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The following theorem is lproved. If the sets VI, . . . , Vn+, CR” and a E fly:: conv Vi, then 
there exist elements ui E Vi (i = 1, . . . , n + 1) such that a E conv{o,, . . . , un+J. Thii is a generali- 
zation of Carathtidory’s theorem. By applying this and similar results some open questions are 
answered. 

The well-known Carath&odory’s theorem says that, given a set VG$” and a 
point a E conv V (the convex hull of V), there exists a subset A c V such that 
IAl s n + 1 and a E conv A. This simple theorem has many applications and 
generalizations (see, for instance, [4, 9, 1OJ). 

The aim of this paper is to give a new generalization of Carathiodory’s theorem 
and to present some consequences of thig generalization. The paper is organized 
as follows. The second section contains the main theorems. The third section is 
about a generalization of Helly’s theorem. The fourth section deals with systems 
of linear inequalities and simple polytcjpes. The next section answers a question of 
Boros and Ftiedi [2]. In the last se&an we apply our results to convex functions. 

2.m main theorems 

TIWOW~ 2.1. Suppose V~,...,Vn+lcRn and aEconvVi for i=l,...,pt+l. 
Tken there exist vectors Ui E v (i = 1, . . . ) It + 1) such that a E c43nv{u1, . . . , t&+1}. 

‘This theorem is sharp in the sense that the number of Vi’s cannot be decreased. 
This is shown y b the example v ={ei, -4) (i = 1, . . . , n) and a = 0, where e, is the 
ith basis vector of R”. 

Theorem 2.1 does indeed g;eneralize Carattioddry’s theorem: put simply 
V~=V~=“‘=v,+1 = V, then for A =(ul,. . . , v~+~) we have (A(Sn+l and 
a ~conv A. However, while proving the theorem we shall make use of 
Carath&dory’s theorem. 

There is a cone-version of Carathtodory’s theorem stating that, given a set 
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V 6: R” and a point a E pos V (the convex cone hull of V), there exists a subset A of 
Vsuchthat IAl c n and a E pos A. Thiscone-versionhas thefollowinggeneralization. 

2.2. Sfqqwse VI, 1 . . , V” CR” and a E poli; V, for i = l!, . . , , n. Then there 
exist elements u, E Vi for euch i such that a E pos{ul, . . . , un}. 

‘i&eotem2.3.SupposeV, ,..., V,~iR”anda~convV~fori=l,..., n.Let%be 
an arbitrary element of W”. Then there exists a choice q E Vr (i = 1, . . . , n) such that 
a E conv{t:(), vl, , . . , v,). 

We mention that Theorem 2.1 can be deduced directly from Theorem 2.2. 
However, when using Theorem 2.3 we can gucrwantee that for any prescribed 
element t E I_&?; V, these exists a choice {q: . . . , u,,+,}. containing u and such 
that a E conv(q, . , . , u,,+,}. 

Coraflrvy 2.4. Suppose VI,. . . y V,,, CR” and a E conv V, for i = 1,. . . , m. Giuen 
nonnegative integers k,, . , , , S, with CEl &i = n + 1, there exist subsets At c V,, 

k4 such that a E r;cnv IJE f A,. 

This corollary contains both Theorem 2.1 (when m = n + 1 and k, = l l l = 

k n+l = 1) and Carathkodory’s theorem (when m =: 1 and kl -- n + I.). 

PMB# d ‘I’IMxw~ 2.2. We suppose (by Carathkodory’s theorem) that each V, is 
finite. Let us define for any choice USE VI,. . . , u,, e V,, 

d(t; lr.. . , u,J = da, posh,. . . , VA!, 

w, less formally, d is the distance between the point a and the convex cone 
C’pS{U~,..., u,,). We have to prove that d = 0 for some choice. 

