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Abstract. We show that, given two probability measures in the plane, there exists a 4-fan
that simultaneously equipartitions them. In other words, there is a point and four half-lines
emanating from it such that each of the four sectors have measure1

4 in both measures.

1. Introduction

This is a continuation of our previous work [BM] whose terminology and notations are
used here without much change. A pointx in the plane and four half-lines,`1, `2, `3, `4,
starting fromx form a 4-fan. The half-lines are in clockwise order aroundx. They
determine four angular sectorsσ1, . . . , σ4 with σi betweeǹ i and`i+1. Assumeλ and
µ are nice probability measures onR2, say, none of them is positive on any line. We
showed in [BM] that there is a 4-fan withλ(σi ) = µ(σi ) = 1

5 for i = 1,2,3. (Then, of
course,λ(σ4) = µ(σ4) = 2

5.) Our main result here is
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Theorem 1.1. Assumeλ andµ are absolutely continuous(with respect to the Lebesgue
measure) Borel probability measures onR2.Then there is a4-fan simultaneously equipar-
titioning both, i.e., λ(σi ) = µ(σi ) = 1

4 for i = 1,2,3,4.

It is more convenient to lift the measures and the 4-fans fromR2 to the 2-sphereS2.
So letS2 be the unit sphere ofR3 and letR2 be embedded inR3 as the horizontal plane
tangent toS2 (at the South Pole). Denote byπ the central projection from the lower
hemisphere to the embeddedR2. Clearly,π−1 lifts any Borel measure onR2 to a Borel
measure on the lower hemisphere ofS2. A 4-fan inR2 is lifted to a 4-fan inS2 in a natural
way: a spherical 4-fan is a pointx ∈ S2 and four great half-circles̀1, . . . , `4 starting at
x (and ending at−x) that are ordered clockwise when we look at them from the origin
towardsx. The angular sector between`i and`i+1 is σi . It is clear that a spherical 4-fan
is projected byπ to a 4-fan inR2. We will prove Theorem 1.1 in a slightly stronger form:

Theorem 1.2. Assumeλ andµ are absolutely continuous(with respect to the Lebesgue
measure) Borel probability measures on S2. Then there is a spherical4-fan simultane-
ously equipartitioning both, i.e., λ(σi ) = µ(σi ) = 1

4 for i = 1,2,3,4.

In fact, this theorem holds under the weaker assumption that neitherλ norµ is positive
on a great circle. This follows from a simple compactness argument.

We call a measure nice if it is a Borel measure, it is a probability measure, it is
absolutely continuous with respect to the Lebesgue measure, and it is positive on every
nonvoid open set. We prove Theorem 1.2 assuming that both measures are nice. This
will suffice for the general case by the same compactness argument. By the same token
it is enough to prove the theorem for a dense set of nice measures, and we assume, in
case of need, that our measures satisfy certain extra properties.

2. Equivariant Topology

Write V = {(x, y) ∈ S2× S2: x ⊥ y}; V is the Stiefel manifold of orthogonal 2-frames
in R3, which is homeomorphic to SO(3) (see [B]). Of this, we only need thatV is
three-dimensional and orientable. To every(x, y) ∈ V we assign the 4-fanψ(x, y) =
(x; `1, . . . , `4) as follows:y is the midpoint of the great half-circlè1, and`2, `3, `4 are
defined by the conditionλ(σi ) = 1

4 for all i . Further, letyi denote the midpoint of the
great half-circlè i (i = 1,2,3,4), so y = y1. Write X4 or X for the set of all 4-fans
equipartitioning the measureλ. Thenψ is a mapV → X4.

To evaluate the quality of a 4-fan(x; `1, . . . , `4) ∈ X we define a mapϕ: X → 43

(where43 is the three-dimensional standard simplex:43 = {x ∈ R4: xi ≥ 0,
∑4

i=1 xi =
1}) asϕ(x; `1, . . . , `4) = (µ(σ1), . . . , µ(σ4)). All we want to show is that the map
ϕ ◦ ψ : V → 43 takes the valuec = ( 1

4,
1
4,

1
4,

1
4), the center of the simplex. Assume

it does not. Writeπ for the central projection43\{c} → T , whereT is the sphere of
radius1

2 centered atc in the affine hull of43. ThusT , the target space, is topologically
anS2. (The special choice of the radius1

