
Advances in Mathematics 161, 209�228 (2001)
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There exist n-dimensional 0-1 polytopes with as many as ( cn
log n)n�4 facets. This is

our main result. It answers a question of Komei Fukuda and Gu� nter M. Ziegler.
� 2001 Academic Press

1. INTRODUCTION

A 0-1 polytope is, by definition, the convex hull of some 0-1 vectors from
n-space. Properties of 0-1 polytopes, especially structured ones, play an
important role in combinatorial optimization where the target is, quite
often, a complete or concise description of the facets of the polytope. This
task turned out to be difficult for several classes of 0-1 polytopes, most
notably for the traveling salesman polytope [GP, ABCC] and for the cut
polytope [DL]. We don't know for instance the answer to the innocent
question: ``How many facets has the traveling salesman polytope? Or the
cut polytope?'' It was Fukuda and Ziegler who, in several lectures and
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papers [F, KRSZ, Z] have drawn attention to this attractive and impor-
tant problem, and asked for good estimates for the maximum number of
facets an n-dimensional 0-1 polytope can have. Write g(n) for this maxi-
mum. It is almost elementary to see that 2n ! is an upper bound for g(n).
Stronger is the result of Fleiner et al. [FKR],

g(n)�30(n&2)!

for large enough n. Using the blowing up technique [KRSZ] and
Christof 's construction of a 13-dimensional 0-1 polytope with more than
3.613 facets, it can be shown that, again for large enough n,

g(n)>3.6n.

Earlier, Fukuda gave a similar example with 3.26n facets (see [KRSZ]),
based on the computational experience [F] concerning the behaviour of
the number of facets in random 0-1 polytopes, as the number of vertices
changes. The main result of this paper is that g(n) grows superexponen-
tially:

Theorem 1.1. There is a positive constant c such that

g(n)>\ cn
log n+

n�4

.

The construction giving this lower bound is random. It is perhaps
instructive to see here how the number of facets of random polytopes
behave. The best analogy comes from the random polytope PN=Pn

N whose
vertices v1 , ..., vN are chosen randomly, independently and uniformly from
the sphere Sn&1. The expected number of facets, E[ fn&1(PN)], of PN is
asymptotically constN when n is fixed and N � �. But here we are inter-
ested in the case when n � � and N<2n. There is a simple formula in
Buchta et al. [BMT] which can be used to show that in the range
2n<N<1.5n, say,

\c1 log
N
n+

n�2

<E[ fn&1(PN)]<\c2 log
N
n +

n�2

with suitable positive constants c1 and c2 .
Note that a 0-1 polytope has all of its vertices on a sphere. It is tempting

to believe that a random 0-1 polytope, KN , on N vertices behaves similarly.
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This may be even true for arbitrary 0-1 polytopes as well. In particular, it
seems likely that

g(n)<(c3n)n�2.

Here and throughout the paper c, c1 , ... and b, b1 , ... denote positive con-
stants that are independent of n and N. For further information on 0-1
polytopes the reader is advised to consult Ziegler's thorough and recent
survey [Z].

2. THE MODEL, THE RESULT, AND THE IDEA

Write C=Cn=[&1, 1]n for the n-dimensional \1 cube. (This is more
convenient to work with.) Let Z be a random variable distributed
uniformly over [&1, 1], and let Z1 , ..., Zn be independent random
variables each distributed like Z. Set Z

�
=(Z1 , ..., Zn). Thus Z

�
is uniformly

distributed over the 2n vertices of C. Take N independent copies of Z
�
,

namely Z
�

1 , ..., Z
�

N and define

KN=conv[Z
�

1 , ..., Z
�

N],

the convex hull of the vectors Z
�

1 , ..., Z
�

N . This is going to be our random
0-1, or rather \1, polytope on N vertices. Note, however, that some
vertices may be repeated. (KN is one of the usual models of random \1
polytopes.)

We can state our main result now. Assume

exp[c4(log n)2]<N<exp {c5

n
log n= . (V)

Here one can take any constants c4�1 and c5�1.

