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1Rényi Institute of Mathematics, Hungarian Academy of Sciences,
POB 127, 1364 Budapest, Hungary
barany@renyi.hu
and
Department of Mathematics, University College London,
Gower Street, London WC1E6BT, England

2Department of Mathematics, Auburn University,
Auburn, AL 36830-5310, USA
kuperkm@math.auburn.edu

3Fachbereich Mathematik, Universität Dortmund,
44221 Dortmund, Germany
tudor.zamfirescu@mathematik.uni-dortmund.de

Abstract. This paper gives a partial confirmation of a conjecture of Agarwal, Har-Peled,
Sharir, and Varadarajan that the total curvature of a shortest path on the boundary of a convex
polyhedron in R3 cannot be arbitrarily large. It is shown here that the conjecture holds for
a class of polytopes for which the ratio of the radii of the circumscribed and inscribed ball
is bounded. On the other hand, an example is constructed to show that the total curvature
of a shortest path on the boundary of a convex polyhedron in R3 can exceed 2π . Another
example shows that the spiralling number of a shortest path on the boundary of a convex
polyhedron can be arbitrarily large.

1. Introduction

The total curvature of a C2 path C parameterized by arc length s in Rn , r(s), is defined
as

∫
C |r ′′(s)| ds. Fenchel proved in 1929 for R3 and Borsuk in 1947 for any Rn that the

total curvature of a closed curve is bounded from below by 2π , with the equality holding
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only for convex simple closed curves in R2. The total curvature of a polygonal path
P = [z0, z1, . . . , zn] is defined as

t (P) =
n−1∑
i=1

(π − ∠zi−1zi zi+1).

Let K be the set of all compact convex polyhedra in R3. Let T = {t (P)}, where P is
a shortest path joining two points on the boundary of a polyhedron K ∈ K. It has been
asked in [1] whether the set T is bounded.

We prove here, in Theorem 1 below, that the conjecture holds for polytopes K for
which the ratio R/r is bounded from above: here R and r , respectively, are the radii of
the circumscribed and inscribed ball to K .

We define the spiralling number s(P) for the path P from a to b on the polytopal
surface by considering a variable point x ∈ P\{a, b}, writing this point in cylindrical
coordinates as (2πϕ(x), r(x), z(x)) where the z-axis is the line through a and b, and ϕ
is a continuous function. Set now

s(P) = lim
x→a,y→b

|ϕ(x)− ϕ(y)|.

This measures how many times the path spirals around the line through a and b.
The proof method of Theorem 1 would work for all polytopes if the function ϕ had

bounded variation. This, however, will be shown to be false. In Section 4 we construct
needle-like polytopes K with shortest path P such that s(P) is arbitrarily large. Even
more surprisingly, the example can be modified so that P spirals around the line through
a and b 100 times in one direction, then 200 times in the opposite direction, then 1000
times in the first direction, etc.

The total curvature t (P) of a planar path P is bounded sharply by 2π and this bound
is the lowest possible. A triangle with one of the angles very close to π and two points
on the two sides adjacent to the wide angle but close to the vertices at the acute angles
provides a simple example.

In Section 3 we construct an example of a shortest path on the boundary of a convex
polyhedron in R3 for which the 2π bound does not hold. On some level the example
resembles the planar example involving a triangle with one of the angles close to π .

2. Bounded Total Curvature of Shortest Paths for R/r Bounded

On the boundary of a polytope consider a shortest path P with non-smooth points
z0, z1, . . . , zn . Put xi = (zi−zi−1)/‖zi−zi−1‖ (i = 1, . . . , n). Let ui be the outernormal
(of the interior) of the facet of zi−1 and zi , and let ξi be the angle between xi and xi+1

(i = 1, . . . , n−1). Then the total curvature of P is
∑n−1

i=1 ξi . This can be easily checked.
We remark that xi − xi+1 = λi (ui + ui+1) with λi > 0.