Suppose, to the contrary, that the choice o)~, , . . ,, u, gives the minimal value of d 
and d > 0. Then there exists a (uniquely determiined) z E C with d = \\a - rll. In 
kzt, z is the projection of thz point a to the cone C. Clearly, putting b = a - z the 
hypes-plane {x E W” : (b, x) = 0) separates (1 and C, i.e., 

(b, a)>+O, (b, ;::I =0 

.and 

(6,~,)60 for i=l,...,n. 

The point z can ‘be written as z = E_ I TiyiUi w ith yi 2 0. Moreover, this represen- 
tation can be chosen so that rj = 0 for some j = 1, . . . , n. This is true either 

use C is an n-dimensional cone, consequently the minimulm of lla -xl! over 
x E C is attained on the boundary of C, or becaw C lies on a hyperplane and 
then every point of C can be expressed with sOme yj = 0 (by Carath6odory’s 

m). Without loss of generality fwe suppose that y1 =O. The condition 
plies that there exists an ellement u E VI such that (b, U) ~0. 
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Now we show that d(u, u2, . . . , u,,)< d contradicting to the minima@ of cl. 
Indeed, for 0~ t G 1 

and 

2 + t(u - z) E pas{ u, u2, . . . , u,}, 

d2(u, u2, . . . , ~l~“>~:l~a-[Z-tt(2,-z)J~)2 

= d2 - 2t(b, u -z)+ t* 110 - zj2, 

and this is less than d:” if t > 0 is sufficiently small tecause (6, u - z) = (b, u) > 0. 

Proof of 7?heorem 2.3. Suppose, and we may do so without loss of generality, that 
u = 0. Further, using Caratheodory’s theorem we assume that I Vi I < n + 1 for each 
i=l,...,n. 

First, we prove the theorem for the case when DE int con V, (i = 1, . . . , n). h 

this case, clearly, for some small E >O we have 

--4?U0 E int conv Vi, 

and consequently 

-~~~Epos V, (i = 1,. . . , n), 

Now, by Theorem 2.2, for some choice zci E: V, and (Ye 2 0 

Dividing here by E +C,nP, ai we get 

where LY i a 0, and 

i=o 

This is clearly the same as 0 E cmv{z+,, . , . , u,,}. 

In order to prove Theorem 2.3 from this special case one should approximate 

each set Vi with a sequence of (n-t 1,) membered sets Vi(j) such that OE 
int conv Vi(j), and then present a usual cenkmity argument. We omit the details. 

Finally we mention that a good many gti;ueraliui\tion of Caratheodory’s theorem 
admit further generalizations of the sa:me ‘multiplied’ version as Thearems 2.1 
and 2.2. For instance, S. Dancs observel:$ [3:] that Stein&z’s theorem [cl] can be 



generalized in this way. An application of Theorem 2.1 can be found :n [l]. A 

further application of Theorem 2.1 is due to A. Frank and L. Lovisz [7]: 

Ler Cl,. . . , C,, be directed cycles in the directed graph D(V, A) where 
VI = n. ken there exist arrows al, . . . , u,, E A, the ith belonging to C$ (i = 1, . . . , n) 

such t?wt the set of arrows {a,, . . . , a,) contains a directed cycle. 

3. ‘Tw0 Helly-type theorems 

It is w.Sknown thait Ctirath6odory’s theorem and Helly’s theorem imply each 
other. So it is not surprising that Theorem 2.2 yields a Helly-type theorem. This 
theorem was first observed by L. LovBsz [7]. 

Tbleorern 3.3. Let VI,. . . , Vn+l be nonempty families of compact convex sets from 
” and suppose that for any choice Cl E Vrl, . . . , C,,+l E%‘,+~ the intersection 

12:‘:: C, is not empty. 7%en for some i = 1, . . ,, , n + 1 all the sets in the family %Ti 
har2e a point in common. 

Helly’s t.heorem fol:lows from this theorem putting %* = 0 * - =%‘,,+I. We post- 
gene the proof to Section 6, although the theorem could be proved right now 
usin:g the following well-known fact (see [lOJ). 

