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Abstract. We show that, given two probability measures in the plane, there exists a 4-fan
that simultaneously equipartitions them. In other words, there is a point and four half-lines
emanating from it such that each of the four sectors have meéém‘eoth measures.

1. Introduction

This is a continuation of our previous work [BM] whose terminology and notations are
used here without much change. A poirit the plane and four half-linegy, ¢,, £3, ¢4,
starting fromx form a 4-fan. The half-lines are in clockwise order aroundrhey
determine four angular sectass, . .., o4 with o; between¢; and¢; ;. Assumex and

w are nice probability measures &%, say, none of them is positive on any line. We
showed in [BM] that there is a 4-fan with(o;) = u (o) = % fori =1, 2, 3. (Then, of
course(os) = p(og) = £.) Our main result here is
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Theorem 1.1. Assume. andu are absolutely continuoysvith respect to the Lebesgue
measurgBorel probability measures dR?. Then there is &-fan simultaneously equipar-
titioning both i.e., A(0i) = (o) = 3 fori = 1,2, 3, 4.

It is more convenient to lift the measures and the 4-fans fR3rto the 2-spher&?.
So letS? be the unit sphere d®2 and letR? be embedded iR® as the horizontal plane
tangent toS? (at the South Pole). Denote by the central projection from the lower
hemisphere to the embeddBd. Clearly, ~? lifts any Borel measure oR? to a Borel
measure on the lower hemispheresdf A 4-fan inR? is lifted to a 4-fan inS? in a natural
way: a spherical 4-fan is a poirte S? and four great half-circleg,, . . ., £4 starting at
X (and ending at-x) that are ordered clockwise when we look at them from the origin
towardsx. The angular sector betweénand?; .1 is 0. It is clear that a spherical 4-fan
is projected byr to a 4-fan inR?. We will prove Theorem 1.1 in a slightly stronger form:

Theorem 1.2. Assume. andu are absolutely continuoysvith respect to the Lebesgue
measurg Borel probability measures on’SThen there is a sphericd-fan simultane-
ously equipartitioning both.e., A(oj) = u(oj) = %1 fori =1,2,3,4.

In fact, this theorem holds under the weaker assumption that ngittoey. is positive
on a great circle. This follows from a simple compactness argument.

We call a measure nice if it is a Borel measure, it is a probability measure, it is
absolutely continuous with respect to the Lebesgue measure, and it is positive on every
nonvoid open set. We prove Theorem 1.2 assuming that both measures are nice. This
will suffice for the general case by the same compactness argument. By the same token
it is enough to prove the theorem for a dense set of nice measures, and we assume, in
case of need, that our measures satisfy certain extra properties.

2. Equivariant Topology

Write V = {(X, y) € S x $:x L y}; V is the Stiefel manifold of orthogonal 2-frames
in R3, which is homeomorphic to S@) (see [B]). Of this, we only need that is
three-dimensional and orientable. To evéxyy) € V we assign the 4-fag (x, y) =
(X; 41, ..., £4) as follows:y is the midpoint of the great half-circly, andé,, ¢3, £4 are
defined by the condition(s;) = ;11 for all i. Further, lety' denote the midpoint of the
great half-circlet; (i = 1,2, 3,4), soy = y*. Write X4 or X for the set of all 4-fans
equipartitioning the measupe Theny is a mapV — Xg.

To evaluate the quality of a 4-faix; ¢4, ..., £4) € X we define a mag: X — A3
(whereA3 is the three-dimensional standard simpleX:= {x € R*: x; > 0, Y, x; =
1) ase(X; Ly, ...,L4) = (u(o), ..., u(os)). All we want to show is that the map
poy:V — A3 takes the value = (3. 1. 3, %), the center of the simplex. Assume
it does not. Writer for the central projectiom\®\{c} — T, whereT is the sphere of
radius% centered at in the affine hull ofA3. ThusT, the target space, is topologically
an$?. (The special choice of the radiéswill result in simpler notation later.)