Lemma 1. If there is a unit vector v such that uiv ≥ η > 0 for all i, then∑n−1
i=1 ξi < π/η.
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Proof. First note that ξ < (π/2) sin ξ if ξ < π/2. Then

n−1∑
i=1

ξi = 2
n−1∑
i=1

ξi

2
< 2

n−1∑
i=1

π

2
sin

ξi

2

= π

2

n−1∑
i=1

‖xi − xi+1‖ = π

2

n−1∑
i=1

‖λi (ui + ui+1)‖.

Since ‖ui + ui+1‖ ≤ 2 and (ui + ui+1)v ≥ 2η, we have

‖ui + ui+1‖ ≤ (ui + ui+1)v

η
.

Hence

n−1∑
i=1

ξi <
π

2

n−1∑
i=1

λi
(ui + ui+1)v

η
= π

2η

n−1∑
i=1

(xi − xi+1)v = π

2η
(x1 − xn)v ≤ π

η
.

Denote by B the closed unit ball in R3.

Theorem 1. Let a polytope Q satisfy rB ⊂ Q ⊂ B. Then the total curvature of any
shortest path on the boundary of Q is less than 4π2r−2.

Proof. Let P be a shortest path between points a and b on the boundary bd Q of Q.
The length of P is less than π . Indeed, any plane through a and b intersects the boundary
of B along a circle of length at most 2π , and the boundary of Q along a polygon of even
smaller length. So one of the two broken lines into which a and b divide the polygon
must have length less than π , and P cannot be longer. For a non-zero vector v ∈ R3

define the v-shadow S(v) of Q as

S(v) = bd Q ∩
{r

2
B + λv | λ ≥ 0

}
.

Assume that u is the outernormal at an interior point f of a facet F of Q with f ∈ S(v).
We claim that uv/‖v‖ > r/2. Indeed, the plane� of F does not meet the interior of rB.
Let γ be the angle between u and v. Of course, ‖ f ‖ < 1. The distance from f to the
line through the origin 0 and v is at most r/2 because f ∈ S(v). Further, the distance
from 0 to � is at least r . Therefore

uv

‖v‖ = cos γ >
r

2
,

which proves the claim. We are going to define points v1, v2, . . . , vk on P by recursion.
Set v1 = a and assume that vi has been defined. Let vi+1 be the first point on P , going
from vi to b, which is not in the interior of S(vi ). Write Pi for the part of the path P
between vi and vi+1. Since the length of Pi is at least ‖vi − vi+1‖ ≥ r/2 and the length
of P is less than π , there are only k < 2π/r paths Pi , and we put vk+1 = b. Note that
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Lemma 1 applies to Pi with η = r/2 by the above claim. Hence the total curvature of
Pi is less than 2π/r . Summing up, the total curvature of P is less than

k
2π

r
<

4π2

r2
.

Now we formulate Theorem 1 differently. Let E be the ellipsoid of largest volume
included in the polytope Q. As the total curvature is invariant under angle preserving
linear transformation, we may assume that E has half-axes a, b, c with 0 < a ≤ b ≤
c = 1. Call Q needle-like if b is small, and pancake-like if a is small compared with b.
Theorem 1 on the boundedness of total curvature holds for convex bodies that are not
pancake-like. Only moderate effort is needed to prove the following: if the conjecture
holds for needle-like convex bodies, then it holds for pancake-like ones as well. So
it would be enough to prove the conjecture for needle-like convex bodies. This would
follow if the total variation ofϕ, the function defined in the first paragraph, were bounded.
However, this is not true: an example showing this is given in Section 4.

3. The Total Curvature t(P) > 2π : An Example

We construct a convex body � with two points on the boundary such that the total
curvature of the shortest path joining the points exceeds 2π . � is constructed in four
steps, with certain unbounded convex bodies U , X , and Yα described in steps 1–3. The
Cartesian coordinates of a point x ∈ Rn are denoted by x (1), . . . , x (n).

