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On the Number of Lattice Free Polytopes

IMRE BÁRÁNY AND JEAN-M ICHEL KANTOR

V. I. Arnold asked for estimates for the number of equivalence classes of lattice polytopes, under the
group of unimodular affine transformations. What we investigate here is the analogous question for
lattice free polytopes. Some of the results: the number of equivalence classes of lattice free simplices
of volume at mostv in dimensiond is of ordervd−1, and the number of equivalence classes of lattice
free polytopes of volume at mostv in dimensiond is O(v2d

−1(logv)d−2).

c© 2000 Academic Press

1. INTRODUCTION AND RESULTS

There has recently been an increasing interest in integral polytopes. A particular class of
them, the lattice free polytopes, play a special role in various areas: geometry of numbers
(see [11]), integer programming [11, 16], singularities in algebraic geometry [9, 14], for ex-
ample.

Given a polytopeP ⊂ Rd let vertP denote the set of its vertices.P is anintegralor lattice
polytope if vertP ⊂ Zd and islattice freeif Zd

∩ P = vert P. Each lattice free polytope is,
of course, a lattice polytope.

Two lattice polytopes,P andQ are said to beequivalentif there is a lattice-preserving affine
transformation carryingP to Q. Equivalent polytopes have the same volume. Arnold [1] asked
for estimates for the numberN(d, v) of equivalence classes of polytopes inRd of volume (at
most)v. (Of course,v is positive and is an integral multiple of 1/d!.) After partial results
by [1] and [12] the order of magnitude of logN(d, v) was determined in [3]: with suitable
constantsc1, c2 depending only ond

c1v
d−1
d+1 ≤ log N(d, v) ≤ c2v

d−1
d+1 .

We will use Vinogradov’s� notation so that we can write this as

v
d−1
d+1 � log N(d, v)� v

d−1
d+1 .

Here and in what follows the implied constants depend only ond, and all asymptotics are
understood withd fixed andv → ∞. One word of warning: the implied constants may be
very large and we usually make no effort to compute or estimate them.

In this paper we study similar questions for lattice free simplices and, more generally, poly-
topes. WriteE(d, v) for the number of equivalence classes of lattice free simplices of dimen-
siond and of volume at mostv. Our main result is the following.

THEOREM 1. When d≥ 3

vd−1
� E(d, v)� vd−1.

It is interesting to compare this withS(d, v), the number of equivalence classes of integral
simplices of dimensiond and of volume at mostv. The next result shows that a small, but not
so minute, fraction of integral simplices are lattice free.

THEOREM 2. When d≥ 2
vd
� S(d, v)� vd.
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We also prove an upper bound on the number,M(d, n, v), of (equivalence classes of) lattice
free polytopes withn vertices and of volume at mostv.

THEOREM 3. When d≥ 3

M(d, n, v)� vn−1(logv)d−2.

For simplices, i.e., whenn = d+1 this is weaker than Theorem1. However as| vert P| ≤ 2d

for a lattice free polytope (see [5, 16]), Theorem3 implies the following.

COROLLARY. When d≥ 3, the total number of equivalence classes of lattice free polytopes
of volume at mostv is� v2d

−1(logv)d−2.

This can probably be improved significantly. In three-dimensions, the truth isO(v2) and
we see no reason whyO(vd−1) should not hold in general.

2. ORDEREDSIMPLICES AND PROOF OFTHEOREM 2

An orderedintegral simplexP ⊂ Rd is a simplex with a given orderingz0, z1, . . . , zd of
its vertices. Another ordered integral simplexQ with verticesu0, . . . ,ud is equivalentto P
if the unique affine map carryingzi to ui for all i is lattice preserving. WriteSo(d, v) for the
number of equivalence classes of ordered integral simplices of dimensiond and of volume at
mostv. It is obvious that

1

(d + 1)!
So(d, v) ≤ S(d, v) ≤ So(d, v).