We use equivariant topology. The cyclic groupsand Z, act onV, X, A% (and, of
course, oril ¢ affA®). The following describes the actions of the generatoZ pbn
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V, X, andA3, denoted by, w*, andwy, respectively, and the actions of the generator
of Z, on these spaces, denotedihy*, andvg. For (X, y) € V with y = y*, we have

wX, y) = (X, y'), VX, Y) = (=X, Y),
" (X; Ly, ..., Ls) = (X, €2, €3, €4, L1), V*(X; €1, €2, €3, £4) = (X; L4, £3, £2, £1),
wo(ly, o, 13, 14) = (2, t3, 14, t1), vo(ty, T2, 13, 1g) = (14, 13, T2, t1).

It is very easy to see that o w = w* o ¥, ¢ 0o @* = wg 0 ¢, T 0 wy = wp o 7, and the
same withv, v*, vg. This shows that the composite mép= 7 opo:V — T isa
Z4-map and &,-map as wellwgo f = f owandvgo f = f ov.

Let G = Z, x Z, (direct product). Thi€s acts on bothV and T with generators
corresponding ta? andv and towg andvo. Thusf:V — T is aG-map. We will show
that such a map does not exisffif(or ratherp) comes from two measures.

For later reference we record the action§&obn VvV andT. We rename them ag, g
corresponding ta)?, v, andhy, h; to wg, vo. Thengs = 9102 andhz = hih, correspond
to the third element ofs, and withy = y*,

d(X, Y) = (X, Y3, hy(ty, to, ta, tg) = (i3, ta, t1, 1)
92(X7 y) = (_Xv y)a hz(tlv t29 t31 t4) = (t47 t39 t21 tl)

Remark. There is no obstruction to the existence @anapf:V — T.Anexample
of such a map is constructed in [BM]. In order to prove Theorem 1.2 we will need to use
the fact thatf comes from two measures.

3. An Equivariant Subdivision of V

We are going to construct an equivariant subdivisioW oft is going to consist of four
three-dimensional domair3, g; D, g,D, gsD and their boundaries. The boundary of
D is made up of four two-dimensional cels g,P andQ, 0 Q.

The construction starts with choosing a great circle that halves the measie
fix the coordinate system so that this great circle coincides fite S*:x; = 0}.
Thusi(H) = % whereH is the hemispher¢x € S* x; < 0}. We may assume that

n(H) = uo < 3, as otherwise we change the orientation of the first axis piHf) = 2,
we change the measugea little and use a limiting argument in the end.

For x e S?\{=*es} let y'(x) be the (unique) unit vector orthogonal xowith the
maximumxs-coordinate among the unit vectoysL x. Further, fori = 2, 3,4, y' (x)
is defined byw' ~1(x, y1(x)) = (x, y'(x)). It is easy to check thag'(x) = y*(—x),
y3(x) = y3(—=X), y?(X) = y*(—x), andy*(x) = y?(—x). Also, forx € S* with x; = 0,
we havey3(x) = —y*(x).

We need one more piece of notation before we can construct the equivariant subdivi-
sionofV. Assumevy, vy, v3 € S are distinct and orthogonalioe S. Then(vs, vo, v3)
denotes the closed arc of the great circle orthogonal liong betweernv; andvz and
containingv,. DefineD as the closure of the set

{(x,y) € Vixy > 0andy e (y*(x), y (), y2(x))}.
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Fig. 1. The domainD.

In fact D is just the union of
{(X,y) € Vixa > 0, x # +ezandy € (y*(x), y'(X), Y2())}

and the two circle$§(te3, y) € V}. This definition is illustrated in Fig. 1 (which is made
for A being the uniform measure @&f). Further, clearly, the sets D, gD, andgsD,
respectively are the closures of the sets

{(x,y) € Vixy > 0 andy € (y4(x), Y3(x), y*(x))},
{(x,y) € Vixy < 0andy € (y*(—x), Y- (—X), y*(—x))},
{(x,y) € Vixy < 0andy € (y*(—x), y3(—=x), y*(—=x))}.

