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1. The main result

The “integer convex hull” ofrBd, the ball of radiusr centred at the origin, is,
by definition

Pr = conv(Zd ∩ rBd),

which is clearly a convex polytope. How many vertices doesPr have? Motivation
for the question comes from different sources: integer programming (cf. [CHKM]
[BHL]), classical enumeration problems ([J],[Sch], or more generally [W],[Vin]),
and from the theory of random polytopes (see later). For the cased = 2 it is
shown in [BB] that

(1.1) 0.33r 2/3 ≤ f0(Pr ) ≤ 5.55r 2/3

wherefk(P) denotes the number ofk–dimensional faces of the polytopeP. The
limit, as R → ∞, of the average ofr −2/3f0(Pr ), on an interval [R,R + H ], is
determined by Balog and Deshoullier [BD], and turns out to be 3.453. . . , (H
must be large). Our main result extends (1.1) to anyd ≥ 2 and to anyfk(Pr )
with k = 0, . . . ,d − 1.

Theorem 1. For every d≥ 2 there are constants c1(d) and c2(d) such that for
all k ∈ {0, . . . ,d − 1}

(1.2) c1(d)r d d−1
d+1 ≤ fk(Pr ) ≤ c2(d)r d d−1

d+1 .
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Using Vinogradov’s� notation this can be written asr d d−1
d+1 � fk(Pr ) �

r d d−1
d+1 . Here the implied constants depend only on dimensiond; we will keep to

this as a convention throughout the paper (unless stated otherwise).
It is the authors’ conviction that lattice points and random points, in relation

to convex bodies in “general position”, behave similarly. Theorem 1 is another
confirmation: (1.2) is in complete analogy with random polytopes. To see this,
choosen = dr d Vol Bde random, independent, and uniform points fromBd, and
let Kn denote their convex hull. Then, according to [BL] and [B],n

d−1
d+1 �

Efk(Kn) � n
d−1
d+1 , whereE stands for expectation. Butn

d−1
d+1 � r d d−1

d+1 � n
d−1
d+1 ,

showing that the convex hull ofn random points and the convex hull of then
lattice points lying inrBd have the same number ofk–dimensional faces.

2. The upper bound

The upper bounds in (1.2) follows from a result of Andrews [An] who proved
the casek = 0 of the following more general

Theorem 2. Assume P⊂ Rd is a lattice polytope with nonempty interior. Then

(2.1) fk(P) � (Vol P)
d−1
d+1 ,

where the implied constant depends only on d.

The result was rediscovered by Arnol’d [Ar] (cased = 2), Konyagin and
Sevastyanov [KS], cased ≥ 2, k = 0 with indication to anyk. W. Schmidt [Sch]
proved (2.1) in slightly stronger form. A more general argument of Báŕany and
Vershik [BV] implies the cased ≥ 2, k = 0. Here we give yet another proof,
based on convex geometry and the technique of cap coverings. What we get is
a slight improvement over (2.1), which is also indicated in [KS]. Atower (or
flag) of the polytopeP is a chain of incident facesF0 ⊂ F1 ⊂ · · · ⊂ Fd−1 with
dimFi = i . Write T(P) for the number of towers ofP.

Theorem 3. Under the previous assumptions

(2.2) T(P) � (Vol P)
d−1
d+1 .

As clearlyfk(P) ≤ T(P), (2.2) indeed generalizes (2.1). The proof, however,
starts with the casek = d − 1 of (2.1) and uses, twice, a trick of Andrews later.

3. Lower bounds and approximation

W. Schmidt [Sch] asked whether the exponentd−1
d+1 in (2.1) is best possible (when

d > 2). In the cased = 2 this is clear from [Ar] and [Sch], Arnol’d also indicates
the general case. The lower bounds of Theorem 1 show that the exponent in (2.1),
and also in (2.2), is best possible. An argument of the first named author (given
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in [BD]) proves that the average off0(Pr ), overr ∈ [R,R+H ] is of orderRd d−1
d+1 .

This is a weaker, or average, version of the casek = 0 of Theorem 1.
The proof of the lower bounds in Theorem 1 is based on a result from the

theory of approximation of (smooth) convex bodies by polytopes. To state what
we need, writeC (D) for the collection of convex bodies withC 2 boundary
and radius of curvature at every point and every direction between 1/D and
D . (Here D ≥ 1.) Let K ∈ C (D) and assumeP ⊂ K is a convex polytope.
Approximation ofK by P is measured as the “relative” missed volume, i.e.,

appr(K ,P) =
Vol(K \ P)

Vol K
.