Given an ordered simplexP we first apply the unique translation carryingz0 to the origin.
The Hermite reduction theorem (see [4] for instance) states that there is a unique basis of
Z

d such that in this basis, for eachi = 1, . . . ,d vertexzi of P is the i th row of the lower
triangulard × d matrix

M(P) = [ai j ]

whereai j ∈ Z, ai j = 0 if i < j and 0≤ ai j < ai i if i ≥ j . We callM(P) the standard form
of the ordered simplexP. It is evident thatP andQ are equivalent as ordered simplices if and
only if M(P) = M(Q).

Clearly, VolP = 1
d! detM(P). Write M(d,V) for the number of distinct matrices in stan-

dard form with determinant at mostV , hereV ∈ Z. Writing d!v = V we haveSo(d, v) =
M(d,V). So in order to prove Theorem2 it suffices to show the following.

THEOREM 4. When d≥ 2

1

d
Vd
≤ M(d,V) ≤ Vd.

PROOF. Onceti = ai i is fixed, thei th row of a matrix in standard form can be filled int i−1
i

distinct ways. So there are
∏d

1 t i−1
i matrices with fixed diagonalt1, . . . , td. So

M(d,V) =
∑

t1...td≤V

d∏
1

t i−1
i

=

V∑
td=1

td−1
d

⌊
V
td

⌋∑
td−1=1

td−2
d−1 . . .

⌊
V

t3...td

⌋∑
t2=1

t2

⌊
V

t2...td

⌋∑
t1=1

1.
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The innermost sum here is ⌊
V

t2 . . . td

⌋
≤

V

t2 . . . td
,

and so the second innermost sum is at most⌊
V

t3...td

⌋∑
t2=1

t2
V

t2 . . . td
≤

(
V

t3 . . . td

)2

.

Continuing the same way givesM(d,V) ≤ Vd.
For the lower bound consider all matricesM(P)where thei th row isei , thei th basis vector,

for i = 1, . . . ,d − 1 and the last row is(x1, x2, . . . , xd) ∈ Z
d with 0 ≤ x j < xd ≤ V for all

j = 1, . . . , d − 1. These matrices are in standard form and have determinant at mostV and
their number is

∑V
1 xd−1

d ≥
1
d Vd. 2

REMARK 1. This proof gives a more precise form of Theorem2, namely

1

d(d + 1)!
(d!v)d ≤ S(d, v) ≤ (d!v)d.

REMARK 2. The number,M∗(d,V), of matrices in standard form and with determinant
exactlyV can be computed precisely. It turns out thatM∗(d,V) is a multiplicative function
of V ∈ Z. An easy recursion shows that, whenp is a prime andr a positive integer,

M∗(d, pr ) =

d−1∏
j=1

pr+ j
− 1

p j − 1
.

3. FLATNESS AND THE PROOF OFTHEOREM 1

We will use the lattice width of convex bodies and the flatness theorem throughout the
paper. So we introduce the necessary concepts here (see [4] or [13] for explanations). Assume
L is a d-dimensional lattice inRd with a given basisB = {b1, . . . , bd

}. The dual basis,
C = {c1, . . . , cd

} is defined as to satisfybi c j
= δi j for all i and j . The dual basis spans a

lattice L∗ that is dual toL in the sense that, for allx ∈ L and y ∈ L∗, xy ∈ Z. Moreover,
detL detL∗ = 1 where detL and detL∗ is the volume of any basis parallelotope ofL andL∗.
The lattice widthof a convex bodyK with respect toz∗ ∈ L∗ is defined as

w(K , z∗) = max{z∗(x − y) : x, y ∈ K }.

The lattice width, w(K , L) of K with respect toL is then

w(K , L) = min{w(K , z∗) : z∗ ∈ L∗, z∗ 6= 0}.

For the upper bound onE(d, v) we will need the so-called Flatness theorem.

FLATNESS THEOREM (CF. [10, 11]). If K is convex and K∩ Zd
= ∅, thenw(K ,Zd) ≤

w0 wherew0 is a constant depending only on d.

