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Abstract. A k-fan is a point in the plane and k semilines emanating from it. Motivated
by a neat question of Kaneko and Kano, we study equipartitions by k-fans of two or more
probability measures in the plane, as well as partitions in other prescribed ratios. One of
our results is: for any two measures there is a 4-fan such that one of its sectors contains
two-fifths of both measures, and each of the the remaining three sectors contains one-fifth
of both measures.

1. Introduction

For an integer k > 2, we define a k-fan as a point x (the center) in the plane and k
semilines emanating from x (the rays); Fig. 1(a) shows an example of a 3-fan. A k-tuple
of parallel lines, as in Fig. 1(b), is also considered to be a k-fan (this is a limit case for
x receding to infinity). In this case, it is even possible that some of the parallel lines
are also at infinity. The k rays emanating from x are numbered as £;,¢,,...,£; in a
cyclic order (clockwise or counterclockwise) around x. Each k-fan has an orientation
(clockwise or counterclockwise) associated to it; for k > 3, the orientation is given
by the labeling of the lines, and for k = 2, it is extra information attached to the 2~
fan.

* The first author was supported by Hungarian National Foundation Grants T029255, T016391, and
T020914 and the second author was supported by Charles University Grants 158/99 and 159/99.
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Fig. 1. Examples of 3-fans.

The open angular sector between ¢; and ¢;; is denoted by o; (for k = 2, oy is
the sector following ¢ in the given orientation of the 2-fan). For x at infinity, the two
unbounded regions together form one sector; see Fig. 1(b) (unless, of course, one of the
rays is at infinity). We also allow for o; = @; in this case, ¢; and £;.; coincide. A k-fan
is called convex if all of its sectors are convex.

Let w1, 2, ..., iy be Borel probability measures in the plane, m > 2, and let
o = (ay, o2, ..., o) be a vector of nonnegative real numbers whose components sum
up to 1. We say that a k-fan with sectors o1, 02, ..., 0} a-partitions the measure u;
if the following holds: For any i1, i, € {1, 2, ..., k}, the open angular sector between
¢;, and ¢;, (in the sense given by the orientation of the k-fan) has y;-measure at most
o;, + o 41 + - - - + a;, (Where the indices are taken in the cyclic order, with 1 following
k). If u; is such that any line has y;-measure O, then this definition can of course be
simplified to u;(6;) = o4, i = 1,2, ..., k. For measures partially concentrated on some
of the £;, the part of u; on £; can be arbitrarily divided between the adjacent sectors;
this is captured by the rather complicated general definition above (which also covers
the case of several ¢;’s coinciding). If &) = o = --- = o = 1/k we speak of an
equipartition of ;.

In this paper we investigate the following problem: for what combinations of m, k,
and « can any uy, . .., W, be simultaneously a-partitioned by some k-fan?

This problem takes its origin from a very nice question of Kaneko and Kano [KK].
Given an integer n > 2 and two measures (1 and i, in the plane (finite point sets, in fact)
with 1 (R?) = p,(R?) = n, does there exist a convex partition Cy, ..., C, of R? such
that 11 (C;) = u2(C;) = 1 for all i. (As expected, Cy, ..., C, form a convex partition
of R? by definition if the C; are convex sets that are pairwise internally disjoint and their
union is R2.) The case n = 2 is easy: it is the planar ham-sandwich theorem. The case
n = 3 leads immediately to the problem of whether a convex 3-fan equipartition exists
for any two measures.

As we learned during the preparation of this paper, results answering Kaneko and
Kano’s original question, in various levels of generality, were proved, independent of
our work, in several very recent papers. Akiyama et al. [ARNU] prove the special case
when the two measures are the surface area and perimeter of a plane convex body.
Ito et al. [IUY] show the case n = 3 of the conjecture. Finally Bespamyatnikh et
al. [BKS] and Sakai [Sa], independently of each other, prove the conjecture in full
generality. The argument of Bespamyatnikh et al. [BKS] and Sakai [Sa] is similar to a
proof of the two-dimensional Brouwer fixed-point theorem via Sperner’s lemma, but it
is considerably more complicated. The method does not seem to extend to a-partitions

withe # (3, 1, D).
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The following theorem summarizes our results.

Theorem 1.1. Leta = (w1, ..., o) have no zero component.

(i) (a) Forany k > 2 and any «, there are four measures that cannot be simulta-
neously a-partitioned by a k-fan.
(b) For any k = 3 and any o, there are three measures that cannot be simulta-
neously «-partitioned by a k-fan.
(¢) For any k > 5 and any «, there are two measures that cannot be simulta-
neously a-partitioned by a k-fan.
(d) Fork = 4 and any a, there are two measures that cannot be simultaneously
«-partitioned by a convex 4-fan.
(i) (a) Anytwo measures can be simultaneously a-partitioned by a 2-fan, forall a.
The center of the 2-fan can be prescribed arbitrarily.
(b) Any three measures can be simultaneously o-partitioned by a 2-fan for
o= (%, %) and for o = (%, %).
(c) Any two measures can be simultaneousiy equipartitioned by a 3-fan, or
(%, %, %)-partitioned by a 3-fan. They can also be (%, % é, %)-partitioned
by a 4-fan.

Note that the last statement in (ii)(c) implies that any two measures can be simulta-
neously (3, 1, 1)-partitioned and (3, 2, 1)-partitioned by a 3-fan. The results are sum-
marized in Fig. 2.