ThusD, g; D, g,D, gsD have pairwise disjoint interiors and their union covers

Remark. We mention without proof (since we will not use it) that the following holds.
Assumei = Ao, the uniform probability measure d&f. Then clearlyD = {(x,y) €
V:x; >0, y3 > 0}, and one can show directly thBtis homeomorphic td?3, the unit
ball of R3, with e; and—e; identified ande, and—e; identified. This also holds for all
nice measures on S as well because the homotopy = (1 — t)Ag + tA induces a
homotopy betweel (1) andD(1).

Itis easy to see thatD consists of four pieces; the first two dPeand Q whereP is
the closure of the set

{(x,y) € Vixy =0, X, < 0 andy € (y*(x). y*(X). y*(X))}.
andQ is the closure of the set
{(x,y) € Vixy > 0 andy = y*(x)};

see Fig. 2. The other two pieces ad, 9: Q.

Note that ifx € S (with x; = 0, X, < 0) tends toes, theny' (x) tends to a limit
which we denote by' = y'(e3) (i = 1,2, 3,4). Of coursey! = & andy® = —ey.
We also defing/ (—e3) = y'. Write v = (e3, y*) and setyj = gv. We define one-
dimensional cellsE and F of the subdivision:E = {(es, y):y € (y* y!, y?)} and
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Fig. 2. The 2-cellsP andQ in V.

F = {(x, Y*(X)): X1 = 0, x» < 0} with E oriented fromw to v andF from v, to v; see
Fig. 3. (Note thatf is well defined even at = +e;.)

One can now check that the boundariesfoénd Q can be written agP = E +
o F*+ gE+ FanddQ = F* + g:E + g3F* + E*, whereE* andF* denoteE and
F equipped with opposite orientation. Theg, P anddg; Q can be computed, and the
conditionddD = O implies thatdD = P + Q + g, P* + 9, Q*, where, againP* and
Q* are P and Q with opposite orientation.

The mapf:V — T is an equivarianG-map, and its restriction§|p to D and f |;p
to aD, respectively, are also equivariant in the sense that,$od, 2, fg; (u) = h; f (u)
whenevet, g (u) € D oru, gi(u) € dD. More interesting (but equally trivial) is the
factthatif f: D — T is an equivariant map in the same sense, then it can be extended,
and in a unique way, to an equivariahtV — T. Simple as it may be, the following
observation (see Lemma 1 on page 28 in [M]) is crucial.

Lemma 3.1. The restriction f;5: 9D — T is of degree zero

Proof. Note first thatV, which is S@3), is three-dimensional and orientable [B], so
D c V (which is also three-dimensional and connected) is also orientable.

By changing the measures a little if necessary we may assurbe — T is a
differentiable map, antle T is aregular value of ; that s, its inverse image consists of
finitely many pairwise disjoint one-dimensional manifolds. Each such manifold is either
a closed Jordan curve (which does not contribute to the degriglggfor a Jordan curve

AaS.5 2o\ 4

Fig. 3. The edges£ andF.
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connecting two boundary points. Sinbes orientable, each such Jordan curve adds
at one endpoint, and 1 at the other endpoint, to the degree count. Thus the degree is
indeed zero. O

Now for Theorem 1.2 it suffices to show

Theorem 3.2. If f: D — T comes from two nice measurdeen the degree of |§p is
odd

We prove this in the last section.

4. The Winding Number

Defineb = (3,0,3,0) € T andb* = (0, 1,0, 3) € T, and letL denote the line in
aff(A%) passing througlh andb*; see Fig. 4. (This is where the special choice of the
radius of T is used:b andb* are both inA% andT.) Assumeu: St — A3 (whereSt
is the unit circle) is a map that avoids Then the winding numbew («) of « is just
the number of times the images) winds around_ ass runs throughSt. This number
is taken with orientation; so we choose the broken polygonal path through the vertices
(in this order)(1, 0, 0, 0), (0, 1,0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 0, 0, 0) of A% to have
winding number+-1.