The current best value ofw0 is O(d3/2) in general, but for polytopes it isO(d logd)
(see [2]). When P is a lattice free polytope, the Flatness theorem applies to the interior of
P and we obtainw(P,Zd) ≤ w0.
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To avoid some trivial complications we assume, from now on, thatd ≥ 3.
For the proof of the upper bound in Theorem1 we use a modified version of the Hermite

normal form. LetP be a lattice free simplex withw(P,Zd) = w(P, e1) = w (so e1 is the
lattice width direction ofP). We order the vertices ofP asv0, v1, . . . , vd in such a way that
min{e1x : x ∈ P} = e1v0 and max{e1x : x ∈ P} = e1v1. We assume further thatv0 = 0.

We construct first a matrixM(P). Setb1
=

1
w
v1 and letL = Zd

+ Zb1. This is the lattice
spanned byb1, e1, e2, . . . , ed. Let L0 denote the lattice spanned byb1

− e1, e2, . . . , ed. L0
is a (d − 1)-dimensional sublattice ofL contained in the linear span ofe2, . . . , ed. Define
αi = e1vi , theαi are clearly integers satisfying 0≤ αi ≤ w.

Note thatzi = vi − αi b1
∈ L0 (for every i = 2, . . . ,d) and we can apply the Hermite

reduction theorem inL0: there is a unique basisb2, . . . , bd of L0 such thatzi =
∑i

2 ai j b j

with 0≤ ai j < ai i with all ai j integral.
Now we define the matrixM(P):

M(P) =


w 0 0 . . . 0
α2 a22 0 . . . 0
α3 a32 a33 . . .0

. . . . . . . . .
. . . . . .

αd ad2 ad3 . . . add


where thei th row gives the coefficients ofvi in the basisb1, b2, . . . ,bd of L. Observe that
this basis, and consequentlyM(P), is uniquely determined. As detL = 1/w, detM(P) =
w
∏d

2 ai i = wd!Vol P implying
∏d

2 ai i ≤ d!Vol P.
How many such matrices are there? The first column can be filled in(w + 1)d−1 different

ways. As we saw in the proof of Theorem4, the rest can be filled in at mostVd−1 ways where
V is an upper bound on

∏
ai i . So the number of such matrices is at most(w+1)d−1(d!v)d−1.

How to reconstructP from the matrixM(P)? Or rather, given the matrixM(P), how to
find a sublatticeL1, of L, in which P is a lattice free simplex with detL1/detL = w, and
how many such sublattices are there. The edge[v0, v1] of P contains the pointsαb1

∈ L
for α = 0,1, . . . , w, so b1, 2b1, . . . , (w − 1)b1 /∈ L1. This shows that for everyx ∈ L
the L-lattice line x + Zb1 intersectsL1 in the L1-lattice line x + β(x)b1

+ wZb1 where
0 ≤ β(x) < w is an integer. In particular, for everyi = 2, . . . ,d, ci

= bi
+ β(bi )b1

∈ L1.
It is straightforward to see thatwb1, c2, . . . , cd span a lattice with determinant 1 so they form
a basis ofL1. The number of such bases, and so the number of such sublatticesL1 is wd−2.
This shows thatM(P) determines at mostwd−2 lattices in whichP is lattice free. So

E(d, v) ≤
w0∑
w=1

wd−2(w + 1)d−1(d!v)d−1
� vd−1,

completing the proof of the upper bound.

REMARK 3. The above proof gives the following result: the number (of equivalence classes)
of polytopes of volume at mostv and lattice width at mostw is� (w2v)d−1. This implies
Theorem1 via the Flatness theorem.

Now let us consider the lower bound. We shall construct many lattice free simplices of vol-
ume at mostv and of lattice width 1. Consider the ordered simplicesP = conv{z0, z1, . . . , zd}

wherez0 = 0, zi = ei for i = 1, . . . ,d − 1, andzd is the vector(1, x2, x3, . . . , xd) such that

0≤ x2, . . . , xd−1 ≤ xd and(x2, . . . , xd) ∈ Z
d−1 is primitive.



On the number of lattice free polytopes 107

(An integer vector isprimitive if the greatest common divisor of its components is 1.) The
flatness direction ofP is e1 with lattice width 1. This simplex is clearly lattice free. So a
primitive vectorx = (x2, . . . , xd) ∈ Z

d−1 determines a lattice free ordered simplex inRd.
Further,v ≥ Vol P = 1

d!xd. It is well known that the number of such primitive vectors is
� vd−1, the proof given in [8, Theorems 330 and 332, p. 268] for the planar case works in
any dimension. It gives that the density of primitive vectors inZd is 1/ζ(d) (with Riemann’s
ζ -function).