The result we need (cf. [G1]) says that for anyK ∈ C (D) and for any polytope
P ⊂ K havingn vertices

(3.1) appr(K ,P) � n− 2
d−1 .

On the other hand, there is a polytopeP ⊂ K with n vertices satisfying

(3.2) appr(K ,P) � n− 2
d−1 .

Here � and � depend onD as well. More precise asymptotic information is
available on best approximation (cf. [G2]): the constant is const(d) times the d+1

d−1
power of the affine surface area ofK . But we won’t need this precision.

The proof of the lower bounds is based on

Theorem 4. For every d≥ 2

Vol(rBd \ Pr ) � r d d−1
d+1 .

This implies the casek = 0 of Theorem 1: Assumef0(Pr ) = n. By (3.1) and
Theorem 4

n− 2
d−1 � Vol(rBd \ Pr )

Vol rBd
� r d d−1

d+1 −d = r − 2d
d+1

showing thatf0(Pr ) = n � r d d−1
d+1 indeed. On the other hand,f0(Pr ) � r d d−1

d+1

from Theorem 1 which together with (3.1) imply that

r − 2d
d+1 � f0(Pr )−

2
d−1 � appr(rBd,Pr ),

i.e., Pr is a “best” aproximating polytope torBd in the sense of (3.2). So we
have

Corollary .

f0(Pr )−
2

d−1 � appr(rBd,Pr ) � f0(Pr )−
2

d−1 .
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A long time ago, C. A. Rogers [R] proved the following analogue of (3.1).
For every polytopeP ⊂ Bd with n facets

(3.3) appr(Bd,P) � n− 2
d−1 .

From this the casek = d − 1 of Theorem 1 (the lower bound) follows the same
way as above. Casesk = 1, . . . ,d − 2 of Theorem 1 need special, and more
involved treatment. The proof would be simpler if, for every convex polytopeP,
one would have

(3.4) fk(P) ≥ min{f0(P), fd−1(P)}.
This would follow from the unimodality conjecture (see [Z]), which is known
to be false. But (3.4) may still be true. It is known to hold for simple (and then
simplicial) polytopes, see Björner [Bj].

4. ReplacingBd by K

In this section we assume

(4.1) K ∈ C (D) and 0∈ int K .

Let Pλ be the integer convex hull ofλK , i.e.,

Pλ = Pλ(K ) = conv(Zd ∩ λK ).

Here λ is large (we keep the letterr for radius of curvature). The questions,
and the answers, of the previous sections extend to this case, with the constants
implied in � depending ond andD :

Theorem 5. Assume K satisfies (4.1). Then, asλ → ∞,

(4.2) λd d−1
d+1 � fk(Pλ(K )) � λd d−1

d+1 .

We will indicate, after the proofs forBd, how the extension goes.
The generalization of Rogers’ result (3.3) to this case has to be stated and

proved separately:

Theorem 6. Assume K satisfies (4.1) and P⊂ K is a polytope with n facets.
Then

appr(K ,P) � n− 2
d−1

with the implied constant depending only on d,D.

Again, the proof of the lower bound in Theorem 1 fork = 1, . . . ,d −2 would
be simpler if the following unusual approximation statement were true.

Conjecture. Assume K satisfies (4.1), k∈ {1, . . .d−2} and P ⊂ K is a polytope
with fk(P) = n. Then

appr(K ,P) � n− 2
d−1 .
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5. Proof of Theorem 4

We start by introducing notation and terminology. Letp ∈ Zd be a primitive
vector, outward normal to the facetF (p) of Pr . The hyperplaneH (p) = aff F (p)
cuts off a small capC(p) from rBd and

(5.1) Zd ∩ int C(p) = ∅.
Let ρ = ρ(p) be the radius of the (d − 1)–ball H (p) ∩ rBd and leth = h(p) be
the width, in directionp, of the capC . Then

(5.2) ρ2 = (2r − h)h and sorh � ρ2 � rh.