The negative results in (i) are proved, using simple counterexamples, in Section 2.
In parts (b) and (c), the reason for the nonexistence of partitions is that k-fans do not
have enough “degrees of freedom,” while in (a) and (d), there is a geometric constraint
(although the degrees of freedom of 2-fans appear sufficient to partition four measures).

Part (ii)(a) follows by a rather simple averaging argument. Also the (3, §, +)-partition
is very simple. The other positive results in (ii) are proved using equivariant topology.

Previous work. Equipartitions of measures in R? by simple geometric configuration
have been studied in many papers. The primary example is the well-known ham-sandwich
theorem, stating that any d measures in R? can be simultaneously bisected by a hyper-

no a-partitions for any o

Fig. 2. Results on a-partitioning m measures by k-fans (x/5 means all combinations with denominators 5).
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Fig. 3. Two measures that cannot be «-partitioned by a line for o # (%. %).

plane. In the plane, any two measures can be simultaneously bisected by a line. Note
that no o-partition by a line with o # (%, %) is possible in general. This is shown by
the example in Fig. 3, where one measure is uniformly distributed on the circle and the
other one is concentrated in its center.

An easy consequence of the two-dimensional ham-sandwich theorem is the possi-
bility of partitioning a measure in the plane into four equal parts by two lines. Various
generalizations of this fact, most notably partitions of m measures in R? into 2% equal
parts by k hyperplanes, have been considered by several researchers; see [Ra] for re-
cent results and references, and the survey by Zivaljevi¢ [Zi3] for a description of still
newer results of Petrovi¢ et al. The most challenging problem in this area is probably
partitioning a measure in R* into 16 equal parts by four hyperplanes, which still remains
unsolved.

Another interesting equipartition result, namely equipartitioning a measure into eight
parts by a “cobweb” (two lines and a convex quadrilateral with vertices on the lines
and surrounding the intersection of the lines), is due to Schulman [Sc]. Makeev [Ma]
established the existence of 6-partitions by suitable cones in R3; for example, for any
measure, there is a cube C such that the six cones with apex in the center of C and with
the facets of C as bases form an equipartition.

In the literature we are aware of, all measure partition results of this type only concern
equipartitions. For k-fan partitions, partitions other than equipartitions are sometimes
possible, and this, in our opinion, makes the problem of partitioning by k-fans quite
interesting.

2. Counterexamples

Four Measures. To prove part (a) of Theorem 1.1(1), it is sufficient to consider 2-fans
and arbitrary ¢, since a-partitions by k-fans imply o’-partitions by (k — 1)-fans by
“omitting a ray.”

We consider four points py, ..., ps such that one of them is in the convex hull of
the other three (Fig. 4). Let u; be concentrated in p;, j = 1,...,4. Leta = (o, a2)
with @y > 0 and oy > 0. If a 2-fan a-partitions yu;, then p; must lie on a ray of the
2-fan. However, it is not possible that all of p, ..., p4 simultaneously lie on the rays of
a 2-fan.

Three Measures. 1In part (b), it is enough to consider 3-fans. We choose a set P =
{p11, P12, P21, P22, P31, P32} Of six points in strongly general position, meaning that no
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Fig. 4. Four measures that cannot be partitioned by a 2-fan.

three of them are collinear and no three lines determined by disjoint pairs of points of P
have a common intersection (or are parallel). Note that such P cannot be simultaneously
covered by the rays of a 3-fan (for at most two rays can cover two points each).

Next, given o = (o, &2, @3), we choose weights wy, wp, > 0 with w) + w, = 1
and wi, w2 € {a1, oz, o3}. The measure u; is concentrated on p;; and p;, and we put
wi(pj) = wi, i = 1,2. We claim that if a 3-fan o-partitions u;, then either one of
Pj1» Pj2 is the center of the 3-fan, or both p;1 and pj, lie on rays of the 3-fan. Indeed,
supposing that the center is not one of p;|, pj», itis clear that at least one of these points,
say pj1, must lie on a ray (see Fig. 5). If p; is inside a sector, then this sector must be
adjacent to the ray containing p;, otherwise the sector would have the wrong measure
w,. However, then there is a sector of measure 0. Thus, the claim holds, and from the
strongly general position of P, it follows that a simultaneous «-partition of 111, w2, i3
by a 3-fan is impossible.

Two Measures by 5-Fans. In part (c) of Theorem 1.1(i), it is enough to consider the
casek = Sanda = (a1, ..., as) withalla; > 0.

There is a very simple construction showing the impossibility of equipartitioning.
Namely, choose a set P of eight points in strongly general position. Let z; be uniformly
distributed on some four of the points of P, and let uy be uniformly distributed on the
remaining four points. Since the rays of a 5-fan can cover at most seven points of P,
there is a point of P lying inside some sector, and so the measure of that sector is at least
%. Hence a 5-fan cannot equipartition these measures.

For ¢-partitioning by a 5-fan with arbitrary , we use the following construction. Let
11 be the uniform measure whose support S, is the segment {(—1, 1), (1, 1)], and let u
be the measure whose support S; is the x-axis and whose distribution function F () is
continuous with 0 < F(¢) < 1 and, most importantly, no line intersects the graph of F
in more than three points.

