodies L but pairs (L, `) where L is a convex body (which is not a singleton), and ` ∈ relintL.
The homothetic distance of two such pairs (L, `) and (M,m) is defined, in analogy with (1),
as

H((L, `), (M,m)) := δ

(
L− `
w(L)

,
M −m
w(M)

)
,

where w is the mean width, again. Next, define Kdo as the set of all K ∈ Kd∗ such that
o ∈ intK. Note that Kdo is a Baire space as it is Gδ in Kd∗. For z ∈ bdK (and for small
enough t > 0) the section K(z, t) gives rise to the pair (K(z, t), s(z, t)) where s(z, t) is the
intersection of K(z, t) and the segment [o, z]. The point z ∈ bdK is called P-universal if for
every pair (L, z) where L lies in the (unique) tangent plane to K at z, there is a null sequence
(ti)i∈N such that H((L, z), (K(z, ti), s(z, ti))) tends to zero as i→∞.

With these definitions, here comes the strengthening of Theorem 1. We state it for
arbitrary dimension d ≥ 2.

Theorem 3. For most convex bodies K ∈ Kdo (d ≥ 2), most boundary points are P -universal.

The proof is essentially the same as that of Theorem 1 and is therefore omitted. Note
that the case d = 2 contains the basic fact proved for Theorem 2.

5 Trisectors

The notion of bisector calls for a generalization. Let ‖ ·‖ be a norm on Rd. For k ∈ {2, . . . , d}
and k affinely independent points p1, . . . , pk ∈ Rd, the (p1, . . . , pk)-equidistant set is defined
as

Bp1,...,pk
:= {x ∈ Rd : ‖x− p1‖ = ‖x− p2‖ = · · · = ‖x− pk‖}.

We consider here only the case d = k = 3.

The setting now is R3. A (p, q, r)-equidistant set Bp,q,r is called a trisector. Since we will
deal with positions of points in a plane relative to a given triangle, it is convenient to use
barycentric coordinates. Let (p, q, r) be an ordered triple of affinely independent points in
R3. A point x ∈ aff{p, q, r} has a unique representation

x = αp+ βq + γr with α+ β + γ = 1.

The vector
V(p,q,r)(x) := (α, β, γ) ∈ R3

is called the barycentric coordinate vector of x with respect to (p, q, r). We denote by

B := {(α, β, γ) ∈ R3 : α+ β + γ = 1}

the set of all possible barycentric coordinate vectors. By B+ we denote the subset of B where
at most one coordinate is non-positive.
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Let ‖·‖ be a norm on R3, with unit ball K ∈ K3
o∗. With (p, q, r) being an ordered triple of

affinely independent points, let E := aff {p, q, r}, and let z ∈ bdK be one of the two points
where a tangent plane parallel to E touches K. The direction of z is called normal to the
plane E. If x is a point of the trisector Bp,q,r, then the intersection point of the line through
x normal to E with the plane E is called the normal projection of x.

We now call the point z a point of strong oscillation if the following holds: in each plane
E for which z is normal, there is a dense set of affinely independent triples such that for each
triple (p, q, r) in this set, the normal projection of the trisector Bp,q,r is dense in the region

{s ∈ E : V(p,q,r)(s) ∈ B+}.

Theorem 4. For most convex bodies K ∈ K3
∗, most boundary points are points of strong

oscillation.

For the proof, we need a lemma on two-dimensional convex sets. If L ∈ K2 is a convex
body with interior points and τ is triple of affinely independent points in R2, there may exist
a unique triple homothetic to τ in bdL. If this is the case, we denote this triple (also called
inscribed to L) by ∆(L, τ).

Lemma 1. If L ∈ K2
∗, then ∆(L, τ) exists for each affinely independent triple τ . The map

∆(·, τ) from K2
∗ into the space of triples homothetic to τ is continuous.

Proof. Let an affinely independent triple τ = (p, q, r) in R2 be given. Existence and unique-
ness of ∆(K, τ) were proved in [2], pp. 25–26, for strictly convex K of class C2. It is easy to
see that the C2 assumption in the proof can be replaced by smoothness. Now let a sequence
(Lj)j∈N in K2

∗ converge to a convex body L ∈ K2
∗. Let ∆(Lj , τ) = (pj , qj , rj). Successively

choosing subsequences, we find a sequence (ji)i∈N such that pji → pL, qji → qL, and rji → rL
for i → ∞, with suitable points pL, qL, rL. Note that pL, qL, rL are distinct points as other-
wise all three would coincide with some z ∈ bdK and then the tangent to K at z would be
parallel with the segments [p, q] and [p, r] which is impossible. Then (pL, qL, rL) is inscribed
to L and is homothetic to (p, q, r). Suppose that (pj)j∈N has a subsequence converging to
some other point p′L. Then, again successively choosing convergent subsequences, we find
points q′L, r

′
L such that (p′L, q

′
L, r
′
L) is a different triple homothetic to τ and inscribed to L, a

contradiction. Since all convergent subsequences of (pj)j∈N converge to the same point, this
sequence converges, and the same holds for the sequences (qj)j∈N and (rj)j∈N. The assertion
of Lemma 1 follows. �

The definition of ∆(L, τ) and the lemma extend, obviously, to two-dimensional convex
bodies L and triples τ lying in parallel planes of R3.