Let L* be the plane, in the affine hull @f3, orthogonal td. and passing through the
centerc e AS. Clearly,w(e) is the same as the ordinary winding number (arocynaf
the mappingp o a: St — L+, wherep denotes orthogonal projection kg-.

Let B be a homeomorphic copy of the unit diskR¥; sodB is anS*. Assume that
a: B — T is a map such that the restrictiamyg avoidsL. Supposex is differentiable
and that € T is a regular point (in the sense of Sard’s lemma, see [M] or [L]). Then the
signed number of solutions t(x) = t is denoted byN(«, t), or by N(«, t, B) if we
want to specify whictB the solutions come fromN (e, t) is just the sum of the signs of
the Jacobian of at the solutions(x) = t. It is well known and actually easy to check
that, under the given conditions,

N(a, b, B) — N(a, b*, B) = w(a|ss) 1)

providedb andb* are regular values af.

0001

0010

1000
0100

Fig. 4. The winding number with respect to
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We want to use this statement o= f|p, q. We may assume thdt|;p,q) avoids
b andb*, for otherwise we modify the second measure a little (see Remark 4.4 at the
end of this section).

Lemma4.l. w(f|yp+q)) is odd

Proof. ConsiderP + Q which is a piece obD. Its boundary can be expressed as
(P + Q) = g1F* + g3F* + g3E + g2E. This is just the sum of two cycles; + C,
where

Ci={xX,y)eV:y= yz(x)) andx; = 0} = g;F* + gsF*, and
C> = {(X,y) e ViXx = —&} = E + g3E.

Clearly,w(flsp+q) = w(flc,) +w(flc,). O
Claim4.2. w(f|c,) =0.

Proof. To see this, note that, fox, y) € C1, with (X, y) = (X; €1, ..., £4), the union
of the first and last sectors is the hemisphidre= {x € S%:x; < 0}. So by the choice of
the coordinate system (at the start of Section.3¥1) + w(os) = u(H) = po < %
Thus all values of on C4, and consequently all values 6éfon C4, are separated by a
plane fromL. (This proof also shows thdt|c, avoids the linel.) O

Claim 4.3. w(f|c,) is odd

Proof. The cycleC; is anSt, the tangent unit circle t§ at —es. Thus the composite
mappo f:C, — L+t isjustanS' — S' map. Thisis aZ, map sinceh;o f = f o gy
and, as it is very easy to check, the projectipm — L' also commutes with, the
corresponding,-action. Now one form of Borsuk’s theorem (one-dimensional version)
says that every,-mapS' — S' has odd degree. This implies the claim. O

The two claims prove Lemma 4.1.

Remark. Alternatively, one can show thai(f|c,) = 1 mod 4, which is even more
than needed for Lemma 4.1. To prove this one observes firsipthat: St — Stis

a Z4-map whose action i® and then uses a special case of a theorem from [KZ] (see
also [BSS] for a simple proof). The special case says that the degreeS3f an St
Zq-map is 1 mody.

Remark 4.4. Here is a sketch of the proof thétf,p4q) avoidsb andb*, provided that
wis chosen suitably. A3(P+ Q) = C;+Cyandf |, avoidsL, itis enough to work with
f|c,. Sowhat we have to achieve by modifyipgs thatpoy (—€s, y) = (t1, ..., t3) ¢ L
for any(—es, y) € V. Points onlL are characterized by

ty =ts, th =14 2
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We assume that is the normalized Lebesgue measure; the general case goes much the
same way. Ley(s) = (coss, sins, 0), and let/(s) be the great half-circle with endpoints

€3, —e3 and midpointy(s). Write F(s) for the u-measure of the sector betweét®)

and £(s). F(s) is a strictly increasing function witl(0) = 0, F(2r) = 1. Write

@ oY (—es, Y(S) =t(s) = (11(S), ..., 14(9)). Itis readily seen that, far= 1, 2, 3, 4,

o= (o) (o0

with the obvious meaning when the argumentois larger than 2. If t(0) € L, then

by adding a small mass @ neary(r — ¢) and subtracting the same little mass near
y(r + ¢) we can reach(0) ¢ L (heree is small). So we may assume thé) ¢ L ina
small vicinity ofs = 0.