Theorem 2.1. Under condition (V)

E[ fn&1(KN)]>(c6 log N)n�4.

If the expected number of facets is large, then, of course, there has to be
an example where the number of facets is large. We will, in fact, prove this
stronger statement in a form that implies Theorem 2.1.

Theorem 2.2. Under condition (V), there exists a polytope KN with

fn&1(KN)>(c7 log N)n�4.

211ON 0-1 POLYTOPES WITH MANY FACETS



The proof of this result is based on several lemmas, some of them quite
involved. So we first present the basic idea, which is simple, rather infor-
mally. Assume x # C and define

p(x, N)=Prob[x # KN].

General principles would tell that, for most x # C, p(x, N) is either close to
one or close to zero. To be more specific, set

P(t)=[x # C : p(x, N)�t].

Our approach is based on the fact that for all small =>0 and large n
P(1&=)/P(=), of course, but the drop from 1&= to = is very abrupt: P(=)
is in a small neighbourhood of P(1&=). This shows that P(1&=)/KN

with high probability. But only a tiny fraction of KN lies outside P(=): most
of the boundary of P(=) is outside KN . Thus most of the boundary of P(=)
is cut off by facets of KN . These facets lie outside P(1&=). Comparing the
surface area of P(=) with the amount a facet can cut off from it gives the
lower bound.

But how to find the sets P(1&=) and P(=)? This is the point where we
extensively use a beautiful result of Dyer et al. [DFM]. Their target was
to determine the threshold N=N(n) such that KN contains most of the
volume of C. As they prove, this happens at N=(2�- e)n. Their method
describes where p(x, N) drops from one to zero as n � � and N=e:n. The
analysis carries over for other values of N. In our case higher precision is
required as we need a good estimate on how fast p(x, N) drops from one
to zero. We were able to control this only where the curvature of the
boundary of P(=) behaves nicely. This is perhaps the spot where the expo-
nent n�2 for PN (the random spherical polytope) is lost and we only get n�4
for KN .

The paper is organized the following way. The next section is a slight
digression where we give another upper bound on the number of facets of
a 0-1 polytope. Then we state four lemmas related to p(x, N). Section 5
gives some geometric background, together with the proof of Theorems 2.1
and 2.2. The proofs of the probabilistic lemmas are in Sections 7 and 8.
Geometric lemmas are proved in Section 9. Some auxiliary material is
given in Section 6; their proofs are postponed to the last part.

3. ANOTHER UPPER BOUND

In the range given by condition (V) we can improve the bound of Fleiner
et al. [FKR]. In fact, the bound below is better as long as N is less than
exponential in n.
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Theorem 3.1. Every n-dimensional 0-1 polytope with N vertices has at
most

\c8 n log
N
n +

n�2

facets.

Proof. We are going to use the following volume estimate from [Ba� F,
CP]. Given points x1 , ..., xN from Bn, the euclidean unit ball of Rn,

vol conv[x1 , ..., xN]
vol Bn �\c0

n
log

N
n +

n�2

,

where c0 is a universal constant.
Now let z1 , ..., zN be some vertices of the cube. Define the polytope P as

P=conv[z1 , ..., zN]. Let ?i stand for the projection onto the subspace
xi=0. Note that all the vertices of ?i (P) lie in an (n&1)-dimensional ball
of radius - n&1 (actually, on its boundary). The above estimate gives then

voln&1 ? i (P)

voln&1 - n&1 Bn&1
�\ c0

n&1
log

N
n&1+

(n&1)�2

.

Let L1 , ..., Lm be the facets of P. Note that voln&1 ? i (Lj) cannot be zero
for all i, and it is at least 1�(n&1)! if it is nonzero. So summing the
equalities �m

1 voln&1 ? i (Lj)=2 voln&1 ? i (P) for all i we get

m
(n&1)!

� :
m

j=1

:
n

i=1

voln&1 ?i (Lj)= :
n

i=1

:
m

j=1

voln&1 ?i (Lj)

=2 :
n

1

voln&1 ? i (P)

�2n voln&1 - n&1 Bn&1 \ c0

(n&1)
log

N
n&1+

(n&1)�2

.