2 will result in simpler notation later.)
We use equivariant topology. The cyclic groupsZ4 andZ2 act onV, X,43 (and, of

course, onT ⊂ aff43). The following describes the actions of the generator ofZ4 on
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V , X, and43, denoted byω, ω∗, andω0, respectively, and the actions of the generator
of Z2 on these spaces, denoted byν, ν∗, andν0. For(x, y) ∈ V with y = y1, we have

ω(x, yi ) = (x, yi+1), ν(x, y) = (−x, y),

ω∗(x; `1, . . . , `4) = (x, `2, `3, `4, `1), ν∗(x; `1, `2, `3, `4) = (x; `4, `3, `2, `1),

ω0(t1, t2, t3, t4) = (t2, t3, t4, t1), ν0(t1, t2, t3, t4) = (t4, t3, t2, t1).
It is very easy to see thatψ ◦ ω = ω∗ ◦ ψ , ϕ ◦ ω∗ = ω0 ◦ ϕ, π ◦ ω0 = ω0 ◦ π , and the
same withν, ν∗, ν0. This shows that the composite mapf = π ◦ ϕ ◦ ψ : V → T is a
Z4-map and aZ2-map as well:ω0 ◦ f = f ◦ ω andν0 ◦ f = f ◦ ν.

Let G = Z2 × Z2 (direct product). ThisG acts on bothV andT with generators
corresponding toω2 andν and toω2

0 andν0. Thus f : V → T is aG-map. We will show
that such a map does not exist iff (or ratherϕ) comes from two measures.

For later reference we record the actions ofG onV andT . We rename them asg1, g2

corresponding toω2, ν, andh1, h2 toω2
0, ν0. Theng3 = g1g2 andh3 = h1h2 correspond

to the third element ofG, and withy = y1,

g1(x, y) = (x, y3), h1(t1, t2, t3, t4) = (t3, t4, t1, t2)
g2(x, y) = (−x, y), h2(t1, t2, t3, t4) = (t4, t3, t2, t1).

Remark. There is no obstruction to the existence of aG-map f : V → T . An example
of such a map is constructed in [BM]. In order to prove Theorem 1.2 we will need to use
the fact thatf comes from two measures.

3. An Equivariant Subdivision of V

We are going to construct an equivariant subdivision ofV . It is going to consist of four
three-dimensional domainsD, g1D, g2D, g3D and their boundaries. The boundary of
D is made up of four two-dimensional cellsP, g2P andQ, g1Q.

The construction starts with choosing a great circle that halves the measureλ. We
fix the coordinate system so that this great circle coincides with{x ∈ S2: x1 = 0}.
Thusλ(H) = 1

2 whereH is the hemisphere{x ∈ S2: x1 ≤ 0}. We may assume that

µ(H) = µ0 <
1
2, as otherwise we change the orientation of the first axis or, ifµ(H) = 1

2,
we change the measureµ a little and use a limiting argument in the end.

For x ∈ S2\{±e3} let y1(x) be the (unique) unit vector orthogonal tox with the
maximumx3-coordinate among the unit vectorsy ⊥ x. Further, fori = 2,3,4, yi (x)
is defined byωi−1(x, y1(x)) = (x, yi (x)). It is easy to check thaty1(x) = y1(−x),
y3(x) = y3(−x), y2(x) = y4(−x), andy4(x) = y2(−x). Also, for x ∈ S2 with x1 = 0,
we havey3(x) = −y1(x).

We need one more piece of notation before we can construct the equivariant subdivi-
sion ofV . Assumev1, v2, v3 ∈ S2 are distinct and orthogonal tox ∈ S2. Then〈v1, v2, v3〉
denotes the closed arc of the great circle orthogonal tox lying betweenv1 andv3 and
containingv2. DefineD as the closure of the set

{(x, y) ∈ V : x1 > 0 andy ∈ 〈y4(x), y1(x), y2(x)〉}.
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Fig. 1. The domainD.

In fact D is just the union of

{(x, y) ∈ V : x1 ≥ 0, x 6= ±e3 andy ∈ 〈y4(x), y1(x), y2(x)〉}
and the two circles{(±e3, y) ∈ V}. This definition is illustrated in Fig. 1 (which is made
for λ being the uniform measure onS2). Further, clearly, the setsg1D, g2D, andg3D,
respectively are the closures of the sets

{(x, y) ∈ V : x1 > 0 andy ∈ 〈y2(x), y3(x), y4(x)〉},
{(x, y) ∈ V : x1 < 0 andy ∈ 〈y4(−x), y1(−x), y2(−x)〉},
{(x, y) ∈ V : x1 < 0 andy ∈ 〈y2(−x), y3(−x), y1(−x)〉}.

