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On the Number of Lattice Free Polytopes

IMRE BARANY AND JEAN-MICHEL KANTOR

V. I. Arnold asked for estimates for the number of equivalence classes of lattice polytopes, under the
group of unimodular affine transformations. What we investigate here is the analogous question for
lattice free polytopes. Some of the results: the number of equivalence classes of lattice free simplices
of volume at most in dimensiond is of ordervd—1, and the number of equivalence classes of lattice

free polytopes of volume at mostin dimensiond is O(v2'~L(log v)-2).

(© 2000 Academic Press

1. INTRODUCTION AND RESULTS

There has recently been an increasing interest in integral polytopes. A particular class of
them, the lattice free polytopes, play a special role in various areas: geometry of numbers
(see 1)), integer programmingl[1, 16], singularities in algebraic geometr9,[14], for ex-
ample.

Given a polytope® c RY let vertP denote the set of its verticeB.is anintegral or lattice
polytope if vertP c Z9 and islattice freeif Z9 N P = vertP. Each lattice free polytope is,
of course, a lattice polytope.

Two lattice polytopesP andQ are said to bequivalenif there is a lattice-preserving affine
transformation carrying to Q. Equivalent polytopes have the same volume. Arnbjéfked
for estimates for the numb@¥(d, v) of equivalence classes of polytopesRfi of volume (at
most) v. (Of course, is positive and is an integral multiple of/d!.) After partial results
by [1] and [12] the order of magnitude of loly(d, v) was determined in3: with suitable
constantg;, ¢c; depending only ol

d-1 d-1
civdtl < logN(d, v) < cpud+i,
We will use Vinogradov'sk notation so that we can write this as
d-1 d-1
v+l K logN(d, v) K vd+L,

Here and in what follows the implied constants depend onlylpand all asymptotics are
understood withd fixed andv — oco. One word of warning: the implied constants may be
very large and we usually make no effort to compute or estimate them.

In this paper we study similar questions for lattice free simplices and, more generally, poly-
topes. WriteE (d, v) for the number of equivalence classes of lattice free simplices of dimen-
siond and of volume at most. Our main result is the following.

THEOREM1. When d> 3

vl « E(d, v) < vt

It is interesting to compare this witB(d, v), the number of equivalence classes of integral
simplices of dimensiod and of volume at most. The next result shows that a small, but not
so minute, fraction of integral simplices are lattice free.

THEOREM2. When d> 2
v« S, v) < vl
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We also prove an upper bound on the numbfd, n, v), of (equivalence classes of) lattice
free polytopes with vertices and of volume at most

THEOREM 3. When d> 3
M(d, n, v) < v"(logv)92.

For simplices, i.e., when = d+1 this is weaker than TheoremHowever agvertP| < 24
for a lattice free polytope (se&,[16]), Theorem3 implies the following.

COROLLARY. When dzd3, the total number of equivalence classes of lattice free polytopes
of volume at most is <« vZ ~1(logv)9—2.

This can probably be improved significantly. In three-dimensions, the truiiig) and
we see no reason WI’@(vd_l) should not hold in general.

2. ORDEREDSIMPLICES AND PROOF OFTHEOREM 2

An orderedintegral simplexP c RY is a simplex with a given ordering, z;, ..., zg of
its vertices. Another ordered integral simpléxwith verticesuy, . .., Uq is equivalentto P
if the unique affine map carrying to u; for all i is lattice preserving. Writ&°(d, v) for the
number of equivalence classes of ordered integral simplices of dimethsind of volume at
mostv. It is obvious that

ﬁs"(d, v) < S, v) < S°(d, v).

Given an ordered simpleR we first apply the unique translation carryingto the origin.
The Hermite reduction theorem (sef for instance) states that there is a unique basis of
79 such that in this basis, for each= 1, ..., d vertexz of P is theith row of the lower
triangulard x d matrix

M(P) = [aij ]
whereajj € Z,a; = 0ifi < j and 0< gj < &; if i > j. We callM(P) the standard form
of the ordered simpleR. Itis evident thatP andQ are equivalent as ordered simplices if and
only if M(P) = M(Q).

Clearly, VolP = % detM(P). Write M(d, V) for the number of distinct matrices in stan-
dard form with determinant at most, hereV < Z. Writing d!lv = V we haveS°(d, v) =
M(d, V). So in order to prove Theorehit suffices to show the following.