The compact convex sets Ci (i = 1, . . . , p) have no point in common if and only 
iX there exist closed half-spaces D1, . . . , 0, such that 

C&Pi (i=l,. ..,p) and h Di-p). 
i=l 

Using thii fact one can even show that Theorem 3.1 implies Theorem 2.2. 
‘tie mention :hat using Theorem 3.1 (or directly 2.2) we can get further 

‘mr&iptied’ ve rsions of several generalization of Hdly’s theorem. (For these 
generalizations see [4] for instance.) 

We mention further that Theorem 3.1 can be regarded as a further (though 
small as it may be) step towards dharacterizinF the possible types of intersection of 
families of convex sets from R”. To be more precise S& ZF = {C,, . . . , G} be a 
family of convex (compact) sets in IR’. The incidence iuruztion of 9, F is defined 
on the subsets of (1, . . . , p} as 

1 I for IS{1 

f”ul = 
,...,p)if jJCi#fl 

0 otherwise, 

e qustion prosed in [4] or [6] is to determine the necessary and sufficient 
on F: 2{1-..*p} -+ (0, 1) SQ that I; be the in function of some 

~~~i~~ C Gs ~~~esti~n is answered for n = 1 only. 11~‘s theorem F is 
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determined by its values .F(I) for I c { 1, . . . , p!, 111 g n + 1. Theorem 3.1 says that 

the incidence function satisfies the following implication. If II, . . , , In+l c 

0 , . . . , p) and F({i,, . . . , i,,+Jj = 1 for each choice il E II, ,. . . , i,,+l E I,,+l, then 
F(h)=1 for some j=l,...,n+l. 

Now we prove a theorem which is related to a result by Berge and Ghouila- 
Houri (see [4]). This result says that if Cr, . . . , Cm CR” are convex Icompact sets 
such that IJz 1 Ci is convex and any (r:n - 1) of these sets have a point in common, 
then nEI Ci is nonempty. 

Theorem 3.2. Let ql, . . . , %Tm (m > 1) be nonempty families of nonempzy sets of 
IF@“. Assume that the sets in 463r and %$ are compact. If for every choice Ci E G.Zr 
(i = 1,. . . , m) the union IJE, Ci is cower., then for some i = 1, . . . , m the intersec- 
tion [-)%i is nonempty. 

Proof. First we reduce m to 2 by a backward induction. Suppose that for some 
choice C,E%,, . . . , C,,,_, E%?~-~ the union IJZ;’ Ci is not convex. Then every set 
of %,,, has to contain the ‘hole’ in U~L;’ Ci, consequently n C,,, is nonempty. So 
either we are done or t.he conditions of the theorem hold for WI, . . . , V,_1. This 
shows that we have to Iprove the theorem for m =2 only. Put, for brevity %r = SB 
and ‘+& =46. The above argument also gives that the sets in SB and 98 are convex. 

Assume now that n s9 = @ Then ]a] 2 2 and there are elements AO, Al, . . . r Ai 
of & such that 

A=AIn.. -nAj#@ but AonA=p). 

Further, for any B E 8 the set AoU B is convex, and A U B is convex, too, 
because AUB=fli=,(AiUB). 

Now A* and A are disjoint, hence there are opeu halfspaces H0 and H (with 
boundaries Lo and L) such that A0 c I$, A c H and S = lFV\(H U Ho) is a strip of 
positive width. 

We are going to show that l’or any R E 48 

D = S n conv(AO U A) c B. 

As D is not empty, this will p:rove that n9 # 8. 
First we observe that EIO n,B contains a poin,t bO, since otherwise:: A0 and B 

would be separated strictly and A0 U B could not be convex. 
Now consider any point x ED. Clearly x = ta,,+ (I-- t)a where ‘.zO E A0 aaci 

a E A and O< t < 1. The line segment [b,, c1 J belongs to B ! J A, consequently itt 

meets L in a point bl E B. Now the line segment [(x0, b,] belongs ‘to A0 U B, so it 