ThusD, g1D, g2D, g3D have pairwise disjoint interiors and their union coversV .

Remark. We mention without proof (since we will not use it) that the following holds.
Assumeλ = λ0, the uniform probability measure onS2. Then clearlyD = {(x, y) ∈
V : x1 ≥ 0, y3 ≥ 0}, and one can show directly thatD is homeomorphic toB3, the unit
ball of R3, with e1 and−e1 identified ande2 and−e2 identified. This also holds for all
nice measuresλ on S2 as well because the homotopyλt = (1− t)λ0 + tλ induces a
homotopy betweenD(λ0) andD(λ).

It is easy to see that∂D consists of four pieces; the first two areP andQ whereP is
the closure of the set

{(x, y) ∈ V : x1 = 0, x2 < 0 andy ∈ 〈y4(x), y1(x), y2(x)〉},
andQ is the closure of the set

{(x, y) ∈ V : x1 > 0 andy = y4(x)};
see Fig. 2. The other two pieces areg2P, g1Q.

Note that ifx ∈ S2 (with x1 = 0, x2 < 0) tends toe3, thenyi (x) tends to a limit
which we denote byyi = yi (e3) (i = 1,2,3,4). Of course,y1 = e2 and y3 = −e2.
We also defineyi (−e3) = yi . Write v = (e3, y4) and setvi = gi v. We define one-
dimensional cellsE and F of the subdivision:E = {(e3, y): y ∈ 〈y4, y1, y2〉} and
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Fig. 2. The 2-cellsP andQ in V .

F = {(x, y4(x)): x1 = 0, x2 ≤ 0} with E oriented fromv to v1 andF from v2 to v; see
Fig. 3. (Note thatF is well defined even atx = ±e3.)

One can now check that the boundaries ofP and Q can be written as∂P = E +
g1F∗ + g3E + F and∂Q = F∗ + g2E + g3F∗ + E∗, whereE∗ andF∗ denoteE and
F equipped with opposite orientation. Then∂g2P and∂g1Q can be computed, and the
condition∂∂D = 0 implies that∂D = P + Q + g2P∗ + g1Q∗, where, again,P∗ and
Q∗ areP andQ with opposite orientation.

The mapf : V → T is an equivariantG-map, and its restrictionsf |D to D and f |∂D

to ∂D, respectively, are also equivariant in the sense that, fori = 1,2, f gi (u) = hi f (u)
wheneveru, gi (u) ∈ D or u, gi (u) ∈ ∂D. More interesting (but equally trivial) is the
fact that if f : D→ T is an equivariant map in the same sense, then it can be extended,
and in a unique way, to an equivariantf : V → T . Simple as it may be, the following
observation (see Lemma 1 on page 28 in [M]) is crucial.

Lemma 3.1. The restriction f|∂D: ∂D→ T is of degree zero.

Proof. Note first thatV , which is SO(3), is three-dimensional and orientable [B], so
D ⊂ V (which is also three-dimensional and connected) is also orientable.

By changing the measures a little if necessary we may assumef : D → T is a
differentiable map, andt ∈ T is a regular value off ; that is, its inverse image consists of
finitely many pairwise disjoint one-dimensional manifolds. Each such manifold is either
a closed Jordan curve (which does not contribute to the degree off |∂D) or a Jordan curve

0

e3

y4y2

y1

y4

y4

E F

Fig. 3. The edgesE andF .
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connecting two boundary points. SinceD is orientable, each such Jordan curve adds+1
at one endpoint, and−1 at the other endpoint, to the degree count. Thus the degree is
indeed zero.

Now for Theorem 1.2 it suffices to show

Theorem 3.2. If f : D→ T comes from two nice measures, then the degree of f|∂D is
odd.

We prove this in the last section.

4. The Winding Number

Defineb = ( 1
2,0,

1
2,0) ∈ T andb∗ = (0, 1

2,0,
1
2) ∈ T , and letL denote the line in

aff(43) passing throughb andb∗; see Fig. 4. (This is where the special choice of the
radius ofT is used:b andb∗ are both in43 andT .) Assumeα: S1 → 43 (whereS1

is the unit circle) is a map that avoidsL. Then the winding numberw(α) of α is just
the number of times the imageα(s) winds aroundL ass runs throughS1. This number
is taken with orientation; so we choose the broken polygonal path through the vertices
(in this order)(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (1,0,0,0) of 43 to have
winding number+1.

