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The following theorem is proved. If the sets V,..., V, ., <R" and a € N)I*} conv V,, then
there exist elements v, e V, (i=1, ..., n+1) such that a econv{v,, .. ., v,,,}. This is a generali-
zation of Carathéodory’s theorem. By applying this and similar results some open questions are
answered.

1. Introduction

The well-known Carathéodory’s thecrem says thai, given a set V<R" and a
point a econv V (the convex hull of V), there exists a subset A <V such that
|Al<n+1 and aeconvA. This simple theorem has many applications and
generalizations (see, for instance, [4, 9, 10]).

The aim of this paper is to give 2 new generalization of Carathéodory’s theorem
and to present some consequences of thic generalization. The paper is organized
as follows. The second section contains the main theorems. The third section is
about a generalization of Helly’s theorem. The fourth section deals with systems
of linear inequalities and simple polytopes. The next section answers a question of
Boros and Fiiredi [2]. In the last sect'on we apply our results to convex functions.

2. The main theorems

Theorem 2.1. Suppose V,,...,V, . <R" and aeconvV, for i=1,...,n+1.
Then there exist vectors v,e V; (i=1,...,n+1) such that acconv{v,, ..., Vu}.

“his theorem is sharp in the sense that the number of V;’s cannot be decreased.
This is shown by the example V,={e, —¢} (i=1,...,n) and a =0, where ¢, is the
ith basis vector of R".

Theorem 2.1 does indeed generalize Carathéodory’s theorem: put simply
Vi=Vy=-+-=V,,,=V, then for A={v,,..., 0,1} we have |A|<n+1 and
acconv A. However, while proving the theorem we shall make use of
Carathéodory’s theorem.

There is a cone-versicn of Carathéodory’s theorem stating that, given a set
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V =R" and a point a € pos V (the convex cone hull of V), there exists a subset A of
V suchthat|A|=< nand a € pos A. Thiscone-version has the following generalization.

Theorem 2.2. Suppose V,,...,V,cR"and aepos V; fori=1,...,n. Then there
exist elements v, € V; for each i such that a epos{v;, ..., 0.}

Theorem 2.3. Suppose V,,...,V,cR"and aeconvV, fori=1,...,n. Let v, be
an arbitrary element of R™. Then there exists a choice v,e V, (i=1,..., n) such that
a € conv{tg, Uy,..., U}

We mention that Theorem 2.1 can be deduced directly from Theorem 2.2.
However, when using Theorem 2.3 we can guarantee that for any prescribed
element v e J2| V, these exisis a choice {v;,..., v,.;}. containing v and such
that a € conv{v,, ..., U,..}.

Corollary 2.4. Suppose V,,....V,,cR" and aeconvV, for i=1,..., m. Given
nonnegative integers k,,...,Kk, with Yi-, k;=n-1, there exist subsets A;cV,
|Ai=k, such that aeconv U, A,

This corollary contains both Theorem 2.1 (when m=n+1 and k;=::-=
k..; = 1) and Carathéodory’s theorem (when m =1 and k;=n-+1),

Proof of Theorex 2.2. We suppose (by Carathéodory’s theorem) that each V, is
finite. Let us define for any choice v,e Vy,..., v, €V,

d(vy,...,0,)=p(a,postvy, ..., v,}),

o, less formally, d is the distance between the point a and the convex cone
C =pos{v,,..., v,}. We have to prove that d =0 for some choice.

Suppose, to the contrary, that the choice v, ..., v, gives the minimal value of d
and d>0. Then there exists a (uniquely determined) z € C with d =lja—z|. In
fact, z is the projection of the point a to the cone C. Clearly, putting b=a -z the
hyperplane {x eR": (b, x) = 0} separates a and C, i.e.,

(b, 2)>0, (b, x)=0
and
(b,u,)<0 fori=1,....n.

The point z can be written as z =Y 7.; y,; with v, =0. Moreover, this represen-
tation can be chosen so that y,=0 for some j=1,...,n This is true either
because C is an n-dimensional cone, consequently the minimum of |la —x|| over
x € C is attained on the boundary of C, or because C lies on a hyperplane and
then every point of C can be expressed with some v, =0 (by Carathéodory’s
theorem). Without loss of generality we suppose that vy, =0. The condition
a €pos V, implies that there exists an element v = V, such that (b, v)>0.
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Now we show that d(v, v,,...,v,)<d contradicting to the minimality of d.
Indeed, for 0st=<1

z+t(v—z)eposiy, vy, ..., 0,},
and

d*(v, 05, ..., ) s|la~[z+t(v-2)]P
=d?-2¢b, v—z)+t*|v—z|?,

and this is less than d” if t>0 is sufficiently small because (b, v —z) = (b, v)>0.