For 0 < ε <
√

2/8π and i = 1, 2, define Vi to be the plane {(x (1), x (2), x (3)) ∈ R3 |
x (3) = (−1)iε}. Let Ai be the parabola in {(x (1), x (2), x (3)) ∈ Vi | x (2) = (x (1))2} and
let Bi be the parabola in {(x (1), x (2), x (3)) ∈ Vi | x (2) = 2(x (1))2}. Denote by vi the
common vertex of Ai and Bi , by ai the focus of Ai , and by bi the focus of Bi . Thus
ai = (0, 1

4 , (−1)iε), bi = (0, 1
8 , (−1)iε), and vi = (0, 0, (−1)iε). Denote by Ri the

convex region in the plane Vi bounded by Ai . Put

L = {(x (1), x (2), x (3)) ∈ R3 | (x (2) − ε)2 + (x (3))2 = 2ε2, x (1) = 0, x (2) ≤ 0}
and

� = {(x (1), x (2), x (3)) ∈ R3 | (x (2) − ε)2 + (x (3))2 = 2ε2, − 1
2 ≤ x (1) ≤ 1

2 , x (2) ≤ 0}.
Thus L is a quarter-circle joining the vertices v1 and v2 and � is a surface obtained by
sliding L along the segment {(x (1), x (2), x (3)) ∈ R3 | − 1

2 ≤ x (1) ≤ 1
2 , x (2) = x (3) = 0}.

Note that |L| = πε/√2 < 1
8 . Let

U = conv(A1 ∪ A2 ∪ �)
be the convex hull of the union A1 ∪ A2 ∪ �.

Suppose that G is a line in V2, crossing A2, and parallel to the directrix of A2. Denote
by δB the distance between G and the directrix of B2, and by δA the distance between G
and the directrix of A2. Note that if a shortest path P in bd U joining G with b1 passes
through v1 and v2, then the length |P| of P equals δB + |L|.
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Fig. 1. The parabolas.

Lemma 2. The shortest path P on the boundary of U joining G with b1 is unique and
passes through the vertices v1 and v2.

Proof. Suppose that P ′ is a shortest path in bd U joining b1 with G, different from P ,
crossing A1 at d = (d(1), d(2), d(3)) and A2 at e = (e(1), e(2), e(3)), see Fig. 1. Note that
d(2) < e(2).

To show that |P ′| > |P|, consider the two cases: |e(1)| ≥ 1
2 and |e(1)| < 1

2 . We have

1. If |e(1)| ≥ 1
2 , then e(2) ≥ 1

4 and |P ′| > dist(G, e)+ dist(e, a2) = δA = δB + 1
8 >

δB + |L| = |P|.
2. If |e(1)| < 1

2 , then P ′ projects onto P decreasing its length.

Remark 1. If P ′(e) denotes the shortest path in bd U joining b1 with G and passing
through e ∈ A2, then the length |P ′(e)| is a monotone function of e(1) for 0 < e(1) < 1

2
(and for − 1

2 < e(1) < 0).

In the next step of the construction, we modify U to obtain a convex unbounded slab
X . Let L ′ be a convex curve in the (x (1), x (2))-plane close to the segment (x (1), 0, 0),
− 1

2 ≤ x (1) ≤ 1
2 , and let �′ be a positively curved surface in U , close to �, obtained by

sliding L along L ′, keeping L parallel to the (x (2), x (3))-plane, and the midpoint of L and
L ′. Denote by X the convex hull conv(A1∪ A2∪�′). We require of L ′ (and consequently
of �′) that

1. �′ contains the quarter-circle L;
2. the path P is the shortest path joining G with b1 on the boundary of X .

By Remark 1, such an X exists. Note that X is a thin convex unbounded slab whose
top and bottom are (horizontal) planar regions R′i ’s containing Ri ’s and with a positively
curved side surface close to the vertices v1 and v2, see Fig. 2.

For 0 < α < π/4, let Yα be a “slant slab” obtained from X by “α-slanting” the
plane V1 at the vertex v1 in the direction perpendicular to the x (1)-axis as follows: Let
�α(x) = (x (1), x (2) cosα,−ε − x (2) sinα) and let Yα = conv(X ∪ �α(R′1)). Note that
the portion of Yα above the (x (1), x (2))-plane is identical to that of X .
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Fig. 2. The unbounded slab X .