The estimate in the theorem follows now readily. K

4. DYER, FU� REDI, AND MCDIARMID

From now on we will denote vectors (or points) by underlining in order
to distinguish them from scalars. (We actually used this notation for the
random vertex Z

�
.) So given a vector x

�
# C define

q(x
�
)=inf[Prob[Z

�
# H]: x

�
# H, H a halfspace]
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and for ;>0 define

Q;=[x
�

# C : q(x
�
)�exp[&;n]].

Note that Q; is a convex polytope. In fact, it is the k-core of the vertices
of C (with k=2ne&;n); see [BP, E]. We introduce the function

f (x)= 1
2 (1+x) log(1+x)+ 1

2 (1&x) log(1&x),

defined for x # (&1, 1); at x=\1 the limit exists and equals log 2. For
x
�
=(x1 , ..., xn) we set

F(x
�
)=

1
n

:
n

1

f (xi).

Again, for positive ; we define

F ;=[x
�

# C : F(x
�
)�;].

f and consequently F is a nicely behaving, strictly convex function whose
connection to KN will become clear soon. To explain how q and F are
related we are going to show, following [DFM].

Lemma 4.1. For x
�

# (&1, 1)n, we have q(x
�
)�exp[&nF(x

�
)].

Proof (from [DFM]). Check, first, that K(t), the so-called cumulant
generating function equals

K(t)=log E[exp[tZ]]=log cosh t.

Then K$(t)=tanh t and for each x # (&1, 1) there is a unique t with
x=K$(t)=tanh t, and

t=h(x)=
1
2

log
1+x
1&x

.

Note, further, that

f (x)=&K(h(x))+xh(x) and h(x)= f $(x).

Assume now that F(x
�
)=; (;>0). Then x

�
is on the boundary of F ;.

In order to estimate q(x
�
) we need to find a halfspace H of the form

[z
�

: t
�
(z

�
&x

�
)�0] with Prob[Z

�
# H] as small as possible. Consider the

halfspace H(x
�
) (with 0

�
� H(x

�
)) whose bounding hyperplane is tangent to

F ; at x
�
. So

H(x
�
)=[z

�
: t

�
(z

�
&x

�
)�0]
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with tj= f $(xj) j=1, ..., n. Markov's inequality says Prob[X�0]�E[eX].
Using this

q(x
�
)�Prob[Z

�
# H(x

�
)]=Prob _ :

n

j=1

t j (Zj&xj)�0&
�E _exp { :

n

j=1

tj (Zj&x j)=&= `
n

j=1

E[exp[t j (Zj&x j)]]

= `
n

j=1

exp[K(t j)&xj t j]=exp {& :
n

j=1

(x jt j&K(tj))=
=exp[&nF(x

�
)]. K

It is surprising that this trivial estimate is sharp. Dyer, Fu� redi, and
McDiarmid show, for certain values of x

�
, that

q(x
�
)�exp[&n(F(x

�
)+2)]

with 2 ``small.'' We will make this statement quantitative in Lemma 4.3.
We have to set a few parameters next. Let : be defined as

:=
log N

n
or N=e:n.

Then condition (V) reads as

c4

(log n)2

n
<:<c5

1
log n

.

We will need several small =i that are all of the form (with constant bi>0)

=i=bi �:
n

=bi
- log N

n
.

The main discovery of Dyer, Fu� redi, and McDiarmid is that Q: and F :

are close to each other and both of them approximate KN quite well as
N=e;n (; a constant) and n � �. We will use several results from
[DFM]. The next one is essentially part (b) of Lemma 2.1 of [DFM].

Lemma 4.2. For large enough n

Prob[Q:&=1/KN]>0.99.
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Define C*= 1
10 C; this is a shrunk copy of C. Dyer, Fu� redi, and McDiarmid

prove (the proof is hard) that F ;�Q: for every :>; if n is large. We
make this statement quantitative within C*.