Write |x| for the Euclidean length ofx ∈ Rd. Letting Area to denote (d − 1)–
dimensional volume, we have

(5.3) AreaF (p) = `(p)|p| � ρd−1

where`(p) > 0. |p| is, in fact, the determinant of the latticeZd ∩ H (p). So

`(p) ∈ 1
(d − 1)!

Zd.

Lemma 1. The contribution toVol(rBd \Pr ) of the caps C(p) with h(p) ≤ r − d−1
d+1

is � r d d−1
d+1 .

Proof. Everything that is contained in such aC(p) is also contained in

rBd \ (r − r − d−1
d+1 )Bd

whose volume is just
(

r d − (r − r − d−1
d+1 )d

)
Vol Bd � r d d−1

d+1 . ut

From now on we can only consider facetsF (p) with

(5.4) h(p) ≥ r − d−1
d+1 .

We are going to use the Flatness Theorem (cf. [K], [KL]) saying that the
lattice width of a lattice point free convex body (inRd) is at mostc0d2 where
c0 is a universal constant. Applying this toC(p), or rather to intC(p) which is
lattice point free by (5.1), we get a primitive vectorq ∈ Zd such that

(5.5) max{q(x − y) x, y ∈ C(p)} ≤ c0d2.

Case 1:when h(p) ≤ c0d2|p|−1. In this casep is a flatness direction forC(p)
(since consecutive lattice hyperplanes with normalp are at distance|p|−1 apart).
Thenρ2 � rh � r |p|−1 and

AreaF (p) = `(p)|p| � ρd−1 � (r |p|−1)
d−1

2 ,
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implying

`(p) � r
d−1

2 |p|− d+1
2 .

As `(p) ≥ 1
(d−1)! we get|p| � r

d−1
d+1 . We writeb = b(d) for the implied constant.

The lost volume in Case 1 is

�
∑

p

AreaF (p)h(p) �
∑

p

`(p) �
∑

|p|≤br
d−1
d+1

r
d−1

2 |p|− d+1
2

� r
d−1

2

∫ br
d−1
d+1

0
x− d+1

2 xd−1dx � r d d−1
d+1 ,(5.6)

as a simple computation reveals.

Case 2: when h(p) > c0d2|p|−1. Then someq ∈ Zd, distinct from p, is the
flatness direction ofC(p).

AssumeC(p) is between hyperplanesqx = `1 and qx = `2 with 0 < `1 <
`2 ≤ |q|r and `2 − `1 ≤ c0d2. Set ki = |q|r − `i and xi = ki /|q|, (i = 1,2).
Consider the two–dimensional plane containing 0,q, and the centre ofC(p). We
show first, assumingx2 > 0, thatφ (see the figure) gets small asr gets large.
Indeed, using (5.4)

sinφ =
x1 − x2

2ρ
=

x1 − x2

2
√

(2r − h)h
≤ k1 − k2

2|q|√rh
≤ c0d2

2|q|
√

r · r − d−1
d+1

� r − 1
d+1

since|q| ≥ 1.

Fig. 1.

As φ andψ (see the figure) are almost equal, (5.6) implies

(5.7) x1 = r (1 − cosψ) ≤ r sin2φ � r
d−1
d+1 .

We can estimateρ from the figure, again. As cosφ > 1/2 for large enoughr ,
we get
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ρ <
√

(2r − x1)x1 −
√

(2r − x2)x2 =
(2r − x1)x1 − (2r − x2)x2√
(2r − x1)x1 +

√
(2r − x2)x2

≤ (2r − x1 − x2)(x1 − x2)√
r (

√
x1 +

√
x2)

≤ 2
√

r
k1 − k2

|q|

√|q|√
k1 +

√
k2

�
√

r
|q|k1

.(5.8)

The same estimate follows directly whenx2 = 0. From thish � ρ2r −1 �
(|q|k1)−1. Now (5.4) showsk1|q| � r

d−1
d+1 . Set nowk = dk1e. As p is not a

flatness direction, 1≤ k1 − k2 ≤ k1. So k ≥ 1 and

k|q| � r
d−1
d+1 .