Proof of Theorern 2.3. Suppose, and we may do so without loss of generality, that
a = 0. Further, using Carathéodory’s theorem we assume that |V;|=<n+1 for each
i=1,...,n ,
First, we prove the theorem for the case when Deintcon V| (i=1,...,n). In
this case, clearly, for some small € >0 we have

—gvy € int conv V,,

and consequently
~gvgepos 'V, (i=1,...,n).

Now, by Theorem 2.2, for some choice v, €V, and ;20

n
—EVy = Z a;.
i=1

Dividing here by £+, a; we get

0= i a:vi,

i=0

where a;=0, and

This is clearly the same as 0econv{v,..., v,}.

In order to prove Theorem 2.3 from this special case one should approximate
each set V, with a sequence of (n-+:)-membered sets V(j) such that Oe
int conv V,(j), and then present a usual continuity argument. We omit the details.

Finally we mention that a good many generalization of Carathéodory’s theorem
admit further generalizations of the same ‘multiplied’ version as Theorems 2.1
and 2.2. For instance, S. Dancs observed [3] that Steinitz’s theorem [4] can be
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generalized in this way. An application ©

further application of Theorem 2.1 is due to A. Frank and L. Lovész [7]:
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Theorem. Let C,, ..., C, be directed cycles in the directed graph D(V, A) where
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such that the set of arrows {a,, ..., a,} contains a dtrected cycle.
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It is wall-known that Carathéodory’s theorem an 1d Helly’s
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t
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other. So it is not surprising that Theorem 2.2 yields a lly type theorem. This
theorem was first observed by L. Loviasz [7].

Theorem 3.1. Let €., ...,%,., be nonempty families of compact convex sets from
R" and suppose that for any choice Ci€%€,,...,C,.1€%,+1 the intersection

(el C is not empty. Then for some i=1,...,n+1 all the sets in the family %,
have a point in common.

Helly's theorem follows from this theorem putting €,=":--=%,.,,. We post-
pone the proof to Section 6, although the theorem could be proved right now
using the following well-krown fact (see [10]).

The compact convex sets C; (i=1,..., p) have no point in common if and only
if there exist closed half-spaces D, ..., D, such that

G<D, (i=1,...,p) and ﬂD—-Q).

Using this fact one can even show that Theorem 3.1 implies Theorem 2.2.

We mention that using Theorem 3.1 (or directly 2.2) we can get further
‘multiplied’ versions of several generziization of Heliy’s theorem. (For these
generalizations see [4] for instance.)

We mention further that Theorem 3.1 can be regarded as a further (though
small as it may be) step towards characterizing the possiblc types of intersection of

families of convex sets from R™. To be more precise &t F={C,,..., G} be a
family of convex (compact) sets in R". The incidence {unction of &, F is defined
e tha cisheate ~F 1 nl ac
Ui eV HUUdLW Ul 1, s 7 ad

rl —QI Ig{17=-"’p} i VI#:Q

IE
F()= _
(0 otherwise,

The qusstion posed in [4] or [6] is to determine the necessary and sufficient
conditions on F:2%-Pt 510, 1} so that F be the incidence function of some

familv C. This question is answered for n=1 only. By Helly’s theorem F is
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determined by its values F(I) for Ic{l1,...,p}, |I|<n+1. Theorem 3.1 says that
the incidence function satisfies the following implication. If I,..., L.,
{1,...,p} and F({i,,..., 1P =1 for each choice i,el,,...,i,, €], then
F(I)=1 for some j=1,...,n+1.

Now we prove a theorem which is related to a result by Berge and Ghouila-
Houri (see [4]). This result says that if Cy,..., C,, cR" are convex compact sets
such that %, C is convex and any (i — 1) of these sets have a point in common,
then (%, G, is nonempty.