Lemma 4.3. For large enough n

F :&=2 & C*�Q:&=1.

The next result is simple and is related to part (a) of Lemma 2.1 of
[DFM]

Lemma 4.4. For large enough n, at least half of the surface area of F :+=3

lying in C* is missed by KN with probability at least 0.99.

One of our targets will be achieved once the last three lemmas have been
proved. Namely, the part of KN lying in C* is weakly sandwiched between
F :&=2 and F :+=3 with high probability. Here ``weakly sandwiched'' means
that

F :&=3 & C*�KN

and KN misses half of C* & �F :+=3.

5. GEOMETRIC LEMMAS AND PROOF OF THEOREM 2.2

We will need some geometric properties of

C* & �F ;,

where ;=:\=i .

Lemma 5.1. voln&1(C* & �F ;)� 1
2 (0.99 - 2n;)n voln&1 S n&1.

Lemma 5.2. Let H be a closed halfspace which is disjoint from C* &

F :&=2. Then H contains at most

(3n(=2+=3)) (n&1)�2 voln&1 Sn&1

of the surface area of C* & �F :+=3.

Using Lemmas 4.2, 4.4, 5.1, 5.2 we can now given the proof of
Theorem 2.2.
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Proof. As we have seen, KN is weakly sandwiched between F :&=2 and
F :+=3 with probability at least 0.98. Let KN be such a \1 polytope. Each
facet of KN cuts off at most

(3n(=2+=3)) (n&1)�2 voln&1 Sn&1

of the surface area of C* & �F :+=3. In view of weak sandwiching, at least
half of the surface area is cut off. Thus there are at least

0.5(0.99 - 2n(:+=3))n

(3n(=2+=3)) (n&1)�2 �(c7 log N)n�4

facets. K

Of course this proves Theorem 2.1 as well: The random \1 polytope KN

is weakly sandwiched with high probability so

E[ fn&1(KN)]�0.98(c7 log N)n�4.

6. AUXILIARY LEMMAS

We fix the one-to-one correspondence between x # (&1, 1) and t # R via

t= f $(x)=h(x)=
1
2

log
1+x
1&x

and x=K$(t)=tanh t

throughout the paper. This induces a one-to-one correspondence between
x
�

# int C and t
�
# Rn with

t
�
=n grad F(x

�
).

Lemma 6.1. The function

g(t)=
f (tanh t)

t2 =&
1
t2 log cosh t+

tanh t
t

is strictly decreasing on [0, �). Its limit at t=0 is 1�2.

The value of g(t) is 0.497... when tanh t=0.1 implying

1
2.02

t2� f (tanh t)�
1
2

t2, for t # [&0.1, 0.1].
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The last inequality shows that, when x
�
=(x1 , ..., xn) # int C*, and t

�
=

(t1 , ..., tn) with xj=tanh t j ,

1
2.02n

|t
�
|2�F(x

�
)�

1
2n

|t
�
| 2.

Let |
�

# Sn&1 be a unit vector and define x
�
(|

�
, ;) as the unique point (if

exists) on the boundary of F ; where

t
�
(|

�
, ;)=n grad F(x

�
(|

�
, ;))=�(|

�
, ;) |

�
for some positive �(|

�
, ;). Define supp |

�
=[i # [1, ..., n]: |i {0]. We have

Lemma 6.2. x
�
(|

�
, ;) is well-defined when

0<;<
|supp |

�
|

n
log 2

and �(|
�
, ;) is strictly increasing in ;.

Define

0={|
�

# S n&1 : � n
3 log n

|
�

# C= .

It is simple consequence of Dvoretzky's theorem [D] that for large enough n,

Prob[|
�

# 0 | |
�

# Sn&1]>0.99.

We will use this in the proof of

Lemma 6.3. Assume |
�

# 0, and ;< 1
606 log n . Then x

�
(|

�
, ;) # C*.