We have to check that many of these vectors represent simplices from different equivalent
classes. This is easy: ifx, y ∈ Zd−1 represent equivalent lattice free simplicesP andQ then
there is a lattice-preserving affine transformationT carrying the vertices ofP to those ofQ.
This gives rise to a permutationπ of {0,1, . . . ,d} via T zi = uπ(i ) wherezi , resp. u j are the
vertices ofP andQ. The permutationπ determinesT uniquely as one can readily check. This
implies that at most(d+ 1)! vectors may represent the same equivalence class. Consequently

E(d, v)� vd−1.

4. PROOF OFTHEOREM 3

The key to this is the right choice of a representative from each equivalence class. This is
given in Theorem5 below; first we need some definitions.

Given a basisB = {b1, . . . , bd
} of Zd and vectorsα, β ∈ Rd with αi ≤ βi for all i =

1, . . . , d, we define the parallelotope

T(B, α, β) = {x =
∑

xi b
i
: αi ≤ xi ≤ βi (∀i )}.

For a polytopeP ⊂ Rd let T(B, P) be the smallest (with respect to inclusion) parallelotope
T(B, α, β) containingP. Such aT(B, P) obviously exists and is unique. Given a positive
vectorγ = (γ1, . . . , γd) ∈ Z

d, we define the standard box

T(−γ, γ ) = {x ∈ Rd
: −γi ≤ xi ≤ γi∀i },

wherexi is thei th component ofx in the standard basis.

THEOREM 5. For every lattice polytope P⊂ Rd with positive volume, there exists an
equivalent polytope Q contained in some standard box T(−γ, γ ) such that the origin is a
vertex of Q, Q has another vertex whose max norm is at mostγ1 and

Vol T(−γ, γ ) = 2d
d∏
1

γi � Vol P and γ1� w(P).

The proof is given in the next section. We next show how to use this representation for the
upper bound of Theorem3.

PROOF OFTHEOREM 3. Apply Theorem5 to the lattice free polytopeP with n vertices
and volume at mostv. The outcome is an equivalentQ sitting nicely in some standard box
T(−γ, γ ) whereγ1 � w(Q) ≤ w0 (w0 coming from the Flatness theorem) and

∏
γi �

Vol P ≤ v. Soγ1 ≤ w1 for a suitable constantw1 depending only ond. The number of such
standard boxes is equal to the number of integer pointsz ∈ Zd−1 whose components are all
positive and their product is� v (the implied constant depending ond only). It is a simple
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computation to check that the number of such integers is� v(logv)d−2, for details see [6,
Chapter 1, (3.5) and (8.1)]. Further, such a box contains

|T(−γ, γ ) ∩ Zd
| =

d∏
1

(2γi + 1)� Vol P ≤ v

integer points. The vertices ofQ come from these integer points, but one vertex is at the origin
and another one (whose max norm is at mostγ1) is in the finite box[−w1, w1]

d. Counting
vertices without repetitions, this is altogether at most

� v(logv)d−2
(

v

n− 2

)
< vn−1(logv)d−2

lattice free polytopes. 2

REMARK 4. The above proof works for polytopes having lattice widthw: we used the fact
that P is lattice free only through the Flatness theorem.

5. PROOF OFTHEOREM 5

LEMMA . For every lattice polytope P⊂ Rd of positive volume there exists a basis B=
{b1, . . . , bd

} ofZd such that

Vol T(B, P)� Vol P and β1− α1� w(P).

Note thatβ1 − α1 is the lattice width ofP in direction c1 (the first vector in the dual
basis). Thus the lemma states that for every lattice polytopeP there is an equivalent polytope
contained in a nice box whose volume is� Vol P and whose lattice width in the ‘first’
direction is� w(P). The lemma is a refinement of the representation theorem of lattice
polytopes from [3]. The refinement comes from controlling the lattice width ofP.