The proof of Theorem 4 uses a scheme similar to that for Theorem 1, and we borrow
some of the constructions employed there. We fix a unit vector u ∈ R3 and denote by U the
linear subspace of R3 orthogonal to it. The continuous map ρ : S2 \ {±u} → SO(3) is the
same as in the proof of Theorem 1.

We fix an affinely independent triple τ in the subspace U , and for v ∈ S2 \{±u} we define

τ(v) := ρ(v)τ + v.

We also fix a point b in the subset B+ of the space of barycentric coordinates.

For a convex body K ∈ K3
∗o, the Gauss mapping ν : bdK → S2, the boundary set bdnK

for n ∈ N, the plane TK,z,t parallel to the tangent plane at z ∈ bdK and at distance t from
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it, and the section K(z, t) = TK,z,t ∩ K are all defined as in the proof of Theorem 1. By
s(z, t) (the dependence on K is suppressed in this notation) we denote the intersection point
of TK,z,t and the segment [o, z].

For K ∈ K3
∗o and for n, k ∈ N we define

An,k(K) :=
{
z ∈ bdnK :

∣∣V∆(K(z,t),τ(ν(z)))(s(z, t))− b
∣∣ ≥ 1/k ∀ t ∈ (0, 1/k]

}
.

Note that ∆(K(z, t), τ(ν(z))) is the unique triple homothetic to the triple τ(ν(z)) (lying in
the tangent plane to S2 at ν(z)) that is inscribed to the section K(z, t) (lying in a parallel
plane). Then V∆(K(z,t),τ(ν(z)))(s(z, t)) is the barycentric coordinate vector of the intersection
point s(z, t) with respect to this inscribed triple. The defining condition requires that this
coordinate triple stays away, by a certain amount, from the given coordinate triple b.

Claim 7. An,k(K) is closed.

Proof. The proof is so similar to the corresponding one for Claim 1 that we need not carry
it out. The essential point now to observe is that

∆(K(z, t), τ(ν(z))) = ∆(ρ(ν(z))−1K(z, t), τ)

is a continuous function of z, due to Lemma 1, and the fact that barycentric coordinates of
a point depend continuously on the point and on the reference triple. �

For n, k,m ∈ N we define

Cn,k,m :=
{
K ∈ K3

∗o : ∃x ∈ bdnK with B0(x, 1/m) ∩ bdnK ⊂ An,k(K)
}
.

Claim 8. Cn,k,m is closed in K3
∗o.

Proof. The proof can again be essentially copied from that of Claim 2. One additionally has
to observe that the point s(z, t), which for a convex body K we now denote by s(K, z, t),
depends continuously on K and z ∈ bdK. �

We need another simple lemma.

Lemma 2. Let (p, q, r) be an affinely independent triple in R2, and let s ∈ R2 be a point
with V(p,q,r)(s) ∈ B+. Then there exists a convex body L ∈ K2

∗ such that (p, q, r) is inscribed
to L and that s ∈ intL.

Proof. Since V(p,q,r)(s) ∈ B+, we can choose a triangle D such that s ∈ intD, D ⊂ intB+,
and that p, q, r are vertices of the polygon P := conv({p, q, r} ∪D). By a result of Weil [15],
there exists a convex body L ⊂ R2 of class C∞ with positive curvature such that all vertices
of P are on the boundary of L. This proves Lemma 2. �

Claim 9. Cn,k,m is nowhere dense in K3
∗o.

Proof. Let n, k,m ∈ N, a body K ∈ K3
∗o, and 0 < ε < 1/m be given. Precisely as in the

proof of Claim 3, we define the caps Ci, with corresponding hyperplanes Hi and unit normal
vectors ui, i = 1, . . . , p. Let i ∈ {1, . . . , p}. Recall that the triple τ(ui) = ρ(ui)τ lies in a plane
parallel to Hi. By Lemma 2, there is a smooth and strictly convex body Li in that plane
such that τ(ui) is inscribed to Li and that the point si with Vτ(ui)(si) = b lies in the relative
interior of Li. We choose a homothety φi with φiLi ⊂ intCi. Let Gi be the line trough o and
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the point φisi. On this line, we choose a point ci ∈ intCi such that φisi is between ci and o
and that the cone with apex ci spanned by φiLi contains K \ Ci in its interior.