7. PROOF OF LEMMAS 4.2 AND 4.4

Proof of Lemma 4.2. This is a copy of the proof of Lemma 2.1(b) from
[DFM] with the parameters adjusted properly. Suppose KN is full-dimen-
sional and there exists a point x

�
# Q;"KN (where ;=:&=1). Then there is

a facet of KN , spanned by Z
�

i1 , ..., Z
�

in , such that the corresponding halfspace
contains KN but excludes x

�
. Let J=[ j1 , ..., jn] and define the event EJ :

The points Z
�

j1
, ..., Z

�
jn span a hyperplane and for one of the two corre-

sponding halfspaces H both Prob[Z
�

� H]�e&;n and the event [Z
�

j : j � J]
/H occurs.
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It is clear that in our case the event EI with I=[i1 , ..., in] occurs. Let E
denote the event that KN is not full dimensional. Then

[Q;�3 KN]/E _ .
all J

EJ .

Thus, with notation D=[1, ..., n],

Prob[Q;�3 KN]�Prob[E]+ :
all J

Prob[EJ]

=Prob[E]+\N
n + Prob[ED].

For any fixed set S of dimension less than n, Prob[Z
�

# S]� 1
2 , so

Prob[E]�( N
n ) 2&(N&n)<0.001 if n is large enough.

To bound Prob[ED] suppose Z
�

1 , ..., Z
�

n are affinely independent. Let H1

and H2 be the two halfspaces they determine. If Prob[Z
�

� H1]�e&;n, then

Prob[Z
�

j # H1 : j=n+1, ..., N]�(1&e&;n)N&n

and similarly for H2 . Hence

Prob[ED | Z1 , ..., Zn aff. indep.]�2(1&e&;n)N&n

<2 exp[&(N&n) e&;n].

By removing the conditioning we get the same bound on Prob[ED]. Hence

Prob[Q;�3 KN]�Prob[E]+\N
n + Prob[ED]

<0.001+2 exp[n log N&(N&n) e&;n]

<0.001+2 exp[n(e&;n+log N)&Ne&;n].

Here ;=:&=1 , N=e:n, =1=b1(- log N�n), and consequently Ne&;n=
e=1n=exp[b1 - log N]. By condition (V) this is much larger than the other
term n(e&;n+log N) in the exponent if b1 is chosen large enough. For
instance, with b1�3�- c4 and large enough n

Prob[Q; �3 KN]<0.001+2 exp[&n2]<0.01. K
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Proof of Lemma 4.4. Let x
�

be any point of the boundary of F ; (where
;=:+=3). Then, using 4.1

Prob[x
�

# KN]�Nq(x
�
)�N exp[&nF(x

�
)]

�exp[:n&;n]=exp[&=3n]<0.001

if n is large enough. Then the expectation of the surface area of C* & �F ;

contained in KN is at most

|
C* & �F;

Prob[x
�

# KN] dx
�
�0.001 voln&1(C* & �F ;).

So the probability that half of C* & �F ; is missed by KN is at least 0.998.
K

8. THE PROOF OF LEMMA 4.3

The target is to show that the inequality q(x
�
)�exp[&nF(x

�
)] in

Lemma 4.1 is rather sharp. First we need a quantitative version of
Lemma 4.4 of [DFM]. We assume ;=:\=.

Lemma 8.1. For every positive integer n the following holds. If 0�
xi�0.1, ti=h(xi) (i=1, ..., n) and nF(x

�
)�10, then

Prob _ :
n

i=1

ti (Zi&xi)�0&�exp[&nF(x
�
)&3 - nF(x

�
)].

Proof. (It goes via exponential centering and a Berry�Esse� en type
theorem, just like in [DFM].) Let X1 , ..., Xn be independent discrete
random variables and set X=� Xi . Define new random variables Wi with
distribution

Prob[Wi= y]=e y Prob[X i= y]
E[eXi]

.

Set X=� Wi and observe

Prob[W= y]= :
yi : � yi= y

`
n

i=1

e yi
Prob[Xi= yi]

E[eXi]

=\`
n

1

E[eXi]+
&1

e y Prob[X= y].
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Apply this with Xi=ti Zi where, as usual, Z i is uniform over [&1, 1]

Prob _:
n

1

t iZ i=w&=exp {:
n

1

K(ti)= e&w Prob[W=w].