We claim that there is no a-partition by a 5-fan for these two measures. Assume there
is one. Then four consecutive rays must intersect each support as otherwise there are
no five pieces. So the center is not between S; and the line of S;: it is either below S,
or above ;. In both cases the four consecutive rays intersecting S; intersect S as well.

o Pi2

Fig. 5. A 2-point measure and a 3-fan.
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Denote the intersection points on S, by xj, x2, x3, x4 in this order. Computing the u,
measures of the sectors we get, with some positive # and suitable j,

Xy — X} =h0lj, X3 — X2 =h(¥j+1, X4 — X3 =hOlj+2,
where j + 1, j + 2 are taken mod 5. The ¢, measures of the sectors give
F(x2) — F(x1) = a;, F(x3) — F(x2) = aj41, F(xg) — F(x3) = ajp2.

This shows four points on the graph of F(¢) contained in a line, namely, the ones
corresponding to xy, Xz, X3, X4.

Two Measures by Convex 4-Fan. For part (d), we use the previous setting but the second
measure u, will be different: let its support, S», be the segment [(—2, 0), (0, 2)] and let
it be uniform on S, for the time being. We modify it soon. Assume there is convex
a-partition by a 4-fan. Then three consecutive rays intersect each support and the center
cannot be between the two supports. It cannot be below S either because then one sector
would meet S, in an interval too short to have the prescribed (;-measure. So the center
is above the lines of S; and S,. Then there are three downward rays and the fourth
goes upwards to make the partition convex. It is evident that the three downward rays,
together with the center, are uniquely determined by . Now we modify u, near the
intersection of the middle downward ray with $,, by pushing a little mass from the left to
the right. This changes only the middle downward ray, and this ray will not pass through
the intersection of the other two downward rays.

3. Preliminary Reductions

In this section we make some preliminary steps for the proof of the positive results in
Theorem 1.1.

A Reformulation on the Sphere. First, we transfer the problem to the two-dimensional
sphere S2. Let S? be the unit sphere in R? centered at the origin, and let R? be embedded
in R? as the horizontal plane p tangent to S? from below (i.e., with equation z = —1).
Let m denote the central projection from the origin. This 7 gives a homeomorphism of
the upper open hemisphere of S? onto p, and similarly for the lower open hemisphere.
A given Borel measure in R? is transferred by 7 ~! to a Borel measure in the upper open

hemisphere.

A k-fan in $? is a point x € §2 and a collection (£, £,, ..., £;) of great semi-
circles emanating from x, in such a way that the semicircles £, ..., £; are ordered
clockwise around x when viewed from the center of the sphere. We write this k-fan as
(x; £, ..., £). The sectors of a k-fan and ¢-partition of a measure by a k-fan are defined
in an obvious analogy to the planar case.

Toany k-fan (x; £1, . .., €;), we assign a k-fan in the plane as follows. The center of the

corresponding planar k-fan is ;7 (x) (for x on the equator, 77 (x) is formally at the infinity).
The image of the ray £; is obtained as the intersection of p with the halfplane that intersects
S? in the great semicircle ¢;. Also the orientation of the k-fan is transferred by the
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projection (hence k-fans with centers at the upper hemisphere induce counterclockwise
planar k-fans, and k-fans with centers on the lower hemisphere induce clockwise planar
k-fans).

If any m measures on S? can be a-partitioned by k-fans, then any m planar measures
can be a-partitioned by k-fans. In fact, the above correspondence of planar and spherical
k-fans is bijective, but the spherical problem is more general, since the measures obtained
from planar situations only live in the upper open hemisphere.

Nice Measures. Next, we note that by standard arguments, we can restrict ourselves to
special measures. We formulate a somewhat stronger result than we actually need.

Lemma 3.1. Let k, m, and o be given. Any m Borel probability measures in $? can
be a-partitioned by a k-fan if (and only if) all m-tuples of measures from the following
special classes can be so partitioned.:

(i) Measures concentrated on finitely many points in S?.
(i) Measures that are absolutely continuous with respect to the Lebesgue measure
and such that any nonempty open set has a strictly positive measure.

Sketch of Proof. 1t follows easily from the results of Vapnik and Chervonenkis [VC]
that given a Borel probability measure y on S2, for any & > O there is a measure i,
concentrated on finitely many points such that for any sector o (the open region delimited
by two great semicircles), we have |i(o) — u.(0)| < &. The argument is finished by
letting € — O and noting that the space of all spherical k-fans with the natural topology
is compact.

The transformation to measures as in (ii) is used in almost all of the equipartition
results in the literature. For a measure concentrated on finitely many points, we can
replace each point by a spherical cap of radius £ with the appropriately scaled Lebesgue
measure on it, and then add e-times the Lebesgue measure on S2. Letting ¢ — 0 and using
compactness works again. We remark that for an arbitrary Borel probability measure,
we can take convolution with a suitable measure v, (whose density function is a narrow
peak) and obtain a measure as in (ii) directly. O

4. Easy Positive Results

First we prove part (a) of Theorem 1.1(ii), a-partitions of two measures by 2-fans. This
result can easily be proved by the methods below involving equivariant topology, but
here we show a simple averaging argument suggested by Attila Pér. Fix the center x of
the considered 2-fans, and let y be the circle of unit length centered at x. We may assume
that ¢ and w, are measures on y, and by considerations analogous to those in the proof
of Lemma 3.1, we may suppose that they are sufficiently nice. Namely, we suppose that
after a suitable reparameterization of y, u, is the one-dimensional Lebesgue measure
on y, and that i, is given by a density function g on y (with fy g@)ydr =1).