Theorem 3.2. Let €,,...,%, (m>1) be nonempty families of nonempty sets of
R"™. Assume that the sets in €, and ‘€, are compact. If for every choice C, e %,
(i=1,...,m) the union 1, C, is convex, then for some i=1,..., m the intersec-
tion (€, is nonempty.

Proof. First we reduce m to 2 by a backward induction. Suppose that for some
choice C,€%,, ..., C,_1€%,._, the union | 7' C; is not convex. Then every set
of €,, has to contain the ‘hole’ in |J™ 7' C,, consequently () C,, is nonempty. So
either we are done or the conditions of the theorem hold for €,,...,%,.—;. This
shows that we have to prove the theorem for m =2 only. Put, for brevity €, =«
and €, =%. The above argument also gives that the sets i o and 4 are convex.

Assume now that (| o£=0. Then |f|=2 and there are elements Ay, A4, . ... A;
of o such that

A=A1r\"'ﬂA,-=/=¢ but AgnA=¢.

Further, for any Be® the set A,UB is convex, and AUB is convex, too,
because AUB =i, (A;UB).

Now Ay and A are disjoint, hence there are open halfspaces H, and H (with
boundaries L, and L) such that A< Hy;, A< H and S =R"\(H U H,) is a strip of
positive width.

We are going to show that for any Be®

D =SnNconv(A;U A)<B.

As D is not empty, this will prove that (RB#0.

First we observe that Hy,N B contains a point b, since otherwise Ay and B
would be separated strictly and A,U B could not be convex. ‘

Now consider any point xeD. Clearly x =tay+ (- t)a where a,c A, and
acA and 0<t<1. The line segment [b,, a] belongs to B'J A, consequently it
meets L in a point b, € B. Now the line segment [ag, b;] belongs to AU B, so it
meets L, in a point b, € B. Further the line segment [b,, a] belongs to BU A so it
meets L in a point b;& B and so on. It is not diflicult to check that the segments
[bo, b1], [ba, b1], [52, b3), . . . tend to § N{ay, a]. This shows that B contains a point
in every neighbourhood of x, i.e., B is dense in D. But then the compactness of B
implies D<B.
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We mention that the same method yields a bit more:
conv(conv(A,U AN\(AUA))c B.

‘There is a graph-theoretic analogue of the above theorem. A folklore result in
graph theory says that given some subtrees T;,... T,, of a tree T and if any two
of them intersect, then (., T; is nonempty. As T;NT;# 9 is equivalent to the
connectedness of T, U T;, we have the following generalization.

Theorem 3.3. Lei T be a tree and let us given m (=2) nonempty families,
4,,...,%,, of nonempty subgraphs of T. Suppose that for each choice G,e
%, ...,Gn€%,, the union UL, G, is connected (i.e., a tree). Then for some
j=1,...,m the intersection (%, is nonempty.

The proof is similar to the above one and is omitted.

4. About the face lattice of simple polytopes

The following reformulation of Theorem 2.2 is due to S. Dancs [3].
Consider the linear system

Ax=a, x=0 1)

where A is an n by m matrix (with rank n, suppose), aeR" and xeR™. For a
given sclution x to (1) put

Ix)={je{l,..., m}: x;>0},

i.e., I(x) is the set of indices where the inequality is strict in (1). Let us given
x!,...,x" feasible solutions to (1). Then, by Theorem 2.2 there is a feasible
solution x® and there are indices i, € I(x?),..., i, € I(x") such that

I(xn)ﬁ{ils i2, ey ln}'

The next application of Theorem 2.2 was inspired by the above observation. It
is about the face structure of simple polytopes. A ¢ -dimensional polytope is called
simple provided every vertex belongs to exactly, d facets.

Theorem 4.1. Let P be a d-dimensional siniple polytope having § facets and
suppose that we are given n=f—d vertices, ',...,c" of P. Then there exists a

vertex, ¢, and facets, L,,...,L, of P such that ¢ and ¢' d¢ not lie on L, for
(i=1,...,n).

Proof. We can suppose (see [S]) that P is given biy the following linear system:
Ax=a, x=0 (4]

[P —
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where the vector a eR" and the n by f matrix A are chosen appropriately. The
facets of P are given as

F={xeR: x,=0}NP.