It is easy to check that E[Wi]=ti tanh ti=tix i . Let Y=W&E[W]=
W&� ti xi . With this notation

Prob _:
n

1

ti (Zi&x i)�0&=exp {:
n

1

K(ti)= :
w�� tj xj

e&w Prob[W=w]

=exp {:
n

1

(K(ti)&t ix i)= :
y�0

e&y Prob[Y= y].

Here � (K(ti)&ti xi)=&� f (xi) so we have to show that �y�0 e&y

Prob[Y= y] is not too small. Setting Yj=Wj&E[Wj] we have Y=� Yj

and E[Yj]=0. Easy calculations give

_2
j =E[Y 2

j ]=
t2

j

cosh2 tj
and E[|Y 3

j | ]=\2 cosh t j&
1

cosh tj + _3
j .

We need a few simple estimates: when 0�xi�0.1,

0�ti�h(0.1)=0.1003353... and 1�cosh ti<1.00503... .

It is easy to check that

E[ |Yj |
3]

E[Y 2
j ]

=t j (1+tanh2 tj)

is an increasing function in tj . Thus, in the given range,

M=max
j

E[|Yj |
3]

E[Y 2
j ]

�0.102... .

Define _=- � _2
j . Now Berry's theorem (see [Fe]) says that, under the

present conditions, for all n, the distribution of 1�- _ �n
1 Yj differs from

that of the standard normal by at most

33
4

M
_

.
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Now

_=�:
n

1

_2
j =�:

n

1

t2
j

cosh2 tj
�

1
1.00503... �:

n

1

t2
j

�0.99 - 2nF(x
�
)�0.99 - 20>4.427.

Since the standard normal between 0 and - _>- 4.427>2.1 is larger than
0.49, Berry's theorem implies that

Prob _0�
�n

j Yj

- _
�- _&>0.49&2

33
4

M
_

>
1
10

.

With this

:
y�0

e&y Prob[Y= y]� :
0� y�_

e&y Prob[Y= y]

�e&_ Prob _0�:
n

1

Yj�_&
�

1
10

e&_�e&3 - nF(x
�
),

since _=- � _2
j �- � t2

j �- 2.02nF(x
�
)<3 - nF(x

�
)&log 10, because

nF(x
�
)�10. K

Lemma 8.2. Assume :i>0 for i=1, ..., m. Then

Prob _:
m

1

:i (Zi&0.1)�0&�
1

m2 exp[&mf (0.1)].

Proof. Let H*, H respectively be the halfspaces

H*={x
�

# Rm : :
m

1

: i (x i&0.1)�0= ,

H={x
�

# Rm : :
m

1

(x i&0.1)�0= .

Define _: Rm � Rm to be the cyclic shift of the components of x, that is,
_(x1 , ..., xm)=(xm , x1 , ..., xm&1). The orbit of x

�
under _ is, by definition,

[x
�
, _(x

�
), _2(x

�
), ...]. As _m(x

�
)=x

�
, any orbit has at most m elements. If
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x
�

# H then so is _(x
�
). At least one element of each orbit with x

�
# H is in

H* as otherwise

:
m

j=1

:j (_k(x
�
) j&0.1)<0 for all k=0, 1, ..., m&1.

Summing these inequalities for all k we get

:
m

j=1

(:1+ } } } +:m)(x j&0.1)<0,

a contradiction. Now we see that

Prob _:
m

1

:i (Zi&0.1)�0&=Prob[Z
�

# H*]

�
1
m

Prob[|[i: Zi=1]|�0.55m]

=
1
m

1
2m :

m

k=0.55m \
m
k +

�
1

m2 exp[&mf (0.1)]

as a simple calculation using Stirling formula reveals. K

Proof of Lemma 4.3. We have to show that q(x
�
)�exp[&(:&=1) n]

for each x
�

# F :&=2 & C*, or, in other words, every halfspace H intersecting
F :&=2 & C* contains at least 2n exp[&(:&=1) n] vertices of C. It suffices to
show this for halfspaces H whose bounding hyperplane Ho is tangent to
F :&=2 & C*.