We want to show that thereisanarca = (s, s+a;) C y oflength ¢y with 4 (a) = «a;.
Define the function f(s) = 1,((s, s+«;)). This is a continuous function, and if it attains
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no value ¢, then it is always strictly below o; or always strictly above ;. However, we

have
s+ t
/f(s)ds:// g(t)dtds:// g)dsdt = ;.
4 yJs y Ji—ay

This proves part (a) of Theorem 1.1(i1).

Another easy case is the (}, 1, 1)-partition of two measures by 3-fans in part (c) of
Theorem 1.1(ii). Two measures can be simultaneously bisected by a line by the ham-
sandwich theorem. We bisect the halves in one of the halfplanes by another line, and we
obtain a (convex) 3-fan providing the desired partition.

5. Tools from Equivariant Topology

We now interrupt our discussion of k-fans and discuss some general results from equiv-
ariant topology.

Let G be a group and let X be a topological space. We recall that an action w of G
on X is a homomorphism from G into the group of homeomorphisms of X. Explicitly,
for each g € G, we have a homeomorphism wg: X — X, and wg o wy, = wg; holds for
all g, h € G. The action w is called free if for g € G distinct from the unit element, the
homeomorphism w, has no fixed points.

If G = Z, is a cyclic group with generator g, it is sufficient to specify the single
homeomorphism w,. In this case, as is usual in the literature, we write @ instead of w,
and we speak of “the Z;-action w.”

If X is a topological space with an action @ of G and Y is another topological space
with an action v of G, a G-equivariant map (with respect to w and v), or simply a G-map,
from X to Y is a continuous mapping f: X — Y that commutes with the actions; that
is, fowgy =v,0 fforallg € G.

There are numerous results in combinatorics and in geometry that are derived by
showing the nonexistence of an equivariant map between suitable topological spaces.
This method was elaborated in a number of papers by Lovdsz, Alon, Bardny, Shlosman,
Szfics, Sarkaria, Zivaljevié, Vredica, Ramos, and others; a recent survey is [Zi2] (also see
[?i 1] for an expanded version), and fairly advanced tools are discussed in its continuation
[Zi3].

The following theorem of Dold [Do] can be used to exclude the existence of equiv-
ariant mappings X — Y, provided that the actions of G on both X and Y are free. Itis a
far-reaching generalization of the famous Borsuk—Ulam theorem (the latter claims that
there is no Z,-equivariant mapping S” — S"~!, where both spheres are considered with
the antipodal actions x +> —x).

We recall that a topological space X is n-connected if for each j < n, any continuous
mapping f: S/ — X can be extended continuously to f: B/*! — X, where B/*!is
the (j + 1)-dimensional ball bounded by the S/.

Theorem 5.1. Let G be a finite group, |G| > 1, let X be an n-connected space with a
free action of G, and let Y be a (paracompact) topological space of dimension at most
n with a free action of G. Then there is no G-equivariant map f: X - Y.
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Fig. 6. Lifting a Z,-action,

In our applications of the theorem, we deal with a space X which is homeomorphic to
the real projective space PR?, and thus it is not even 1-connected (the fundamental group
is Z;,). However, there is a double-covering map 7: S — PR?, and $3 is 2-connected.
The following lemma shows that for odd g, a Z,-action can be lifted from our X to S3,
and so X is as good as a 2-connected space in this case.

Lemma 5.2. Letn: X — Y be a p-fold covering map, with X arcwise connected and
simply connected, and let w be a Z,-action on Y, where (p,q) = 1. Then there is a
Z,-action & on X such that 7 is a Zg,-map. If w is free, then & is free too.

This simple result is most likely known, but we have not found a reference.

Proof. Fix xp € X. Let yo = m(xp), y1 = w(¥), and fix some x; € n“‘(yl). Define a
map @: X — X, as follows. For x € X, choose a path ¥ in X connecting xg to x. The
path w(mr (¥)) in Y has endpoints y; and w (7 (x)). Lift the endpoint y; to x1; the other
endpoint of this lifted path defines w(x); see Fig. 6.

This is a well-defined mapping. If ¢’ is another path from xq to x, then it is homotopic
to y (rel{xo, x}). Applying 7 and then w to the system of paths witnessing the homotopy
of y and y’ yields a system of homotopic paths from y; to w (r (x)), and the liftings thus
all have the same endpoints.

Clearly, & is continuous. By the construction, we have w o 7 = 7 o @. (From this,
we also have w* o r = w 0 @, forall k > 1.)

One can define a continuous inverse to @: to find the inverse image of z € X, consider
a path y from x; to z, apply 7, then w1, then lift to X with yy lifted to xy. Thus, @ is a
homeomorphism.

Consider v = &7. This is a homeomorphism lifting the identity. It acts on F =
n~!(y0) as a permutation. Moreover, if some v* has a fixed point, then it is the identity
map, as is easy to check. Hence all cycles of the permutation v|r have the same length,
and consequently v¥ is the identity for any k divisible by p. Choosing k as a multiple of
p with £ = 1 (mod q), we get that ® = " satisfies @ = Iyandmrod =won. O

We remark that, for example, a Z,-action generally cannot be lifted from PR3 to §3.
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6. Fan Partitions by Equivariant Topology

Here we resume our discussion of (spherical) k-fans. From now on, we assume that the
measures (L1, . .., iy On S? are as in Lemma 3.1(ii). Actually, we use the following two
properties: any nonempty sector has a strictly positive measure, and if the angle of a
sector goes to zero, then its measure goes to zero.