PROOF OF THELEMMA . We repeat, almost word by word, the arguments of Theorem 3
from [3] with the necessary changes that take care of the lattice width. We assume first that
P is 0-symmetric. Then there is an ellipsoidE, the Loewner–John ellipsoid (see [13] or [7]),
centred at the origin, such that

d−1/2E ⊂ P ⊂ E.

Apply a linear transformationτ that carriesE to the Euclidean unit diskD of Rd. Obviously,
L = τZd is a lattice again. It follows from the definition of the lattice width thatw(D, z∗) =
2||z∗||. Consequentlyw(D, L) = 2λ(L∗) whereλ(L∗) is the length of the shortest non-zero
vector inL∗.

Let B̃ = {b̃1, . . . , b̃d
} be a basis ofL together with its dual basisC = {c1, . . . , cd

}. Con-
siderT(B̃, D) = T(B̃,−α, α). Its facets touchD and the pointαi b̃i is on such a facet. As
the unit normal to this facet isci /||ci

|| we have 1= αi b̃i ci /||ci
|| = αi /||ci

||. Consequently

Vol T(B̃, D) = detL
d∏
1

2αi = 2d detL
d∏
1

||ci
||.

Choose the dual basisC = {c1, . . . , cd
} to be reducedin the sense of Definition 1.2.9

of Lovász ([13] p. 20) and compute the dual basisB̃. According to Theorem 1.2.10 of [13]
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||c1
|| � λ(L∗) and

∏
||ci
|| � detL∗. Since 2α1 = 2||c1

|| = w(D, c1), andw(D, L) =
2λ(L∗), we obtain

α1� w(D, L).

The other condition implies

Vol T(B̃, D)� detL detL∗ = 1.

Apply now τ−1 to B̃, D andL. We get a basisB = τ−1B̃ of Zd
= τ−1L, and

Vol T(B, P) ≤ Vol T(B, E) = detτ−1 Vol T(B̃, D)

� detτ−1
= Vol E/Vol D � Vol P.

On the other hand, the lattice width does not change underτ and so 2α1 is the lattice width of
E in directionτ−1c1. So

2α1� w(E) = d1/2w(d−1/2E)� w(P).

For a general, i.e., non-0-symmetric polytopeP, one should considerQ = P− P which is
0-symmetric. It is a well known result of Rogers and Shephard [15] that Vol Q � Vol P. Of
course,w(Q, z) = 2w(P, z). Moreover, a suitably translated copy ofT(B, P) is contained in
T(B, Q). Consequently the ‘good’ basis forQ is a good basis forP as well. 2

For the proof of Theorem5we further refine this representation. WriteT(B, P) = T(B, α, β)
and setγ = β − α. Then T(B, γ ) contains a translated copy,P′ of P. The unimodular
transformation carryingB to the standard basise1, . . . , ed carriesT(B, γ ) to the standard
box T({e1, . . . ,ed

}, γ ) = T(γ ) and P′ to an equivalent polytopeP′′ ⊂ T(γ ). Note that
γ1� w(P). We may further assume thatγ1 = min1,...,d γi .

P′′ has a vertex,z0 say, whose first component is minimal. Translation by−z0 carriesP′′

to P′′′ which is equivalent toP, has one vertex at the origin, and satisfies

P′′′ ⊂ T(−γ, γ ).

Now let z1 = ζ1e1
+ · · · + ζded be another vertex with maximal first component. Of course,

0< ζ1 ≤ γ1. Divide ζi by ζ1 (for eachi = 2, . . . ,d):

ζi = µi +mi ζ1, where 0≤ µi < ζ1 andµi ,mi ∈ Z.

Consider the unimodular linear transformation mappingx =
∑d

1 xi ei to

x1→ x1

xi → xi −mi x1, for i > 1.

The image ofz1 has all of its components in[0, γ1]. The image of every other vertex is in the
box T(−3γ,3γ ) as an easy and generous computation shows. So the image ofP′′′ is a lattice
polytopeQ equivalent toP contained in the standard boxT(−3γ,3γ ), having a vertex at the
origin, another vertex with max norm at mostγ1, andw(Q, e1) ≤ γ1. After rescaling theγi

we obtain the theorem. 2
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