THEOREM4. When d> 2

1
avd <M, V) < V9,

PrROOE Oncet; = g;j is fixed, thei th row of a matrix in standard form can be fiIIedtirT1

distinct ways. So there aﬁ‘i tii ~1 matrices with fixed diagond, ..., ty3. So
d .
Md.vy= > JJt*
t1..tg<Vv 1
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V \Y
< 9
...tg| ~ to...tg

and so the second innermost sum is at most
L13V1dJ 2
Y ey = (5
2. ta ..t/

Continuing the same way g|veM(d, V) < Vi _
For the lower bound consider all matricels P) where theéth row is€', theith basis vector,

The innermost sum here is

fori = 1,...,d — 1 and the last row igx1, Xo, ..., X4) € Z%9 with 0 < Xj < Xg <V forall
j =1,...,d — 1. These matrices are in standard form and have determinant aiviraost
their number iy x{~* > vd. m

REMARK 1. This proof gives a more precise form of Theor8mmamely

——(dw)? < S, v) < (dw)?.

d(d+1)!( v)" < §(d, v) < (dlv)
REMARK 2. The numberM*(d, V), of matrices in standard form and with determinant

exactlyV can be computed precisely. It turns out tivit(d, V) is a multiplicative function

of V € Z. An easy recursion shows that, whpiis a prime and a positive integer,

M*(d, p') = 1'['O
j=1

r+J_1

3. FLATNESS AND THE PROOF OFTHEOREM 1

We will use the lattice width of convex bodies and the flatness theorem throughout the
paper. So we introduce the necessary concepts heref{sed 13] for explanations). Assume
L is ad-dimensional lattice iR with a given basisB = {b', ..., b%}. The dual basis
C = {c1, ..., cY) is defined as to satisfy'c! = 8 foralli andj. The dual basis spans a
lattice L* that is dual toL in the sense that, for akl € L andy € L*, xy € Z. Moreover,
detL detL* = 1 where det. and delL* is the volume of any basis parallelotopelodndL*.
Thelattice widthof a convex bodyK with respect ta* € L* is defined as

w(K,Z") =maxq{z*(x—y): x,y € K}.
Thelattice width w(K, L) of K with respect td_ is then
w(K, L) = minfw(K, z*) : ¥ ¢ L*, 2" £ 0}.
For the upper bound oB(d, v) we will need the so-called Flatness theorem.

FLATNESS THEOREM (CF. [10, 11]). If K is convex and KN Z9 = @, thenw(K, Z%) <
wo Wherewy is a constant depending only on d.

The current best value afig is O(d%?) in general, but for polytopes it i©(dlogd)
(see B]). When P is a lattice free polytope, the Flatness theorem applies to the interior of
P and we obtainw (P, Z%) < wy.
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To avoid some trivial complications we assume, from now on, dhat3.

For the proof of the upper bound in Theordmve use a modified version of the Hermite
normal form. LetP be a lattice free simplex witw(P, Z9) = w(P, e!) = w (soel is the
lattice width direction ofP). We order the vertices d? aswvg, v1, ..., vg in such a way that
min{elx : x € P} = elvg and maxelx : x € P} = elv;. We assume further thap = 0.

We construct first a matri (P). Setb' = 1v; and letL = Z9 + Zb'. This is the lattice

spanned by!, el, €2, ..., e, Let Lo denote the lattice spanned by — el €2, ..., % Lo

is a (d — 1)-dimensional sublattice of contained in the linear span ef, ..., ed. Define
aj = ey, thew; are clearly integers satisfying9 «j < w.

Note thatz; = v — aib! € Lo (for everyi = 2,...,d) and we can apply the Hermite
reduction theorem irbo: there is a unique bast¥, ..., bY of Lo such thazy = Y, ajj b

with 0 < &j < a&; with all &;j integral.
Now we define the matritm (P):

w O o ... 0
o2 ap2 0 Ce 0
MP)=| a3 a2 ass ...0
0d ad2 ad3 ... add
where theith row gives the coefficients af in the basis?®, b?, ..., bd of L. Observe that
this basis, and consequenti§(P), is uniquely determined. As det= 1/w, detM(P) =
w ]_[ga.-i = wd! Vol P implying ]‘[g ajj <d!'Vol P.