meets Lo in a point &z E B. Fimther the line segment: [b2, ca) belongs to B U A so it 
meets L in a point ~,EB and so on. It is not diflicult to che& that the segments 

[b,, a, b,, hl, Eh a9 * * ’ t’end to S f’T[a,, a]_ This shows that B contains a point 

in every neighbourhood of x?, i.e., B is dense in D. But then t8le compactness of 
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‘We mention that the same: method yields a bit more: 

conv(conv(A, U A)\(AO U A)) c B. 

There is a graph-theoretic analogue of the above theorem. A folklore result in 
graph theory says that given some subtrees T,, . . . T,,, of a tree T and if any two 
of them intersect, then nz, Ti is nonempty. A3 Ti n ?;: # fl is equivalent to the 
connectedness of ,7i ij Ti, we have the following generalization. 

Theorem 3.3. tir T be a tree and let us given m (22) nonempty families, 
49 I, . , , ,9&,, of nom?mpty subgraphs of T. Suppose that for each choice Gl E 

I¶,.., G,,, ~46, rhe union lJzl Gi is connected (i.e., a tree). Then for some 
j-l,..., m the intersection r,gj is nonempty. 

The proof is similar to the above one and is omitted. 

4. lsbotlt the face fatice of simple polytopes 

The following reformulation of Theorem 2.2 is due to S. Dancs [3]. 
Consider the linear system 

Ax=a, ~20 (1) 

where A is an n by m matrix (with rank n, suppose), a E R” and x EIR”‘. IFor a 
given solution A: to (1) put 

Z(x)=(jE{l,...,m}:~>O}, 

i.e., Z(x) is the set of indices where the inequality is strict in (1). Let us given 
x’ , . . . , xn feasible solutions to (1). Then, by Theorem 2.2 there is a feasible 
solution x0 and there are indices il E 1(x’), . . . ,a E 1(x”) such that 

Z(P) 5 {il, b, . . . , &J. 

me next application of Theorem 2.2 was inspired by the above observation, It 
is about the face structure of simple poiytopes. A d -.dimensional poiytope is called 
simple provided every vertex belongs to exactb, $ facets. 

A. Lea P be a d-dimensional simple polytope having f facets and 
suppose that we are given n = f - d vertices, T ‘, . . . , cm of P. Then there exists a 
uerteq c, and facets, L1,. . . , i& of P such that c and c’ do not lie on & for 
(i = 1;. . . , n). 

e can suppose (see [Sj) that P is given by the following linea;: system: 

=a 9 3: ;%(I (2) 
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where the vector a ERI” and the n by f matrix A are chosen appropriately. The 
facets of P are given as 

4 =.[x ~08’: 3 =o)nP. 

It is clear that a solution x to (2) is a vertex of P if and only if I(x) = rt. 
Now let ai EIR” be the ith column of the matrix fi. Put 

Vi = {a,: i E I(d)} for j = 1, . . . , 11. 

Clearly, a E pos Vj for each j. Then by Theorem 2.2 there exists vectors dZik E Vk 
(k=l,..., n) such that 

a E pos{a,,, . . . , q}. 

This can be written as a = CE = I qa,, with .k 2 0. Put now c = CL= r qkei, where ei 
is the ith basic vector of Rf. Obviously c E P and, using the fact that P is simp!e, it 
is easy to check that c is a vertex of Z? This also implies that each qr >Ol. Putting 
now l+ =h, we are done: c$Lk and ck$ Lk for k = 1,. 

The polytope P = conv{er, e2, -et, -e2, Q} cz R3 shows 
not remaiR true for noIn-simple polytopes. From the c>ther 
can state a similar theorem about simplicial polytopes. 

5. OIB the number of covers in the convex hull 

. 9 n. 
that the theorem does 
hand, using pollarity one 

Caratheodory’s theorem says that for VCR”, IV] 2 II + 1 the set conv V is 