Collect theF (p) with fixed flatness directionq and fixedk into groups. The
missed volume in the corresponding caps is

(5.9) �
∑

AreaF (p)h(p) ≤ S maxh(p)

whereS is the surface area ofrBd between hyperplanesqx = `1 and qx = `2.
Sinceφ is small,

S ≤ 2
(

[(2r − x1)x1]
d−1

2 − [(2r − x2)x2]
d−1

2

)
AreaBd−1

� (
√

(2r − x1)x1 −
√

(2r − x2)x2)[(2r − x1)x1]
d−2

2 �
√

r
|q|k

(
rk
|q|
) d−2

2

.

where we used the second half of (5.8). Evidently maxh(p) ≤ ρ2/r � (|q|k)−1.
We continue (5.9):

� 1
|q|k

√
r

|q|k
(

rk
|q|
) d−2

2

= r
d−1

2 |q|− d+1
2 k

d−5
2 .

This is to be summed for allk = 1,2, . . . andq ∈ Zd primitive with k|q| ≤ R
whereR � r

d−1
d+1 . Then the total missed volume is

� r
d−1

2

R∑
k=1

R
k∑

q∈Zd

|q|− d+1
2 k

d−5
2 � r

d−1
2

R∑
k=1

∫
x∈Rd , |x|≤ R

k

|x|− d+1
2 k

d−5
2 dx

� r
d−1

2

R∑
k=1

k
d−5

2

∫ R
k

0
td−1t− d+1

2 dt � r
d−1

2

R∑
k=1

k
d−5

2

(
R
k

) d−1
2

= r
d−1

2 R
d−1

2

R∑
k=1

k−2 � (rR)
d−1

2 � r d d−1
d+1 ,(5.10)

as one can check easily.ut
Remark 1.This proof shows the inequalityf0(Pr ) � r d d−1

d+1 (from Theorem 1)
directly. Actually, it shows the stronger result that

|∂Pr ∩ Zd| � r d d−1
d+1 .
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To see this one has to use the simple fact

|F (p) ∩ Zd| � AreaF (p)
|p|

valid for every facetF (p) of Pr . This gives, in Case 1,

∑
p

|F (p) ∩ Zd| �
∑

p

AreaF (p)
|p| �

∑
p

ρ(p)d−1

|p| �
∑

p

r
d−1

2 |p|− d+1
2 ,

which is � r d d−1
d+1 , according to (5.6). Case 2 is even simpler. Then

|F (p) ∩ Zd| � AreaF (p)
|p| � AreaF (p)h(p) � Vol C(p)

and (5.9), (5.10) can be applied.

Remark 2.An essentially identical proof works whenBd is replaced byK satis-
fying (4.1). The main difference is thatH (p) ∩ λK is not a ball. But it is very
close to an ellipsoid (sinceh(p) is very small, less thanλ− d−1

d+1 : this is shown by
Lemma 1). This ellipsoid is sandwiched between two concentric balls of radii√

λh
D and

√
2λhD. This shows that the correspondingρ and AreaF (p) can be

bounded as in (5.2) and (5.3) with the implied constants depending onD as well.
We elaborate on how to deal withφ andψ on the figure. Lety ∈ ∂K be the

point where the outer normal toK is q. Then the figure shows the intersection
of Pλ with the two–planeH parallel withq, containing the centre ofC(p) and
the pointλy. Write r for the radius of curvature atλy of H ∩ λK . Clearly, r /λ
is between 1/D andD . The boundary ofH ∩ λK , in a neighbourhood ofλy is
very close to the circle of radiusr with centreλy − rq/|q|. Now φ andψ are the
same as on the figure and the estimation of sinφ andx1 works the same way. (h
on the figure may be different from the depth of the capC(p) but their ratio is
bounded as a function ofD .)

6. Auxiliary results

Let K be a convex body inRd. For x ∈ K andλ > 0 define

MK (x, λ) = x + λ{(K − x) ∩ (x − K )}.

This is the M –region introduced by Macbeath [M] in 1953. We define two
functionsu, v K → R by

u(x) = uK (x) = Vol MK (x,1)(6.1)

v(x) = vK (x) = min{Vol(K ∩ H ) x ∈ H , H is a halfspace}.(6.2)
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The setK (v ≥ t) = {x ∈ K v(x) ≥ t} is evidently convex. So isK (u ≥ t) (see
[M]) but we will not need this. It follows from the existence of the Löwner–John
ellipsoid thatK (v ≥ t) is nonempty whent < 1

2d! Vol K .
Several properties of these functions, their level sets, and of theM –regions

are established in [M], [ELR], [BL], [B]. We list those that will be needed later.