The Candidate Space and Test Maps. Letq > 2 be a given integer and let the probability
measures i1, . . ., iy on 52 be fixed. To each pair x, y € S? of orthonormal unit vectors
we assign a g-fan in 52, as follows. The center is x, and £, is the intersection of S with
the halfplane having 0 and x on its boundary and containing y. The rays £, ..., £, are
uniquely determined by the condition that the resulting g-fan equipartitions the measure
{m. Inthis way, the space X, of all g-fans equipartitioning w,, is identified with the space
V2 (R?) of all pairs (x, y) of orthonormal vectors in R, with the natural topology (V,(R?)
is called the Stiefel manifold of orthonormal 2-frames in R3). Write ¢,: V2(R?) — X,
for this identification, that is,

tg(x,y) = (x; &1, ..., £g).

It is easy to see that V5(R3) is homeomorphic with SO (3), the group of rotations around
the origin in R?, and as is well known, this is homeomorphic with the projective space
PR3 (see, e.g., p. 164 of [Br]).

For assessing the “quality” of a given g-fan from X, with respect to the other measures,
we introduce test maps f;: X; - R?, j =1,2,...,m — 1, by letting

£ = (w00 = Lo — L o) = 1),

where o1, ..., 0, are the sectors of the k-fan F. As is easy to check, the conditions on
the measures 1; imply that each f; is continuous. We also observe that the image of
each f; is actually contained in the hyperplane Z = {y e R?: y;+y2+ -+ y, =0}

If we want to prove the existence of a g-fan equipartitioning p; through p,,, we
must show that fi,..., f—1 have a common zero. More generally, for proving the
existence of simultaneous a-partitions by k-fans, where ¢ = (a1/q,a/q,-..,a/q)
with @y, az, . .., a; being natural numbers summing up to g, it is sufficient to show that
there is a g-fan F € X, such that f;(F) € Lforall j =1,2,...,m — 1, where L is the
linear subspace

L=Ll)={xeR: x;+x2+- - +x, =0, %41+ -+ X440, =0, ...,
Xay4otapoy 1 T 0o +xq = 0}. (1

The results in Theorem 1.1 are obtained by considering suitable group actions on the
candidate space X, such that the test maps are equivariant, and then using the results in
Section 5 for showing that no equivariant map missing L can exist.

The Group Action. On our space X,, we have a natural free action w of the group
Z, (integers with addition modulo ¢). It is given by “turning by one sector”; formally,
w(x; €y, ..., 8) = (x;£€2,43,...,£4,£1). Let F € X, be a g-fan, and let f;(F) =
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1,.-.,¥9) € Z. We have fj(w(F)) = (¥2,¥3,..., ¥ y1). Thus, if we define the
Z,-action v on the hyperplane Z by v(y1, y2, ..., ¥4) = (32, ¥3, ..., Yg, Y1), then f; is
equivariant.

We mention that there is a natural Z, action p, on Vo (R?): pq(x,y) = (x,y’) where
y' is obtained from y by turning clockwise by angle 27 /g around x when viewed from
the center of the sphere. With this map the identification ¢, becomes a Z,; map:

lgOPg =wolg.

The advantage is that the Z,, action does not depend on the measure i, any more.
We should remark that the Z,-action v is free on Z\{0} if and only if g is a prime,
and so we can expect that Dold’s Theorem 5.1 will only be applicable for prime g’s.
Next, we discuss the few specific cases where we can prove the existence of k-fan
partitions by the equivariant topology methods.

Equipartition of Two Measures by 3-Fans. The possibility of equipartitioning two
measures on R? by a 3-fan was proved in [BKS], [IUY], [Sa]; they even get a convex
3-fan. Here we give a topological proof, of the slightly more general case of §2, as it is
the simplest case in our discussion. We consider the space X3 of 3-fans that equipartition
M2 as introduced above. It suffices to show that there is no Zs-map fi: X3 — Z\{0},
where Z is the plane {y; + y; + y3 = 0}. Supposing that f; exists and using Lemma 5.2,
we can lift the Z3-action from X3 to S> (obtaining a free action), and define a Z3-map
fi: §* — Z\{0}. Finally, it is convenient (although not strictly necessary here) to reduce
the dimension of the target space. Namely, if S(Z) = {y € Z: |\y|| = 1} denotes the
unit sphere in Z (an S! in this case), we define h: Z\{0} — S(Z) by A(y) = y/|Iy|.
Thenh o f~1: $3 — S§(Z) is a Z3-map. Since the Z3-action on S(Z) is free, Theorem 5.1
applies and excludes the existence of such a map (as S* is 2-connected and S(Z) is
one-dimensional; this is even more than we need).

There is another, almost elementary, argument showing the nonexistence of a Z3-map
ho fi: X3 — S', which we now describe. Assume there is such a map and combine
it with the identification ¢3 to obtain a Zz;-map g: V2(R*) — S!. Consider the set
S(a) = {(a,y) € Vo(R*} with a € S? fixed; this is an S!, and so we have a Z3-map
g1: §' — S(a), say the isometric embedding. Then g o g;: S! — S! is also a Z3-map,
where the action on both S!’s is the rotation by 27/3. Then the degree of g o g is 1
mod 3, as it is well known and easy to check (see [KZ], or [BSS]). Define now S$* as
the union of two copies of S! glued together at a single point. Define g2: $* — V,(R?)
as winding twice around S' while mapping to S(a) C Vo(R?) the same way as g, does.
The degree of g o g; is clearly twice that of g o g1, and so it is 2 mod 3. However, as the
fundamental group of V,(R?) is Z,, the cycle that goes around S(a) twice is homotopic
to zero. Thus the degree of g o g3 is zero. Contradiction.