It is clear that a solution x to (2) is a vertex of P if and only if I(x)=n.
Now let q; eR" be the ith column of the matrix A. Put

V,={a;:iel(c)} forj=1,...,n

Clearly, aepos V, for each j. Then by Theorem 2.7 there exists vectors a;, € V,
(k=1,...,n) such that

acpos{a;,...,a. }

This can be written as @ =Y} _; x;, a;, with x, =0. Put now ¢ =Y}, x, e, where ¢
is the ith basic vector of R, Obviously ¢ € P and, using the fact that P is simple, it
is easy to check that c is a vertex of P. This also implies that each x;, >0. Putting
now L, =F, we are done: c¢ L, and ¢ ¢, for k=1,...,n

The polytope P =conv{e,, e,, —¢€;, —€,, 23} <R> saows that the theorsm does
not remaia true for non-simple polytopes. From the other hand, using polarity one
can state a similar theorem about simplicial polytopes.

5. On the number of covers in the convex hull

Carathéodory’s theorem says that for V<R", |V|=n+1 the set convV is
covered by n-dimensional simplices (or n-simplices for short) of V, i.e., by
simpiices of the type conv A, A < V and |Aj=n+1. Now we are interested in the
following question. How many times do the n-simplices of V cover the points of
conv V? More precisely, let f(V, x) denote the number of n-simplices of V
covering the point X and set

f(V)=max f(V, x).
Clearly, f(V) cannot be larger than (!¥}), the numter of n-simplices of V. From
the other hand we are going to prove that

fvzem( ).

n+1

This cjuestion was raised in [2]. Borcs and Fiiredi showed in [2] that for VeR?,
|V|=N )
={, J+OIND=f(V),
ol3 (NH=f(V)

and for V<R? not contairing three points on a line

fn=z(3)+om,
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and the constants 3 and } are the best possible. (In fact, they gave the exact upper
bound for f(V).)

Theorem 5.1. For each V<R", |V|=N
1 ( N )
——e +O(N™)<f(V).
(n+D)"*"'\n+1 O(N)<f(V)
Proof. We shall use Tverberg’s theorem which says that any set VcR",
{Vlz(r—1)n+1)+1 can be partitioned into disjoint sets S,,..., S, such that
i< conv S, #@.
Put now

[N—l'
r=l—-1+
n+1.

and consider the above partition of V and a point x¢€(;-; conv S;. By Theorem
2.1 (or Corollary 2.4) for any S;,..., S, ., (1<i;<i,<-:-<i,.1=<r) there exists
an n-simplex of V, conv{v',...,v"*'} containing x, where v'€S;
(j=1,...,n+1). This simplex is clearly different for different index-sets

{iys...,in41}. This gives

r ____l“__( N \)
(n+1)_(n+1)"“ n+1 +OWN™)

different n-simplices of V containing x,. We mention that using the remark after
Theorern 2.2 one can improve this to

( N )+O(N"),

n+1l

f(va x())‘2 (n + 1),.

but I think this is far from being the best possible constant.

Another question of interest is as follows. Let fy(V, x) denote the number of
r-simplices of V containing x in their interior. The question is to dctermine
bounds for

fo(V) = max fo(V, x).

In this case, of course, one has toc assume that the points of V are in general
position, i.e., no n+1 of them lic on a hyperplane. If this is so, then any point
x €R" lies on the boundary of at most (V') n-simplices. Thus Theorem 5.1 implies

1 ( N
(n+ 1" \n+1

fo V)= )+0(N")
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if V is in general position. From the other hand we have

Theorem 5.2. For any V< R" with |V|=N

3I(N+n+
L (Z(N " 1)) if N—n is odd,

(V)= N+n+1 n+1
M _Z(L\I:_Q(%(N+n+2)) N i
N+n+2 n+1 n s even

and this bound is sharp.

Froof. Let V,cR", |V,|=N and x,€R" be the extremal system, that is,
fo(Vo, X0) = max fo(Vo, x)= lf‘?gis max fo(V, x).