Let L⊥ be the plane, in the affine hull of43, orthogonal toL and passing through the
centerc ∈ 43. Clearly,w(α) is the same as the ordinary winding number (aroundc) of
the mappingp ◦ α: S1→ L⊥, wherep denotes orthogonal projection toL⊥.

Let B be a homeomorphic copy of the unit disk inR2; so∂B is anS1. Assume that
α: B→ T is a map such that the restrictionα|∂B avoidsL. Supposeα is differentiable
and thatt ∈ T is a regular point (in the sense of Sard’s lemma, see [M] or [L]). Then the
signed number of solutions toα(x) = t is denoted byN(α, t), or by N(α, t, B) if we
want to specify whichB the solutions come from.N(α, t) is just the sum of the signs of
the Jacobian ofα at the solutionsα(x) = t . It is well known and actually easy to check
that, under the given conditions,

N(α,b, B)− N(α,b∗, B) = w(α|∂B) (1)

providedb andb∗ are regular values ofα.

b

c
b
�

1000

0100

0010

0001

L

Fig. 4. The winding number with respect toL.
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We want to use this statement forα = f |P+Q. We may assume thatf |∂(P+Q) avoids
b andb∗, for otherwise we modify the second measure a little (see Remark 4.4 at the
end of this section).

Lemma 4.1. w( f |∂(P+Q)) is odd.

Proof. ConsiderP + Q which is a piece of∂D. Its boundary can be expressed as
∂(P + Q) = g1F∗ + g3F∗ + g3E + g2E. This is just the sum of two cyclesC1 + C2

where

C1 = {(x, y) ∈ V : y = y2(x)) andx1 = 0} = g1F∗ + g3F∗, and

C2 = {(x, y) ∈ V : x = −e3} = g2E + g3E.

Clearly,w( f |∂(P+Q)) = w( f |C1)+ w( f |C2).

Claim 4.2. w( f |C1) = 0.

Proof. To see this, note that, for(x, y) ∈ C1, withψ(x, y) = (x; `1, . . . , `4), the union
of the first and last sectors is the hemisphereH = {x ∈ S2: x1 ≤ 0}. So by the choice of
the coordinate system (at the start of Section 3),µ(σ1) + µ(σ4) = µ(H) = µ0 <

1
2.

Thus all values ofϕ on C1, and consequently all values off on C1, are separated by a
plane fromL. (This proof also shows thatf |C1 avoids the lineL.)

Claim 4.3. w( f |C2) is odd.

Proof. The cycleC2 is anS1, the tangent unit circle toS2 at−e3. Thus the composite
map p ◦ f : C2→ L⊥ is just anS1→ S1 map. This is aZ2 map sinceh1 ◦ f = f ◦ g1

and, as it is very easy to check, the projectionp: T → L⊥ also commutes withh1, the
correspondingZ2-action. Now one form of Borsuk’s theorem (one-dimensional version)
says that everyZ2-mapS1→ S1 has odd degree. This implies the claim.

The two claims prove Lemma 4.1.

Remark. Alternatively, one can show thatw( f |C2) ≡ 1 mod 4, which is even more
than needed for Lemma 4.1. To prove this one observes first thatp ◦ f : S1 → S1 is
a Z4-map whose action isω and then uses a special case of a theorem from [KZ] (see
also [BSS] for a simple proof). The special case says that the degree of anS1 → S1

Zq-map is 1 modq.

Remark 4.4. Here is a sketch of the proof thatf |∂(P+Q) avoidsb andb∗, provided that
µ is chosen suitably. As∂(P+Q) = C1+C2 and f |C1 avoidsL, it is enough to work with
f |C2. So what we have to achieve by modifyingµ is thatϕ◦ψ(−e3, y) = (t1, . . . , t4) /∈ L
for any(−e3, y) ∈ V . Points onL are characterized by

t1 = t3, t2 = t4. (2)
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We assume thatλ is the normalized Lebesgue measure; the general case goes much the
same way. Lety(s) = (coss, sins,0), and let̀ (s) be the great half-circle with endpoints
e3,−e3 and midpointy(s). Write F(s) for theµ-measure of the sector between`(0)
and `(s). F(s) is a strictly increasing function withF(0) = 0, F(2π) = 1. Write
ϕ ◦ ψ(−e3, y(s)) = t (s) = (t1(s), . . . , t4(s)). It is readily seen that, fori = 1,2,3,4,

ti (s) = F
(
s+ i

π

2

)
− F

(
s+ (i − 1)