Using this proof one can place extra restrictions on the 3-fan realizing the equipar-
tition: any subset of V,(R>) in which twice S(a) can be deformed to a point ought to
contain such a 3-fan. For example, it follows that for two measures in the plane, there
exists a 3-fan equipartition with one of the halflines being vertical.

Other Fartitions by Dold’s Theorem. Another case where Dold’s theorem can be ap-
plied are a-partitions of two measures by 4-fans with @ = (2, 1, 1, 1) (consequently,
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we also get all o-partitions by 3-fans, where all the components of « are fractions with
denominator 5).

In this case, we choose ¢ = 5,and we let L = L((%, %, %, 31)) ={yeR: y+y;=
0,y3 =ys = ys =0}and L = (L, v(L), v¥(L), ..., vi~' (L)}, where v is the coordinate
shift action on R?. If the desired 4-fan a-partition did not exist, we would get a Zs-
map fi: Xs — Z\|J L. By lifting the Zs-action from X5 to $3, we obtain a Zs-map
fi: 83 - Z\ | L, with free Zs-actions on both sides.

This time, even if we compose f; with the mapping h: Z\{0} — S(Z) as in the
previous case, the target space is still three-dimensional; it is a $* with 10 points (i.e. five
copies of §°) deleted. The dimension is too large to apply Dold’s theorem directly, but it
can be easily reduced by 1, by equivariantly contracting Z\ | J £ to a two-dimensional
subspace ¥ C S(Z). In the following lemma, we give a simple geometric construction
of a suitable Y.

Lemma 6.1. Let L be a finite collection of linear subspaces of R", each of dimension
between 1 and n — 1, and let L be closed under a Z,-action v on R", whose homeomor-
phisms are isometries of R" fixing the origin. Suppose that the linear span of | ) L is the
whole R". Then there is a subset Y C §"™! of dimension at most n — 2, closed under the
action v, and a Zy-map g: R"\|JL — Y.

We postpone the proof to the end of this section. In the problem of (%, %, %, %)—
partitioning of two measures by 4-fans, we thus obtain a Zs-mapping g o fi: 82> Y,
where Y is a two-dimensional space. This is ruled out by Dold’s Theorem 5.1.

A similar situation arises for (%, %)-partitioning of three measures by a 2-fan. Here
we have two Zs-mappings f1, f2: X3 — Z, which can be regarded as a single Z3-map to
the product Z x Z = {(y1, ¥2, ..., ¥6) € R® y1 + y, + y3 = 0, y4 + ys + ys = 0}. This
time, the excluded subspace is L(%, %) X L(%, %) ={yeRS: y1+y=y3=y+ys =
¥6 = 0}, plus its two images under the Zs-action v x v. The sphere S(Z x Z) is again
an §3, and three copies of S! are deleted this time. By Lemma 6.1, the target space can
be Z3-mapped to a two-dimensional subspace, and an application of Lemma 5.2 and of

Theorem 5.1 finishes the proof.

Equipartitions of Three Measures by 2-Fans. Here we have the mappings f, f: X2 —
Z, where the target space is one-dimensional. By considering this as a single mapping
into the product Z x Z and by composing with the mapping #: Z x Z\{0} — S(Z x Z),
we obtain a mapping : X, — S!. Combining it with the identification ¢, we get an
f: Va(R®) — S' map which is a Z,-map. In fact, it is straightforward to check that f
is antipodal in the second variable, thatis f(x, —y) = — f(x, ¥).

We cannot use Lemma 5.2 since p and g are not coprime (both are equal to 2). How-
ever, the second, almost elementary, proof of the 3-fan equipartition works. Namely, f,
when restricted to S(a), is an S' — S! antipodal map so it has odd degree. Nevertheless,
when extending it to $* by winding twice around S! we get that this map is homotopic
to zero, and its degree (which is twice that of f) is zero. A contradiction again.

We remark that another proof can be obtained using the ideal-valued cohomological
index of Fadell and Husseini (discussed in [Zi3}).
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Proof of Lemma 6.1. Define Yo C R™\ | £ as the set of all points y that have at least
two nearest neighbors in |_J £ (thus, Yy consists of the boundaries of the cells of the
Voronoi diagram of £). This ¥ is a union of finitely many pieces of quadratic surfaces
(the surfaces equidistant to some L;, L; € £) and sodimYy < n — 1. We define a
mapping go: R\ |J £ — Yo; by composing go with the mapping h: R"\{0} — S"~!,
we then obtain the desired g (with ¥ = $"~1 N ¥y).

For y € Yy, we let go(y) = y. For y ¢ Yy, let ¥y be the (unique) point of |_ £ nearest
to v, and define the semiline s as the part of the line yy starting at y and not containing y.

We claim that s intersects Y. If L; € £ is the linear subspace containing y, then s
is perpendicular to L;. If we travel distance # from y along the semiline s, the distance
to L; increases by ¢. On the other hand, since £ spans R", not all of its spaces can be
perpendicular to s, and thus there is a L; € £ such that by traveling distance ¢ from y
along s, the distance to L; increases by no more than Bz for a fixed 8 < 1. Therefore,
by going far enough along s, we reach a point that is closer to L; than to L;, and we
must have passed a point of Y on the way. This proves the claim, and we define the first
intersection of s with Yy as go(y).