covered by n-dimensional simplices (or n-simplices for short) of V, i.e., by 
simphces of the type conv A, A E V and IA 1= n + I. Now we are interested in the 
following question. How many times do the n-simpiices of V cover the points of 
conv V? More precisely, let f(V, x) denote the number of n-simplices of V 
covering the point X and set 

Clearly, f(V) cannot be larger than (A:‘,), the number of n-simplices of V. From 
the other hand we are going to prove that 

‘This cluestion was raised in [2]. Boros and Ftiredi showed in II:23 that for VCR’, 

IVl=i 

and for 

2 
9 3 

(7 
+O(N2)cf(V), 

Vc !R2 not contairting three points on a line 
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and ,tkae constants 3 and $ are the best possible. (In fact, they gave the exact upper 
bound for f( V).) 

l’kmem 5.1. For each V c R”, IV1 = N 

1 

( ) 
N +O(N”)slf(V). 

(n+l)“” n+a 

ProcoB. We shall use Tverberg’s theorem which says that any set V.clR”, 
\Vj IS~ (r - l)(n + 1) + 1 can be partitioned into disjoint sets S1, . . . , S, such that 

(-l:= ), amv s, # 8. 

Put now 

[ I N-l" +1 
p= -. 

n+l. 

and consider the above partition of V and a point xOe ni=, conv S,. By Theorem 
2.1 (or Corollary 2.4) for any Si,, . . . s Sk+, (1 G i1 < i2 < * l * < &,+l s r) there exists 
an n-simplex of V, u&u’, . _ . , un+‘} containing x0 where ui E sif 
(i=l,..., n + 1). This simplex is clearly different for different index-sets 

0 ,, . . , I &+J‘ Ilris grves 

=-I--- +wm 

n-simplices of V containing x0. We mention that using the remark after different 
Theorem 2.3 one can improve this to 

1 
f(K 3a(n+1) ( ) 

uyi +O(lcY, 

but I think this is far from being the best possible constant. 

Another question of interest is as follows. Let fo(V, x) denote the number of 
Iz-simplices of V containing x in their inrerior. The question is to determine 
bounds for 

is case, oi course, one has to assume that the points of V are in general 

n, i.e., no n + 1 of them lie on a hyperplane. If this is so, then any point 
n lies on the boundary of at most (‘:I) n-simplices. Thus Theorem 5.1 implies 

. _ _I _. _. 
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if’ V is in general position. From the other hand we have 

Z%eoro!m 5.2. For any V c R” with 1 VI = N 

2N $(N+n+l) -- 
N+n+l ( n+l 

if N-n is odd, 

-_- if-N- n is even 

and this bound is sharp. 

Proof. Let V,c R”, 1 Vaj = N and x0 E R” be the extremal system, that is, 

It is not di&ult to see that here V, and x0 can be chosen so that the set V, U {x0} 

is in general position. 
Let Vo={L&..., vKf} and considers the polytope P determined by the linear 

systern 
AS = (x0; l), 6 3 0, 

where A is the (n + 1) by N matrix with ith column (Vi ; 1) ainfi 6 E UP’. (Here j&e 
use the notation (x; t) for the (n + l&dimensional vector whc~e jt9% c,G~~,~~~~TPTT* 
equals that of x ~08” and the last component ~CQ_K~S t_) The glenera posltion of 
VOU{XO} implies that XOE conV{ui,, . . . , .q+,} if and only if for some ~~uniquel y 
determined) E E P, 1(t) = {iI, . . . , &+l}. So there is a lone-to-one correspondence 
between the vertices of P and the n-simplices of V containing, x0 in their interior. 
Now P is (N-n - 1) dimensional and has at most N facets. 

The question is how many vertices P can have. 
McMullen’s IJpper Bound Theorem [8] gives the exact upper bound of the 

number of facets of a d-dimensional polytope which has a given number of 
vertices. (And not only for the number of facets but off the k-dimensbqal faces as 