Lemma A. ([ELR]) If M (x,1/2) ∩ M (y,1/2) /= ∅, then M(x,1) ⊂ M (y,5).

Lemma B. (simple) u(x) ≤ 2v(x).

Lemma C. ([BL]) If v(x) ≤ (2d)−2d Vol K , thenv(x) ≤ (3d)du(x).

Lemma D. ([B]) K (v ≥ t) contains no line segment on its boundary (provided
t > 0).

Lemma E. ([ELR],[B]) Let C be a cap, i.e., C= K ∩H with some halfspace H .
If ε < (2d)−2d and C ∩ K (v ≥ εVol K ) is a single point x , then C⊂ M (x,3d)
andεVol K ≤ Vol C ≤ dεVol K .

Lemma F. ([BL]) For every convex body K⊂ Rd

Vol K (v ≤ εVol K ) � ε
2

d+1 Vol K

with the implied constant depending only on d.

When K ∈ C (D) and x is close to the boundary ofK , u(x), v(x) are easy
to estimate. For instance, as we saw it in Remark 2, the boundary ofK is very
close to an ellipsoidE in the vicinity of x, and for ellipsoidsuE(x) and vE(x)
are simple to determine, anduE(x) = 2vE(x). It follows that, writing h = h(x)
for the width of the capK ∩ H giving the minimum in (6.2)

(6.3) h
d+1

2 � uK (x) � vK (x) � h
d+1

2

with the implied constants depending only ond,D .

7. Proof of Theorems 2 and 3

Set VolP = V and define, with clear anticipation,ε = [3(15d)dd!V ]−1. Let F
be a facet ofP (with outer normalp). Let xF be the point on the boundary of
P(v ≥ εV ) where the outer normal coincides withp. According to Lemma D,
xF is unique. LetC(xF ) = P ∩ {x p(x − xF ) ≥ 0}.

Claim. For distinct facetsF andG of P

M (xF ,1/2) ∩ M (xG,1/2) = ∅.

Proof. According to Lemma E

εV ≤ Vol C(xF ) ≤ dεV andC(xF ) ⊂ M (xF ,3d).
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AssumeM (xF ,1/2) ∩ M (xG,1/2) /= ∅. Lemma A shows then, thatM (xF ,1) ⊂
M (xG,5), and so

F ⊂ C(xF ) ⊂ M (xF ,3d) ⊂ M (xG,15d).

Since G ⊂ C(xG) ⊂ M (xG,3d) ⊂ M (xG,15d) as well, M (xG,15d) contains
d + 1 affinely independent lattice points:d from G and at least one more form
F . The volume of their convex hull is at least 1/d!. Thus by Lemma B

1
d!

≤ Vol M (xG,15d) ≤ (15d)du(xG) ≤ (15d)d · 2εV =
2

3d!
,

a contradiction. ut

So theM –regionsM (xF ,1/2) are pairwise disjoint.P(v ≤ εV ) contains half
of each: the half cut off by the halfspacep(x − xF ) ≥ 0. Then by Lemma F
(which is a version of the affine isoperimetric inequality)

∑
F

1
2

Vol M (xF ,
1
2

) ≤ Vol P(v ≤ εV ) � ε
2

d+1 V � V
d−1
d+1 .

On the other hand, by Lemma C

Vol M (xF ,1/2) = 2−du(xF ) ≥ 2−d(3d)−dv(xF ) ≥ (6d)−dεV � 1.

This clearly implies

fd−1(P) � V
d−1
d+1 = (Vol P)

d−1
d+1 .

From this we show, using an idea of Andrews, thatf0(P) � (Vol P)
d−1
d+1 .

Let z be a vertex ofP with neighbouring verticesw1, . . . , wn. Define

Pz = conv{∪n
1{

2
3

z +
1
3
wi + λ(wi − z) : λ ≥ 0}}.

As z /∈ Pz, there is a facetFz of Pz separating them. This facet is of the form
conv{ 2

3z + 1
3wi : somei }. Set Q = ∩Pz for all verticesz of P. Then Fz is a

facet of Q as well andFz /= Fy for distinct z, y. Q is a lattice polytope in1
3Zd

so
f0(P) ≤ fd−1(Q) � (Vol Q)

d−1
d+1 � (Vol P)

d−1
d+1 .

We are now in a position to prove Theorem 3.