The convex body
C ′i := conv {(Hi ∩K) ∪ φiLi ∪ {ci}}

is contained in the closure of the cap Ci. Further, the body

K ′′ := K ′ ∪ C ′1 ∪ · · · ∪ C ′p
is convex and satisfies δ(K ′′,K) < ε/2. The body K ′′ has the following property. Let
i ∈ {1, . . . , p}, and let Ti be the support plane of K ′′ parallel to Hi and touching K ′′ at the
point ci. Let H be a plane parallel to Ti, on the same side of Ti as Hi and at a sufficiently
small distance from Ti. Let H ∩Gi = {sH}. Then

V∆(H∩K′′,τ(ui))(sH) = b.

From here on, we can proceed similarly as in the proof of Theorem 1, and so finish the proof
that Cn,k,m is nowhere dense in K3

∗o. �

Also the rest of the proof follows a similar scheme. Defining

Bτ,b(K) :=
{
z ∈ bd′K : lim inf

t→0

∣∣V∆(K(z,t),τ(ν(z)))(s(z, t))− b
∣∣ > 0

}
,

we have
Bτ,b(K) =

⋃
n,k∈N

An,k(K).

For the set
K̃τ,b :=

{
K ∈ K3

∗o : Bτ,b(K) is not meager in bdK
}

we obtain
K̃τ,b ⊂

⋃
n,k,m∈N

Cn,k,m

and, therefore, that K̃τ,b is meager in K3
∗o. Hence, for most bodies K ∈ K3

∗o, most points
z ∈ bdK have the property that

lim inf
t→0

∣∣V∆(K(z,t),τ(ν(z)))(s(z, t))− b
∣∣ = 0.

Now let T be a countable, dense set of affinely independent triples in U , and let B be a
countable, dense set of points in B+. The set

K̃ :=
⋃

τ∈T , b∈B
K̃τ,b

is meager in K3
∗o. Therefore, most K ∈ K3

∗o have the property that Bτ,b(K) is meager in
bdK, for all τ ∈ T and all b ∈ B, and hence the property that the set

B(K) :=
⋃

τ∈T , b∈B
Bτ,b(K)

is meager. Thus, most K ∈ K3
∗o have the property that, for most points z ∈ bdK,

lim inf
t→0

∣∣V∆(K(z,t),τ(ν(z)))(s(z, t))− b
∣∣ = 0 ∀ τ ∈ T ∀ b ∈ B. (10)
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Figure 2: Trisector

Finally, let K ∈ K3
∗o and z ∈ bdK be such that (10) is satisfied. Let E be a plane that is

parallel to the tangent plane T of K at z (so that z is normal to E), see Figure 2. Let (p, q, r)
be a triple in E that is homothetic to −τ(ν(z)) for some τ ∈ T . Let y ∈ E be a point such
that V(p,q,r)(y) ∈ B+, and let ε > 0. We can choose a point b ∈ B with |V(p,q,r)(y) − b| < ε.
According to (10), there exists a number t > 0 such that∣∣V∆(K(z,t),τ(ν(z)))(s(z, t))− b

∣∣ < ε.

The triple ∆(K(z, t), τ(ν(z))) =: (p′, q′, r′) is homothetic to τ(ν(z)), hence there is a ho-
mothety φ carrying −(p′, q′, r′) to (p, q, r). The point x := φo has equal distance (with
respect to the norm with unit ball K) from p, q and r and hence belongs to the tri-
sector Bp,q,r. The normal projection of x in E is the point φ(−s(z, t)) =: s, and we
have V(p,q,r)(s) = V∆(K(z,t),τ(ν(z)))(s(z, t)), hence |V(p,q,r)(s) − b| < ε. It follows that
|V(p,q,r)(y)− V(p,q,r)(s)| < 2ε.

We have shown that, for every point of the set {y ∈ E : V(p,q,r)(y) ∈ B+}, every neigh-
borhood contains a point in the normal projection of the trisector Bp,q,r. This is true for a
dense set of triples (p, q, r) in E. This completes the proof of Theorem 4.

Concerning the possibility of extending the result to higher dimensions, we point out
the following. In [2], p. 25, an example is given of a convex body K ∈ K3

∗ to which two
different translates of the same tetrahedron can be inscribed. Thus, Lemma 2, which is an
essential ingredient of the preceding proof, has no immediate extension to higher dimensions.
That the higher-dimensional situation is more complicated, is also indicated by the following
observation. The mentioned example can be used to construct a convex body K ∈ K4

o∗ with
the following property. There are a point z ∈ bdK and a quadruple (p1, . . . , p4) of affinely
independent points in the tangent hyperplane to K at z such that the following holds. For
t in some interval [t0, t1), the section K(z, t) has a unique inscribed quadruple homothetic
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to (p1, . . . , p4), but not for t ∈ (0, t0). Therefore, the equidistant set Bp1,p2,p3,p4 cannot be a
one-dimensional manifold. This is in contrast to the case of bisectors, where Horváth [6] has
shown that for strictly convex norms, they are homeomorphic to hyperplanes.
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