well.) If this theorem is applied to the polar of P, then we get the formula in the 

theorem. 

6. Applications to mmvex fmnctims 

In this last section we are going to prove two theorems concerning families of 

convex functions llP +R. We use the terminology of the theory of convex 
fun&ions (see [lOI). Thus a function f :R” + R may take the values +a~ and --c10. 
For a family 9 of functions R” + R VrEs denotes the largest convex function that 
is not ‘larger than any one of the functions f E 9, ancl /jfG9 denotes the smallest 
convex function that is not smaller than any one d the functilons fE 4’. 
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mm 6.1. Let sl, . . . , sn+l be families af functioru R” -+ IF8 and suppose that 
joreach i-=l,...,n+l 

Then there are far~Caio~ fi E 9i (i = 1 ,...., n + 1) such that 

n+l 

( ) i/), h Cd < t. 

‘Ahsorem 6.2. Let 91, . . . , iP,,.bl be finite families of convex functions R” --+ W that 
are finite on the whole space. Suppose that for each i = 1, . . . , n -I- 1 and x ER” 

Then there exist functions fi E 9i (i = 1, . . . , n + 1) such that 

for each x E R” 

PC& of Theorem 6.1. Take t’ E IR so that 

( ) V f (a) c t’ < t for each i.. 
foe?, 

This implies (see [lOj) that there exist functions f’, f”, . . . , fn+’ E 9,i and points 
(~;4)E~“xWwithfiEfi((Zi)~=1,...,n+1)suchthatforsomeai~O,Cryi=l 

n+l n+l 

iTIqq=a and c q4=fr. 
j=l 

'i'his shows that for l/i ={(al; tI), . . . , (-/~n+~; a+J} 

(a; f)ECOIlV Vi. 

Nowt’hisistruefori=l,..., n: + 1, sol by Theol:em 2.3 applied to VI, . . . , Vnt_l c 
M’ and the point (a; ~)EW” XR we have 

(a; 0 E ~nv{b, 0, (ai,; 4,h . . . , (ai.+,; oi,+J 

where (q,, 4)~ Vi- But then, for the function; fi, E PI, . . . , fim+, E Q,,+* we have 

n+l 

( b 
i/J fh (4 d t’ < t. 

This proof also shows that if the families SX ,are finite, then (Vr,, f](a) d t 
lies the *existence of functions fi E 9i (i = 1, . . . , n + 3.) with 

is fact is needed in the next. proof. 
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Bf of emm (61.2. It is well-known [lo] that folr a conw:x function h :R” +iw 
that is finite over W” 

h(x) 2 0 for each x E W 

if and only if 

h”(O)GO, 

where h* is the convex conjugate of h. (‘Ibe convex conjugate of the function 
h :UP + IR is a (convex) function h* :lW -+ R defined by 

h*(y) = =$x, Y )- h W. n 

Now our assumption is equivalent to 

( 1 
A f *(o)Qo, i=l ,...,n+l. 

f=K 

But <A,,, f)* = Vfe~, f” ( see again [lo& By the remark at the end of the 
previous proof we have that there are functions fi E 9i such that (VrZt c)(O) G 0. 
But this is, again, equivalent to (A:_‘! Q(x)~ 0 for each x ER”. 

Finally we prove the generalization of Hehy’s theorem from the third section. 

Proof of Theorem 3.1. By Helly’s theorem we cm suppose that each family Oi 
contains at m0st n + 1 sets. Put now for i = 1, . . . , n + 1 

*i =cfc: CEWgi} 

where fe :R” + R is defined by 

L(x) = P(& C). 

Suppose that n %i = @ for each i, then 

c ) 
A& L (xll+r for each XEW, i-l,...,n+l 

1 

with some suitable E > 0. Now Theorem 61.2 implies the existence of a choice 
Cl E Oi, . . . , C,+r ~‘g,,+t with 

for each x ER” 

and this, in turn, shows that n Ci = $3, contradicting to the assumptions. 

Thanks are due to S. Dancs, Z. Ftiredi, L. Lov%z and A. Tihanyi for the many 
discussions rmd comments on the t0pic of this paper. 
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