Since g is defined using metric properties and the action v is an isometry, go commutes
with v. It remains to check the continuity of gy. First, let y € Y;; we have go(y) = y and
so want to show that points close to y are mapped close to y. Let L' € £ be the collection
of the linear subspaces containing points nearestto y. For L; € £L',lety; € L; be the point
of L; nearest to y. First, we note that yy; cannot be perpendicular to all L; € £'. Indeed,
if it were the case, £ would be contained in the hyperplane # perpendicular to yy; and
containing y;, and y; is the unique point of 4 nearest to y, which contradicts y having at
least two nearest neighbors in | £. Now if we choose a point y’ in a sufficiently small
8-neighborhood of y, the nearest point 3’ € | J £ used in the definition of go(y’) lies in
some L; € L'. Moreover, there is an L; € L' such that the line y'y’ is not perpendicular
to it, and so by traversing distance ¢ along the line y'j’, the distance to L; changes by
at most St for some B < 1 (independent of §). Since the distances of y’ to L; and to L;
differ by no more than 25, we see that go(y') lies at a distance at most 25/(1 — 8) from
y’. This proves the continuity of gg at y.

Finally, we consider y ¢ Yy, and let y’ lie very close to y. We let 3’ be the point of
| £ nearest to y’, and we let y” be the point of the line y'y’ closest to go(y). By choosing
y' sufficiently near to y, we can guarantee that y” and go(y) are arbitrarily close. Then
we can apply the continuity of gy at go(y). O

7. Discussion and Open Problems

The most natural open question is probably whether, for two measures, a 4-fan equipar-
tition exists. The reasons why our topological approach cannot provide a positive answer
will be briefly discussed below.

Ourresults show that ¢-partitions of two measures by 3-fans and by 4-fans are possible
for some values of . A very intriguing question is whether they exist for all values of «.
It seems hard to imagine why some «’s should not work when others do. On the other
hand, our proof method cannot provide many more values of «; the reasons are indicated
below. Maybe equivariant topology is not the right tool here.
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Equipartitions by 4-Fans. The space X4 of 4-fans is naturally equipped by the Z4-
action w, but the corresponding coordinate shift action v of the target sphere S(Z) is not
free. There are some theorems excluding the existence of an equivariant map even for
nonfree action, discovered by Ozaydin, by Sarkaria (unpublished manuscripts), and by
Volovikov [Vo] (see [Zi3] for discussion). These theorems involve actions of noncyclic
groups like Z, x Z,. In our case, there are natural (Z; x Z))-actions on the spaces
involved.

On X, we have the free Z,-action o’ corresponding to “‘changing the orientation” of
a g-fan. Namely, w'(x; €1, ..., £5) = (=x; €1, €4, €41, ..., £2). We have f;(w'(F)) =
V(1,0 Y9) = g, Yg—1. .-, ¥2, Y1), and so the mappings f; are also equivariant
with respect to @’ and the action v’ given by reversing the order of coordinates.

For g = 4, we can take the Z,-action @? of X, (turning by two sectors) and combine
it with the «’ defined above. As is easy to check, we obtain a free action of the group
G = Z; x Z, (direct product) on X4, and f; becomes a G-map. Unfortunately, we found
that there is a G-map X4 — S(Z). While this provides no counterexample to the 4-fan
equipartitioning problem, it shows that this particular proof method fails.

Here comes an explicit description of such a G-map. Recall that X is just V5 (R3) =
{(x,y) e S2 x S2: (x, y) = 0}. The actions of the generators of G are

o (x, y) = (x, —y), @' (x,y) = (—x, ).

In this case S(Z) is a §? and the actions corresponding to w?, resp. «’, on the target space
are g and A with

g(us v, w) = (_u7 —v, w), h(”i v, w) = ('-uy v, _U))-
With x = (x1, x2, x3) and y = (y1, y2, ¥3) we define f: Vo(R?) — $? as
fx,y) = (Ix(la — x2b, |x11b + x2a, x3) ,

where a = (x1y2 — x2y1)/4/x? + x3 and b = sgn(y3)+/1 — a2. The expression for
f(x, y) is undefined if x3 = 31 but one can check that for all y, f(x, y) = (0,0, £1)
as x3 — =1, respectively, and so f extends continuously to these points. An easy
calculation verifies that || f(x, y)|| = 1 for all unit x, y. Finally, f is continuous at
y3 = 0 too since, as further simple calculation reveals, (xl2 + x22)(1 —a?) = 0 whenever
3 = 0. Clearly, f(x, y); is odd in both x and y and f(x, y), is even in x and odd in y.

Equivariant Maps for Larger g. In the above proofs, the existence of equivariant maps
could be excluded using Dold’s theorem or other tools. Unfortunately, it turns out that
for sufficiently large ¢, equivariant maps between the considered Z,-spaces do exist,
although it is not clear if such maps can actually arise in the k-fan partition problem.
We describe two concrete examples of such equivariant maps. The first one concerns
the a-partitioning of three measures by 2-fans, where the presentation of the mapping is
particularly simple.

Leta = (1/g,1 —1/g), g > 3 odd. Recall that for a-partitioning of three measures
by a 2-fan, the test mappings provide a Z,-map S> — Z x Z, where Z is the hyperplane
{xt + x2 +---+x; = 0} in R? and where the Z,-action v on R? is the coordinate
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shift. The nonexistence of the «-partition implies that this mapping avoids the subspace
L(1/g,1—1/q) x L(1/g,1 — 1/q) = {(x,y): x € Z,y € Z,x, = 0, y; = 0}. The
following example shows that for ¢ > 6, an equivariant map exists in this situation.