By symmetry, it suffices to work witls € [0, 7/2]. We can assume next that there
are only finitely many solutions tig(s) = tz(s) by approximating: with a measure for
which F(s) is a polynomial fors € [0, 2rr]. Now adding a small masgneary(e) and
subtracting the same mass ngar + ¢) produces a new (nice) measurg. (Heree is
even smaller than before.) The set of solutiong {e) = t3(s) (for s € [0, 7/2)) is the
same forw andu,. Let sy be a fixed solution tdy (s) = t3(s). Thenta(sp) = ta(sp) can
only hold for a single value af. Thus there are only finitely manyfor which (2) can
have a solution for the new measurg, and so, for all small enougf the new measure
w, approximateg: well, and the corresponding|sp.+q) avoidsb, b*.

5. Proof of Theorem 3.2

By Hopf's theorem (see [M] or [L]) the degree éf;p only depends on its homotopy
class. We have seen ttdD = P + Q4 g2 P* + g1 Q*. Fix now our mapf ond(P + Q)
so that it avoidd_. Then the degree of |;p is determined by the homotopy classes of
f|p and f|g. By choosing these homotopy classes suitably we may assumie, thiat
are regular values of the mapoD — T.

Setp = N(f,b,P), g = N(f,b, Q) andp* = N(f, b* P), g* = N(f, b*, Q).
Observe that, fou € P U g, P*, f(u) = bifand only if f (g2(u)) = b* and f (u) = b*
if and only if f(g2(u)) = b. Similarly, foru € Q U g;Q*, f(u) = b if and only if
f(g1(u)) = b,andf (u) = b*ifand only if f (g;(u)) = b*: checking the first statement,
say, goes viaf (g2(u)) = ha(f(u)) = ha(b) = b*. One has to see that the sign of the
solutionug to f (u) = bis the same as the sign of the solutiiug) to f (u) = b*, and
similarly for the other cases. We do so in the remark at the end of this section.

These observations show that= N(f, b*, g,P*), p* = N(f, b, g2P*) andq =
N(f,b,g:Q"), q" = N(f, b*, . Q").

We count the degree df|;p in two ways: atb it is p + q + p* + g and atb* it is
p* +g* + p + q*. This shows that| = g*.

Now formula (1) says that

w(flaprQ) =pP+q—p* —q°=p—p",

which is odd by Lemma 4.1. Consequently, ddgo = p+q+ p*+d= p+ p*+2q
is odd, finishing the proof of the theorem. O
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Remark. It suffices to work out the details for the solutiamsto f (u) = b andg,(up)
to f(u) = b*. We start with taking the derivative df(g,(ug)) = ha(f (Ug)), and then
the determinants:

det f'(gz2(ug)) detgs(ug) = deth,(f (up) detf’(up).

So it is enough to see that the sign of dgilg) and of deh(f(ug)) are equal to
one, or, to put it differentlyg, andh, keep the orientations ofD and T, respec-
tively. The mappingg; is defined onP and ong,P*, and one can check directly that
it preserves the orientation. Fbg, we linearly embed\® in R® by placing its vertices
(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1) at (1,1,1), (-1, —-1,1), (1, -1, 1),
(=1, 1, —1). Under this embeddind, is just the reflection in the second axis R¥,
so it is a linear map whose matrix is diagonal with entries 1, —1. Soh; keeps the
orientation ofT (and ofR?).
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