How many such matrices are there? The first column can be filléd i 1)9-1 different
ways. As we saw in the proof of Theorefnthe rest can be filled in at mogt®—1 ways where
V is an upper bound off &;i . So the number of such matrices is at mast- 1)9-1(d1p)d-1,

How to reconstrucP from the matrixM (P)? Or rather, given the matrid (P), how to
find a sublatticel 1, of L, in which P is a lattice free simplex with dét;/ detL = w, and
how many such sublattices are there. The efdgevs] of P contains the pointab! € L
fora = 0,1,...,w, sobt 2bt, ..., (w — )bt ¢ L;. This shows that for every e L
the L-lattice linex + Zb?! intersectsL; in the L1-lattice linex + B(x)b! + wZb! where
0 < B(X) < wis an integer. In particular, for eveiy=2,...,d,c = b' + (b )bt € L.
It is straightforward to see thatb®, ¢, .. ., cd span a lattice with determinant 1 so they form

a basis ofL1. The number of such bases, and so the number of such sublatti¢gesy® 2.
This shows thaM (P) determines at most9~2 lattices in whichP is lattice free. So

wo
Ed.v) < Y wi?(w+ D% dw) T < o

w=1
completing the proof of the upper bound.

REMARK 3. The above proof gives the following result: the number (of equivalence classes)
of polytopes of volume at most and lattice width at mosi is < (w?v)3~1. This implies
Theoreml via the Flatness theorem.

Now let us consider the lower bound. We shall construct many lattice free simplices of vol-
ume at most and of lattice width 1. Consider the ordered simpli€es- con{zo, z1, . . ., Z4}
wherezg =0,z =€ fori =1,...,d — 1, andzq is the vector(1, X, X3, ..., Xg) such that

0<Xo,...,Xd—1 < Xq and(Xz, ..., Xq) € 79-1is primitive.
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(An integer vector igrimitive if the greatest common divisor of its components is 1.) The
flathess direction oP is el with lattice width 1. This simplex is clearly lattice free. So a
primitive vectorx = (xa, ..., Xq) € Z39~1 determines a lattice free ordered simplexRf.
Further,v > Vol P = éxd. It is well known that the number of such primitive vectors is
> v9~1, the proof given in§, Theorems 330 and 332, p. 268] for the planar case works in
any dimension. It gives that the density of primitive vector&this 1/¢(d) (with Riemann’s
¢-function).

We have to check that many of these vectors represent simplices from different equivalent
classes. This is easy:xf y € Z9-1 represent equivalent lattice free simplide@nd Q then
there is a lattice-preserving affine transformatioearrying the vertices oP to those ofQ.
This gives rise to a permutationof {0, 1, ...,d} via Tz = u,) wherez, resp u; are the
vertices ofP andQ. The permutatiotr determined’ uniquely as one can readily check. This
implies that at mostd + 1)! vectors may represent the same equivalence class. Consequently

E(d, v) > v91.

4. PROOF OFTHEOREM3

The key to this is the right choice of a representative from each equivalence class. This is
given in Theoren®d below; first we need some definitions.

Given a basiB = {bl, ..., b%} of Z9 and vectorsr, 8 € Rd with o < g foralli =
1,...,d, we define the parallelotope

T(B,a, B) = {x= ) xb rei <x <pi(¥i)}.

For a polytopeP c RY let T(B, P) be the smallest (with respect to inclusion) parallelotope
T(B, «, B) containingP. Such aT (B, P) obviously exists and is unique. Given a positive
vectory = (y1,...,¥d) € 79, we define the standard box

T(—ry.y)={xeR: =y <x < nVvi),
wherex; is theith component ok in the standard basis.

THEOREMS. For every lattice polytope Pc RY with positive volume, there exists an
equivalent polytope Q contained in some standard b@x 4, ) such that the origin is a
vertex of Q, Q has another vertex whose max norm is at maatd

d

Vol T(—y,y) = 24 l_[)f. < Vol P and y1 < w(P).
1

The proof is given in the next section. We next show how to use this representation for the
upper bound of Theore®

PROOF OFTHEOREM 3. Apply Theorems5 to the lattice free polytop® with n vertices
and volume at most. The outcome is an equivalefi sitting nicely in some standard box
T(—y,y) whereys < w(Q) < wp (wo coming from the Flatness theorem) ahfy; <«
Vol P < v. Soy1 < ws for a suitable constant; depending only onl. The humber of such
standard boxes is equal to the number of integer pairtsZd—! whose components are all
positive and their product i& v (the implied constant depending dronly). It is a simple
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computation to check that the number of such integeksg is(logv)d—2, for details seef,
Chapter 1, (3.5) and (8.1)]. Further, such a box contains

d
T(—y.»nz =]]@n+D <VWIP <v
1

integer points. The vertices 6 come from these integer points, but one vertex is at the origin
and another one (whose max norm is at mastis in the finite box{—w1, w1]9. Counting
vertices without repetitions, this is altogether at most

< v(log v)d_2< ) < 1" (logv)d-2?

v
n—2
lattice free polytopes. O

REMARK 4. The above proof works for polytopes having lattice widthwe used the fact
that P is lattice free only through the Flatness theorem.