Lemma 3. The shortest path P̃ joining G with b′1 = �α(b1) on the boundary of Yα
passes through the vertices v1 and v2.

Proof. A path P ′ joining G with b′1 in bd Yα can be mapped (keeping the first coordinate
and the distance to the line (t, 0,−ε) unchanged) onto the boundary of X to a path joining
G with b1. Such a projection does not increase the length of the path. Hence, if P ′ �= P̃ ,
|P ′| > δB + πε = |P| = |P̃|.

Remark 2. For P̃ as defined in Lemma 3, the total curvature of P̃ , t (P̃), equals π−α.

Denote by S the side boundary of Yα , i.e., S = bd Yα\(R′2 ∪�α(R′1)). For a point w,
conv(Yα, w) denotes the convex hull of Yα andw. For a pointw /∈ Yα , define an attached
cone with vertex w, con(w), as the closure of conv(Yα, w)\Yα provided that it does not
intersect R′2 ∪�α(R′1).

Denote by P0 the shortest path in S, a quarter-circle, joining v2 with v3 = (0,−ε, 0).
Let w1, w2, and w3 be points close to P0 for which attached cones con(wi ) are defined
and are pairwise disjoint. Note that Ỹ = Yα ∪ con(w1) ∪ con(w2) ∪ con(w3) is convex.

First choose points w1, w2, and w3 so that

1. each con(wi ), i = 1, 2, 3, intersects P0 at one point ti with dist(t1, t2) = dist(t2, t3);
2. con(w1) and con(w3) are on the same side P0, and con(w2) is on the other side

of P0.

Then move the points w1, w2, and w3 slightly towards P0 to obtain points w′1, w′2,
and w′3 such that the attached cones Ci = con(w′i ) intersect P0 and the shortest path K
joining G and b′1 in bd Ỹ crosses each Ci , but passes through v1, v2, and v3, see Fig. 3.

Fig. 3. Attached cones.
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Fig. 4. The double slab �.

Note that K is not planar and as follows from the work of Fenchel [3] (alternatively,
see [2] or [4]) its total curvature is greater than that of P0. We have

Lemma 4. The total curvature t (K ) = π + β − α, where β > 0.

Finally, take α < β. The line G consists of points (t, g, ε), where −∞ < t < ∞.
Let �1 be the part of Ỹ cut off by the plane x (2) = g. Let �2 be a symmetrical copy of
�1 and � = �1 ∪ �2 with �1 and �2 glued along the side x (2) = g (see Fig. 4). Let
K ′′ and b′′1 be the path and the point in �2 corresponding to K ′ and b′1. For sufficiently
large g, the path K̄ = K ′ ∪ K ′′ is the shortest path joining b′1 and b′′1 in �. We have
T (K̄ ) = 2(π − β + α) > 2π . Clearly, � is convex.

A polyhedral example can be obtained by a suitable approximation of �.

Theorem 2. There exist a convex polyhedron M ⊂ R3 with two points x and y on the
boundary of M such that the total curvature of the (unique) shortest path joining x and
y exceeds 2π .

4. Spiralling Shortest Paths

Here we construct polytopal surfaces possessing shortest paths of arbitrarily large spi-
ralling number. The intrinsic metric on these surfaces will be denoted by δ.

Theorem 3. Let n be an integer. There exist a convex polytope Q and a shortest path
P between two points on the boundary of Q with s(P) ≥ n.

Proof. Our example is the boundary of the convex hull of a family of equilateral
triangles, each two of which have pairwise parallel edges. Suppose the construction
performed up to the equilateral triangle abc, so that, from a fixed point x0 of the (already
constructed) surface, the intrinsic distance δ(x0, bc) to bc (which is miny∈bc δ(x0, y))
is smaller than the distance to any other side of abc. Let ε be the smaller of the two
differences. We now construct the next triangle a′b′c′. We do so that

δ(x0, a′b′) < min{δ(x0, b′c′), δ(x0, c′a′)}

and any shortest path from x0 to any point w of a′b′ necessarily crosses bc. Let z′ be
such that conv{z′, a, b, c} is a regular pyramid containing the already constructed surface.
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Fig. 5. Stacking triangles.