π

2

)
with the obvious meaning when the argument ofF is larger than 2π . If t (0) ∈ L, then
by adding a small mass toµ neary(π − ε) and subtracting the same little mass near
y(π + ε) we can reacht (0) /∈ L (hereε is small). So we may assume thatt (s) /∈ L in a
small vicinity ofs= 0.

By symmetry, it suffices to work withs ∈ [0, π/2]. We can assume next that there
are only finitely many solutions tot1(s) = t3(s) by approximatingµ with a measure for
which F(s) is a polynomial fors ∈ [0,2π ]. Now adding a small massη neary(ε) and
subtracting the same mass neary(π + ε) produces a new (nice) measureµη. (Hereε is
even smaller than before.) The set of solutions tot1(s) = t3(s) (for s ∈ [0, π/2]) is the
same forµ andµη. Let s0 be a fixed solution tot1(s) = t3(s). Thent2(s0) = t4(s0) can
only hold for a single value ofη. Thus there are only finitely manyη for which (2) can
have a solution for the new measureµη, and so, for all small enoughη, the new measure
µη approximatesµ well, and the correspondingf |∂(P+Q) avoidsb,b∗.

5. Proof of Theorem 3.2

By Hopf’s theorem (see [M] or [L]) the degree off |∂D only depends on its homotopy
class. We have seen that∂D = P+Q+g2P∗ +g1Q∗. Fix now our mapf on∂(P+Q)
so that it avoidsL. Then the degree off |∂D is determined by the homotopy classes of
f |P and f |Q. By choosing these homotopy classes suitably we may assume thatb,b∗

are regular values of the mapf : ∂D→ T .
Set p = N( f,b, P), q = N( f,b, Q) and p∗ = N( f,b∗, P), q∗ = N( f,b∗, Q).

Observe that, foru ∈ P ∪ g2P∗, f (u) = b if and only if f (g2(u)) = b∗ and f (u) = b∗

if and only if f (g2(u)) = b. Similarly, for u ∈ Q ∪ g1Q∗, f (u) = b if and only if
f (g1(u)) = b, and f (u) = b∗ if and only if f (g1(u)) = b∗: checking the first statement,
say, goes viaf (g2(u)) = h2( f (u)) = h2(b) = b∗. One has to see that the sign of the
solutionu0 to f (u) = b is the same as the sign of the solutiong2(u0) to f (u) = b∗, and
similarly for the other cases. We do so in the remark at the end of this section.

These observations show thatp = N( f,b∗, g2P∗), p∗ = N( f,b, g2P∗) andq =
N( f,b, g1Q∗), q∗ = N( f,b∗, g1Q∗).

We count the degree off |∂D in two ways: atb it is p+ q + p∗ + q and atb∗ it is
p∗ + q∗ + p+ q∗. This shows thatq = q∗.

Now formula (1) says that

w( f |∂(P+Q)) = p+ q − p∗ − q∗ = p− p∗,

which is odd by Lemma 4.1. Consequently, degf |∂D = p+q+ p∗ +q = p+ p∗ +2q
is odd, finishing the proof of the theorem. 2
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Remark. It suffices to work out the details for the solutionsu0 to f (u) = b andg2(u0)

to f (u) = b∗. We start with taking the derivative off (g2(u0)) = h2( f (u0)), and then
the determinants:

det f ′(g2(u0))detg′2(u0) = deth′2( f (u0)det f ′(u0).

So it is enough to see that the sign of detg′2(u0) and of deth′2( f (u0)) are equal to
one, or, to put it differently,g2 and h2 keep the orientations of∂D and T , respec-
tively. The mappingg2 is defined onP and ong2P∗, and one can check directly that
it preserves the orientation. Forh2, we linearly embed43 in R3 by placing its vertices
(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1) at (1,1,1), (−1,−1,1), (1,−1,−1),
(−1,1,−1). Under this embeddingh2 is just the reflection in the second axis ofR3,
so it is a linear map whose matrix is diagonal with entries−1,1,−1. Soh2 keeps the
orientation ofT (and ofR3).
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