We show first that H contains a point x
�

with F(x
�
)=:&=2 on its

boundary. If Ho touches F :&=2 then the point of tangency satisfies this con-
dition. If not, then H contains a point y

�
with F(y

�
)<:&=2 and there is a

smallest face of C* containing y
�
. Since the vertices of C* are not contained

in F :&=2 there is a point x
�

on this face with F(x
�
)=:&=2 .

By symmetry we can suppose that all components of x
�

are nonnegative
and in increasing order. Let n1 # [1, ..., n] be such that xn1

<0.1 and
xn1+1=0.1. Set t

�
=n grad F(x

�
) and let t

�
* be the normal to Ho. We will
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prove the lemma assuming that t
�
* is in the relative interior of the normal

cone to F :&=2 & C* at the point x
�
; this assumption means that

ti* =t i for i=1, ..., n1

ti*>t i for i=n1+1, ..., n.

The statement of the lemma for general t
�
* follows from this easily.

Next we have to consider cases according to where the terms of the sum
�n

1 f (xi)=n(:&=2) are concentrated. If n1�n&2000, then Lemma 8.1
applies: check that �n1

1 f (xi)�n(:&=2)&2000 f (0.1)>10 if n is large.
Choose the last, at most 2000, Zi to be 1 (i=n1+1, ..., n). We get

Prob _ :
n

i=1

ti*(Zi&xi)�0&
�2&2000 Prob _ :

n1

i=1

t i (Zi&xi)�0&
�2&2000 exp {& :

n1

i=1

f (xi)&3 � :
n1

i=1

f (x i)=
�exp[&n(:&=2)&3 - n(:&=2)&2000 log 2]

�exp[&n(:&=1)].

The last inequality follows when n and thus N is large enough if one
chooses here, with =i=bi (- log N�n), i=1, 2,

b2�2b1+3.

If n1<n&2000, then set n2=n1+2000 and write

Prob _ :
n

i=1

ti*(Zi&xi)�0&
�Prob _ :

n2

i=1

ti (Zi&xi)�0&
_Prob _ :

n2

i=n1+1

(ti*&t i)(Zi&xi)+ :
n

i=n2+1

ti*(Zi&x i)�0& .

Lemma 8.1 applies to the first probability since �n2
i=1 f (xi)�2000 f (0.1)

>10. It gives

Prob _ :
n2

i=1

ti (Zi&x i)�0&�exp {& :
n2

i=1

f (xi)&3 � :
n2

i=1

f (x i)= .
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Lemma 8.2 works for the second factor and shows that it is at least

1
(n&n1)2 exp[&(n&n1) f (0.1)].

The last two inequalities combine to

Prob _ :
n

i=1

ti*(Zi&xi)�0&
�exp[&nF(x

�
)&3 - nF(x

�
)&2000 f (0.1)&2 log(n&n1)].

The exponent here is &n(:&=2)&3 - n(:&=2)&2000f (0.1)&2 log(n&n1)
which is larger than &n(:&=1), if, in the definition of =2 , the constant b2

is chosen large enough. K

9. PROOF OF THE GEOMETRIC LEMMAS

Proof of Lemma 5.1. A routine argument shows how to compute the
product curvature }(x

�
) of the surface given implicitly by F(x

�
)=;: it gives,

at the point x
�
,

1
}(x

�
)
=

|grad F(x
�
) |n

det F"
=

|t
�
|n

`
n

i=1

1
1&x2

i

�
(2n;)n�2

(0.99)&n�(0.99 - 2n;)n

since x
�

# C* implies x2
i �0.01. We use this in the well-known formula [BF]

giving the surface area as the integral of 1�}(x
�
) on Sn&1. Now with

;=:+=3

voln&1(�F ; & C*)

=|
|
�

# Sn&1

1
}(x

�
)

d|
�

�|
|
�

# 0
(0.99 - 2n;)n d|

�
�

1
2

(0.99 - 2n;)n voln&1 S n&1. K

Proof of Lemma 5.2. We can assume that the touching hyperplane Ho

of the halfspace H is tangent to F :&=2 & C* at the point x
�

with
F(x

�
)=:&=2 .