Then we can find a point z behind z′ (see Fig. 5) but close to the pyramid axis such that

‖z − a‖ = ‖z − b‖ < ‖z − c‖

and conv{z, a, b, c} includes conv{z′, a, b, c}. We shall choose q > 3 and put a′ =
z + q(a − z), b′ = z + q(b − z) and c′ = z + q(c − z). The angles α = ∠abb′ and
γ = ∠cbb′ satisfy

π/2 < γ < α

if z is close enough to the pyramid axis.
Consider an unfolding of the surface on the plane of a, b, a′, b′ without cutting along

bb′, but cutting along aa′, and keep the notation. Let s be the orthogonal projection of
c on the line L through a and b. If α + γ − π is small enough, which is the case if
z is far enough, then δ(c, s) is as small as desired, in particular smaller than ε/2. Let
v ∈ ab, s ′ ∈ bs, see Fig. 6.

It is easily verified that δ(s ′, w) − δ(v,w) increases when w moves from b′ to a′.
Thus

δ(s ′, w)− δ(v,w) ≤ δ(s ′, a′)− δ(v, a′).

c

u

a b L

v 
 s0 s

� �

c0

a0 w b0

Fig. 6. Unfolding surface.
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If α + γ − π is small enough and q large enough, then

δ(s, a′)− δ(a, a′) <
ε

2
.

Since δ(v, a′) ≥ δ(a, a′) and δ(s ′, a′) ≤ δ(s, a′),

δ(s ′, a′)− δ(v, a′) <
ε

2
.

Hence

δ(s ′, w) < δ(v,w)+ ε
2
.

This ensures that any shortest path from x0 to some point w ∈ a′b′ crosses bc. Indeed,
if the above path crosses ab at v, then

δ(x0, v)+ δ(v,w) ≥ δ(x0, ab)+ δ(v,w)
≥ δ(x0, bc)+ ε + δ(v,w) = δ(x0, u)+ ε

2
+ ε

2
+ δ(v,w)

> δ(x0, u)+ δ(c, s)+ δ(s ′, w) ≥ δ(x0, u)+ δ(u, s ′)+ δ(s ′, w),
u being a point of bc closest to x0, and s ′ the orthogonal projection of u on L; we got a
contradiction. If the path crosses ca at v′, say, then

δ(x0, v
′)+ δ(v′, w) ≥ δ(x0, ca)+ δ(v′, w) ≥ δ(x0, bc)+ ε + δ(v,w)

and a contradiction is obtained as above.
Now, we have

δ(b, b′c′)− δ(b, a′b′) = δ(b, b′)(sin γ − sinα).

By choosing q large enough, the above difference can be made as large as wished; we
make it larger than ε. Suppose now a (rectifiable) path from x0 to b′c′ crosses abc at y.
Then its length is at least

δ(x0, y)+ δ(y, b′c′) ≥ δ(x0, u)+ δ(b, b′c′) ≥ δ(x0, u)+ δ(b, a′b′)+ ε
> δ(x0, u)+ δ(c, a′b′) ≥ δ(x0, u)+ δ(u, a′b′) ≥ δ(x0, a′b′),

so it cannot be a shortest path from x0 to a′b′c′. Analogously, no path from x0 to c′a′ is a
shortest path from x0 to a′b′c′. This completes the proof of all desired properties for P .
It is clear that, iterating this procedure, the shortest path from x0 to the last constructed
triangle has a steadily increasing spiralling number (by a rate close to 1

3 for each new
triangle). Thus s(P) can be made as large as we wish. The theorem is proved.

Remark 3. In the above construction the path P can be forced to turn, each time, right
or left, as wished.

In [5], Pach gives a neat example of a polytope K ⊂ R3 and a shortest path P on
the boundary of K with non-smooth points z0, . . . , zn such that

∑n
i=1 γi is not bounded.

Here γi is the angle between the outer normals of the facets containing the segments
[zi−1, zi ] and [zi , zi+1]. We mention that our construction has the same property.
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