It is not difficult to see that here V,; and x, can be chosen so that the set VU {x}
is in general position.
Let Vo={vy,..., vxn} and considers the polytope P determined by the linear
systern
Af=(xp;1), £&=0,

where A is the (n+1) by N matrix with ith cclumn (V;; 1) and £ RN, (Here we
use the notation (x;t) for the (n+ 1)-dimensional vector whose jth component
equals that of xeR" and the last component equals ¢) The general posttion of
VoU{xo} implies that xoeconv{v,,..., v, } if and onlv if for some (uniquely
determined) £€ P, I(£§)={i,, ..., i,+1}. SO there is a one-to-cne correspondence
between the vertices of P and the n-simplices of V containing x, in their interior.
Now P is (N—n—1) dimensional and has at most N facets.

The question is how many vertices P can have.

McMullen’s Upper Bound Theorem [8] gives the exact upper bound of the
number of facets of a d-dimensional polytope which has a given number of
vertices. (And not only for the number of facets but of the k-dimensionz! faces as
well.) If this theorem is applied to the polar of P, then we get the formula in the
theorem. ‘

6. Applications to convex functions

In this last section we are going to prove two theorems concerning families of
convex functions R* —R. We use the terminology of the theory of convex
functions (see [10]). Thus a function f:R" — R may take the values +o and —c.
For a family & of functions R" =R ;.4 denotes the largest convex function that
is not larger than any one of the functions fe %, and ;s denotes the smallest
convex function that is not smaller than any one of the functions fe %.
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‘Theorem 6.1. Let #,,..., %, be families of functions R" ->R and suppose that
joreachi=1,...,n+1

(f/\ flar<t

€,

Then there are functions f,e %, (i=1,....,n+1) such that
n+1
('/_\l f})(a)< t.

Theorem 6.2. Let ,,...,%, ., be finite families of convex functions R* — R that
are finite on the whole space. Suppose that for each i=1,...,n+1 and xcR"

(f/\ f)er=o.

(=1 A

Then there exist functions f,e %; (i=1,...,n+1) such that
n+l -
(/\ ﬁ)(x)?O for each x cR"
i=1
Proof of Theorem 6.1. Take t'€R so that

(fV f)(a)St’<t for each i.

eR;
This implies (see [10]) that there exist functions f',f>...,f**'e%; and points
(a; 4)eR" xR with = fi(q;) j=1,...,n+1) such that for some o; =0,Y a; =1
n+1 n+1
2 og=a and X af=t.
i=1 i=1
This shows that for V; ={{(a;; t1),..., (4.1} as1)}
(a;t)econv V.,
Now thisis truefori=1,...,n+1, so by Theoem 2.3 applied to V,,..., V., <
R"*! and the point (a; t)eR" XR we have
(a; tYeconvi(a, 1), (a;: ), ..., (a;_ ;6. )}
where (a;, ;)€ V.. But then, for the function: f; e %,,...,f, €%,.; we have
rn+1
( A f,—‘)(a)St’<t.
i=1

This proof also shows that if the families ¥, are finite, then (Vy g, fi(a)<t
(i=1,...,n+1) implies the =xistence of functions fe®; (i=1,...,n+1) with
(ViZi f)(a)=t. This fact is needed in the next proof.
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Proof of Theorem 6.2. It is well-known [10] that for a convex function h:R" — R
that is finite over R"

h(x)=0 for each xeR"
if and only if

h*(0)=<0,
where h* is the convex conjugate of h. (The convex conjugate of the function
h:R" =R is a {convex) function h*:R" — R defined by

h*(y)= sq‘]g{(x, y)—h(x)}.

Now our assumption 1s eqvivalent to

(f/\ f)*(())so, i=1,...,n+1.

e$,

But (Ascs, f)*=Vies, f* (see again [10]). By the remark at the end of the
previous proof we have that there are functions f; € #; such that (/' f)(0)<0.
But this is, again, equivalent to (A} £)(x)=0 for each xeR".

Finaily we prove the generalization of Helly’s theorem from the third section.

Proof of Theorem 3.1. By Helly’s theorem we can suppose that cach family €,
contains at most n+1 sets. Put now for i=1,...,n+1
F . ={f.: Ce%}
where f.:R" — R is defined by
f.(x)=p(x, C).
Suppose that ()¢, = for each i, then

A fc)(x]’ze for each xeR", i=1,...,n+1

€€,

with some suitable ¢ >0. Now Theorem 6.2 implies the existence of a choice
C,e%,...,C,.1€%,.,, With

n+1l
(/\ fcl)(x)ze for each x eR"
i=1

and this, in turn, shows that () G, =, contradicting to the assumptions.
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