5. PROOF OFTHEOREMS5

LEMMA. For every lattice polytope R= RY of positive volume there exists a basis=B
(b, ..., b4} of z9 such that

Vol T(B, P) « Vol P and P1— a1 K w(P).

Note thatB1 — «1 is the lattice width ofP in directionc! (the first vector in the dual
basis). Thus the lemma states that for every lattice poly®fieere is an equivalent polytope
contained in a nice box whose volume<4s Vol P and whose lattice width in the ‘first’
direction is< w(P). The lemma is a refinement of the representation theorem of lattice
polytopes from B]. The refinement comes from controlling the lattice widthRof

PrROOF OF THELEMMA. We repeat, almost word by word, the arguments of Theorem 3
from [3] with the necessary changes that take care of the lattice width. We assume first that
P is 0-symmetric. Then there is an ellipsdig the Loewner—John ellipsoid (se&j or [7]),
centred at the origin, such that

dY?EcPCE.

Apply a linear transformation that carriesE to the Euclidean unit disb of RY. Obviously,
L = 79 is a lattice again. It follows from the definition of the lattice width thatD, z*) =
2||z*||. Consequentlyw(D, L) = 2x(L*) whereA(L*) is the length of the shortest non-zero
vector inL*,

Let B = {b', ..., bY} be a basis of. together with its dual basig = {cl, ..., c}. Con-
siderT(B, D) = T(B, —a, ). Its facets touctD and the point;b' is on such a facet. As
the unit normal to this facet id /||c' || we have 1= o;b'c' /||c'|| = «; /||c'||. Consequently

d d
Vol T(B, D) = detL [ [ 2 = 2detL ] [ lIc'||.
1 1
Choose the dual bass = {cl,...,cd} to bereducedin the sense of Definition 1.2.9

of Lovasz ([L3] p. 20) and compute the dual bads According to Theorem 1.2.10 oi§]
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lIct]] <« A(L*) and]]||c'|| <« detL*. Since 27 = 2||ct|| = w(D,cY), andw(D, L) =
2)(L*), we obtain
a1 < w(D, L).

The other condition implies
Vol T(B, D) < detL detL* = 1.
Apply nowr~1to B, D andL. We get a basi8 = 1B of Z4 = 1L, and

Vol T(B, P) < Vol T(B, E) = detr "1 Vol T(B, D)
« dett™ = Vol E/ Vol D « Vol P.

On the other hand, the lattice width does not change unded so 21 is the lattice width of
E in directiont ~1cl. So

201 < w(E) = dY2w(dY2E) <« w(P).

For a general, i.e., non-0-symmetric polytdpeone should considgd = P — P which is
0-symmetric. It is a well known result of Rogers and Shephafjithat Vol Q « Vol P. Of
coursew(Q, 2) = 2w(P, 2). Moreover, a suitably translated copyDfB, P) is contained in
T (B, Q). Consequently the ‘good’ basis f@ is a good basis foP as well. m]

For the proof of TheorerGwe further refine this representation. WritéB, P) = T(B, «, 8)
and sety = B — «. ThenT(B, y) contains a translated cop#’ of P. The unimodular
transformation carryind® to the standard basi!, . . ., e’ carriesT (B, y) to the standard
box T({el,...,e%,y) = T(y) and P’ to an equivalent polytop®” c T(y). Note that
y1 < w(P). We may further assume that = miny,__q4 .

P” has a vertexzg say, whose first component is minimal. Translation-®g carriesP”
to P which is equivalent td®, has one vertex at the origin, and satisfies

P” C T(=y,y).

Now letzy = ¢1elt + -+ + gded be another vertex with maximal first component. Of course,
0 < ¢1 < 1. Divide ¢j by ¢; (foreachi = 2, ..., d):

Gi = pi +migy, where 0< pj < ¢ andui, mj € Z.
Consider the unimodular linear transformation mapping Z‘i xi € to

X1 — X1
Xi — Xj —mjXq, fori > 1.

The image ofz; has all of its components i®, y1]. The image of every other vertex is in the
box T (—3y, 3y) as an easy and generous computation shows. So the im&jéisfa lattice
polytopeQ equivalent toP contained in the standard bdx—3y, 3y), having a vertex at the
origin, another vertex with max norm at maat andw(Q, e!) < y1. After rescaling the,
we obtain the theorem. a
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