Proof of Theorem 3.We are going to define a polytopeQ ⊂ P which is a lattice
polytope in 1

s(d) Z
d (wheres(d) depends only ond), and a mapf from the towers

of P to the vertices ofQ that maps distinct towers to distinct vertices. This will
show

T(P) ≤ f0(Q) � (sd Vol Q)
d−1
d+1 � (Vol P)

d−1
d+1 .

The proof is by induction and we start withd = 2. The vertices ofP arez1, . . . , zn

in this order. The vertices ofQ will be
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2
3

zi +
1
3

zi +1, and
1
3

zi +
2
3

zi +1 for i = 1, . . . ,n.

The towers ofP arezi , {zi , zi +1} andzi +1, {zi , zi +1}. Define

f (zi , {zi , zi +1}) =
2
3

zi +
1
3

zi +1 and f (zi +1, {zi , zi +1}) =
1
3

zi +
2
3

zi +1.

This is evidently fine; we gets(2) = 3.
Now for d ≥ 3. For every facetF of P the inductional hypothesis guarantees

the existence of a lattice polytopeQF ⊂ F (in the lattice 1
s(d−1)Z

d ∩ aff F ) and
a mapping

f F {towers ofF} → {vertices ofQF }.
Make sure, by contractingQF suitably if necessary, thatQF ∩QG = ∅ for distinct
facetsF ,G. It is not hard to see that one can take, as centre of contraction, a
point from 1

ds(d−1)Z
d ∩ convF . Contraction by the factor 1/2 suffices soQF is

a lattice polytope in the lattice 1
2ds(d−1)Z

d ∩ aff F . Set

Q = conv(∪F QF ),

Q is a 1
s(d) Z

d–lattice polytope (withs(d) = 2ds(d−1)), contained inP. To define
f let T0 ⊂ T1 ⊂ · · · ⊂ Td−1 be a tower ofP. ThenTd−1 = F for some facetF .
Define

f (T0, . . . ,Td−1) = f F (T0, . . . ,Td−2) ∈ vert QF ⊂ vert Q. ut

8. Proof of Theorem 6

In this section the implied constants depend ond and D as well. We assume
Vol K = 1. Then Area∂K � 1.

Let F be a facet ofP and denote byxF the point where the functionvK is
maximal on affF . Note thatxF need not be contained inF . But the capC(xF )
cut off from K by affF must have small (� n− 2

d+1 ) volume as otherwise there
is nothing to prove. WritehF for the depthof the facetF in K ; this is the same
as the width of the capC(xF ). As K ∈ C (D) and hF is small, (6.3) applies
yielding

(8.1) h
d+1

2
F � u(xF ) � v(xF ) � h

d+1
2

F .

Similarly,

(8.2) h
d−1

2
F � Area(K ∩ aff F ) � Area(M (xF ,1) ∩ aff F ) � h

d−1
2

F .

Choose a systemy1, . . . , ym ∈ {xF F a facet}, maximal with respect to the
condition that for distincti , j
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M (yi ,1/2) ∩ M (yj ,1/2) = ∅.
Half of eachM (yi ,1/2) is contained inK \ P. So with (8.1) we get

(8.3)
m∑
1

h
d+1

2
i �

m∑
1

1
2

Vol M (yi ,
1
2

) ≤ Vol(K \ P).

On the other hand, by Lemma A, for every facetF of P there is ani such
that M (xF ,1) ⊂ M (yi ,5). In this case the outer unit normals to the facetsF and
F (yi ) cannot differ much. ThenSi , the total (d − 1)–volume of the projections
of all such facetsF onto affF (yi ) is essentially equal to the (d − 1)–volume of
these facets. So we get, using (8.2) as well,
(8.4)

Area∂P =
∑

F

AreaF �
m∑
1

Si ≤
m∑
1

Area[affF (yi ) ∩ M (yi ,5)]�
m∑
1

h
d−1

2
i .

Of course, Area∂P � 1. We combine (8.3), (8.4), and the inequality between
the d−1

2 and d+1
2 means:

(8.5)

(
1
m

) 2
d−1

�

∑h

d−1
2

i

m




2
d−1

≤
(∑

h
d+1

2
i

m

) 2
d+1

�
(

Vol(K \ P)
m

) 2
d+1

.