Proposition 7.1.  For any integer q > 6, there exists a Z,-map f: S*® — R? x R?
(where S® has a free Z,-action and both the RY s in the target space are equipped with the
coordinate shift action), such that forall x € 8,3 %_| f(x); = 3%, f(x)2 =0and
f(x)1; and f(x), are never simultaneously zero (the points of the image are indexed
as 2 x g matrices).

Proof. For simplicity of notation, let ¢ = 6 (the construction for larger ¢ is entirely
analogous; we stress that the primality or nonprimality of g plays no role here). It is
sufficient to construct a continuous map g: S°> — R?\{0} satisfying

5
Y g@x) =0 @
i=0

for all x € S3, where w is a free Z,-action on S3. Indeed, with such a g at our disposal,
the mapping f given by f(x);; = g(w'x); is as required.

Let A be the perimeter of a regular hexagon apa; - - - as; that is, A is the one-
dimensional simplicial complex with the six vertices ag, ay, . . ., as and with 1-simplices
a;aiv, i = 0,1,...,5 (indices taken modulo 6). Similarly, B is the perimeter of a
hexagon bob; - - - bs. The sphere S* is homeomorphic to the join A * B. The three-
dimensional simplices of this join have the form a;a;,1b;b; 1. A Z,-action w is defined
on A x B by letting a; — a;41, b; = b;41, and extending linearly on each simplex.

First we describe a simpler mapping go: A*B — R?. We choose three nonzero vectors
u, v, w € R? with 4u + v + w = 0. Put go(ap) = go(bo) = v, go(az) = g(by) = w, and
go(a;) = go(b;) = ufori =1, 3,4, 5. This defines gy on the vertices of A * B, and we
extend it linearly on each simplex of A * B. Clearly, (2) is satisfied for go, but there are
simplices in A * B whose image contains 0. We note that all such simplices contain ag
or by, and also a; or b.

Next, we form a simplicial complex K by subdividing some simplices in A * B.
We let cp; be the midpoint of the edge agb,, and we let O = {cg, €13, ..., C51} be
the orbit of cp; under w. Similarly, ¢y is the midpoint of the edge azby and O, =
{c20, €31, . . ., €15} is its orbit; see the schematic Fig. 7. Each edge of A * B containing a
point of O, U O, is subdivided, and the higher-dimensional simplices containing such

bo by b b3 by bs

ao a1 az as a4 as

Fig. 7. The subdivided edges in A x B.
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a g

Fig. 8. Subdividing the three-dimensional simplices.

edges are appropriately subdivided too. In particular, three-dimensional simplices may
have one subdivided edge (such as the simplex aga; b b;) or two subdivided edges (such
as the simplex agpa; b2b3). The simplices with a subdivided edge are subdivided into two
simplices as in Fig. 8(a) and those with two subdivided edges into four simplices as in
Fig. 8(b) (note that the subdivided edges are never adjacent). This defines the simplicial
complex K. Now we define a new mapping g on the vertex set of K; the values at the a;
and b; are as those for go, and we put g(c4) = glcaz2) = w, glcyo) = g(coa) = v, and
g(cij) = u for all other ¢;; € O U 0,. In Fig. 7 the vertices with values v are indicated
by squares, those with values w by triangles, and those with values u by circles. Finally,
g is extended linearly on the whole polyhedron of K. It is easy to check that for each
simplex of K, g attains at most two distinct values at the vertices. Thus, no point of the
polyhedron of K is mapped to 0 by g. O

Remark. Another, somewhat more complicated example of this type was constructed
independently by Attila Pér.

The second example is only sketched, since it is rather similar to the previous one.
It is relevant for ¢-partitioning by 3-fans for @« = (1/q, 1/q, 1 — 2/q). The equivariant
topology argument fails if there is a Z,-map f: S$® — Y,where Y = {x € R?: x; +
<-4+ x4, = 0and (x| # 0 or xp # 0)}. It suffices to construct the mapping g specifying
the first coordinate (g(x) = f(x);). The conditions are Zf-:ol g(@'x) = 0 and for all
x € 83 g(x) #0or glwx) #0.

As in the other example, let A and B be the circumferences of the regular g-gon.
This time, we subdivide each edge a;a;1; by a new point a;.1,7, obtaining a complex
A’, and similarly for B’. The Z,-action w sends a; to a;_; and b; to b;_; (indices taken
modulo g).

Let 4, v € R be nonzero with (g — 1)u + v = 0. Put gg(ao) = go(bo) = golas,2) =
8o(bs2) = v and go(a;) = go(b;) = u for the other i.

If we extend gy linearly on all simplices of A’x B’, what are the bad simplices (possibly
containing x with go(x) = go(wx) = 0)? They must contain a vertex mapped to v and a
vertex whose w-image is mapped to v. Thus, we subdivide the edges aob, a1bg, as;2b7/2,
azppbsyr, aobiya, a12bo, a1bsy, and as by, as well as the edges in their orbits. In each of
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these eight orbits, we choose one edge whose subdividing vertex is mapped to v, while
all others go to u. What we want to achieve is that they do not interfere with each other
or with the a; and b; vertices mapped to v, where x interferes with y if x and wy occur
in the same simplex of the (subdivided) complex. It is easy to see that if ¢ is sufficiently
large, interference can be avoided. We have not tried to find the smallest possible value
of g for which such a construction works; however, note that g > 6 follows from the
last statement of Theorem 1.1.
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