We assume, by symmetry, that all xi�0. If x
�

is in int C* then H is well-
defined with normal t

�
=n grad F(x

�
).
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If x
�

is not in int C* then we can assume (as in the proof of Lemma 4.3)
that the outer normal t

�
* of H is in the relative interior of the normal cone

to C* & F :&=2 at x
�
. Then t

�
* can be chosen so that

ti* =ti= f $(xi) for 0�x i�0.1, and

ti*�t i= f $(0.1) for xi=0.1.

Assume y
�

# H & C*. Then, as yi&xi�0 if xi=0.1,

:
n

i=1

ti ( yi&x i)� :
n

i=1

ti*( yi&xi)�0,

showing that H & C*/[z
�
: t

�
(z

�
&x

�
)�0]. So we may assume that the

normal vector of H is just t
�
=n grad F(x

�
).

Now let w
�

# H & F :+=3 & C*. Set u
�
=w

�
&x

�
which is clearly in 2C*. Then

with suitable `i # [0, xi] we have

F(w
�
)=F(x

�
)+(w

�
&x

�
) grad F(x

�
)+

1
2

(w
�
&x

�
)T F"(x

�
)(w

�
&x

�
)

+
1
6

:
n

i=1

f $$$(`i)
n

(wi&xi)
3

�:&=2+
1

2n
:
n

i=1

1
1&x2

i

u2
i +

1
6n

:
n

i=1

2` i

(1&`2
i )2 u3

i

�:&=2+
1

2n
:
n

i=1

u2
i \ 1

1&x2
i

&
2xi

3(1&x2
i )2 ui +�:&=2+

|u
�
|2

3n

On the other hand w
�

# F :+=3, so

:+=3�F(w
�
)�:&=2+

|u
�
|2

3n

implying

|u
�
|�- 3n(=2+=3).

This shows that the cut-off from �F :+=3 by the halfspace H is contained in
a ball of radius - 3n(=2+=3) so its surface area is at most

(3n(=2+=3)) (n&1)�2 voln&1 Sn&1. K
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10. PROOF OF THE AUXILIARY RESULTS

Proof of Lemma 6.1. It is elementary to see that limt � 0 g(t)=1�2. We
have to show that, for all t # (0, �), g$(t)�0, or, what is the same,
t3g$(t)�0. Direct computation gives

h(t)=t3g$(t)=2 log cosh t&2t tanh t+
t2

cosh2 t
.

As limt � 0 h(t)=0, its is enough to see that h$(t) is nonpositive:

h$(t)=&
2t2 sinh t
cosh3 t

�0. K

Proof of Lemma 6.2. Fix |
�
. Let � # (0, �) and define

xi=tanh �|i , i=1, ..., n.

This gives a point x
�

# C with n grad F(x
�
)=�|

�
. For fixed |

�
# S n&1, the

mapping � � F(x
�
)= 1

n �n
i=1 f (tanh �|i) is strictly increasing and con-

tinuous, it is 0 at �=0 and its limit at � � � is 1
n |supp |

�
| log 2. This

proves the first part of the statement. The second part follows from the
monotonicity of � � 1

n �n
i=1 f (tanh �|i). K

Proof of Lemma 6.3. Define *=- n�(3 log n). As |
�

# 0, *|
�

# C and
*
10|

�
# C*, so there is a point x

�
# C with n grad F(x

�
)= *

10|
�
. We may assume,

by symmetry, that all |i�0. Of course xi=tanh *
10|i . At this point

F(x
�
)�

1
2.02n }

*
10

|
� }

2

>
1

606 log n
.

Monotonicity implies then, that

0�x(|
�
, ;) i=tanh �(|

�
, ;) |i

<tanh
*

10
|i�tanh 0.1<0.1

for all i=1, ..., n. K
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