This gives

appr(K ,P) =
Vol(K \ P)

Vol K
� m1− d+1

d−1 = m− 2
d−1 ≥ n− 2

d−1 ,

sincen ≥ m. ut
Remark 3.The proof works even if the maximal systemy1, . . . , ym is chosen
from a subset of the facets, if the total (d − 1)–volume of these facets is� 1.
This observation will be used in the next section.

9. Lower bounds for k = 1, . . . , d − 2

We show first that most of the surface area ofPr comes from facets whose depth
h is betweenb1r − d−1

d+1 andb2r − d−1
d+1 whereb1 < 1 is small, 1< b2 is large.

Lemma 2. The contribution to the surface area of Pr of the facets with h≤
b1r − d−1

d+1 is � b
d−1

2
1 r d−1.

Proof. The surface area ofF (p) with h = h(p) ≤ b1r − d−1
d+1 is at most

ρd−1 AreaBd−1 � (rh)
d−1

2 � b
d−1

2
1 r

d−1
d+1 .

The total number of facets is� r d d−1
d+1 , so the surface area in question is indeed

� b
d−1

2
1 r

d−1
d+1 r d d−1

d+1 = b
d−1

2
1 r d−1. ut
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Lemma 3. The contribution to the surface area of Pr of the facets with h≥
b2r − d−1

d+1 is � b−1
2 r d−1

Proof. Define D(p) as the set of pointsx ∈ rBd such that the segment [0, x]
intersects the facetF (p). Clearly, theD(p) are pairwise internally disjoint and
their union isrBd \ Pr . Let y ∈ F (p) be the point closest toxp, the centre of the
capC(p). Let m(p) denote the length of the longest segment parallel withp that
is contained inD(p). Clearly, this segment starts aty.

Claim. m(p) � h(p)
The claim implies the Lemma as follows. The halfline starting at the origin

and containingy intersects the boundary ofrBd at y′. So conv(F (p) ∪ {y′}) ⊂
D(p) and its volume equals1d AreaF (p) times thep–component of the vector
y′ − y. The latter is at least12m(p) sincep is almost parallel withy′ − y. So,
using Theorem 4,

r d d−1
d+1 � Vol(rBd \ Pr ) ≥

∑
all p

Vol D(p)

≥
∑
all p

1
2d

m(p) AreaF (p) �
∑

h(p)≥b2r − d−1
d+1

h(p) AreaF (p)

� b2r − d−1
d+1

∑
h(p)≥b2r − d−1

d+1

AreaF (p),

which proves the Lemma.
Now for the claim. Setρ = ρ(p), m = m(p), etc, andρ1 = |y − xp|. If

ρ1 ≤ ρ
√

1 − 1
d−1, then

m ≥ ρ− ρ1

ρ
h ≥

(
1 −

√
1 − 1

d − 1

)
h ≥ 1

2(d − 1)
h.

and we are done. So supposeρ1 > ρ
√

1 − 1
d−1.

Write B0 for the (d − 1)–ball rBd ∩ aff F (p). Let C denote the (d − 1)–cap
cut off from B0 by the hyperplane orthogonal toy − xp and passing throughy.
The diameter ofC is 2

√
ρ2 − ρ2

1 <
2√

d−1
ρ. C containsF (p) and so it contains

d affinely independent vectorsv1, . . . , vd ∈ Zd. The hyperplane affF (p) is then
covered by lattice translates of the parallelotope spanned byv2 − v1, . . . , vd − v1

and xp is contained in one of the translates. As it is well–known, this translate
has a vertex at distance at most1

2

√
d − 1 max|vi − v1| ≤ 1

2

√
d − 1 diamC < ρ

from xp. So this vertex is inB0 and consequently inF (p). Then it cannot be
closer toxp thanρ1, the shortest distance betweenxp andF (p):

ρ1 ≤ 1
2

√
d − 1 max|vi − v1| ≤ 1

2

√
d − 1 diamC =

√
d − 1

√
ρ2 − ρ2

1.
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This showsρ1 ≤ ρ
√

1 − 1
d and the previous argument applies again:

m ≥ ρ− ρ1

ρ
h ≥

(
1 −

√
1 − 1

d

)
h ≥ 1

2d
h.

ut

Now choose a smallb1 = b1(d) and a largeb2 = b2(d) so that half of the
surface area ofPr comes from facetsF (p) satisfying

b1r − d−1
d+1 ≤ h(p) ≤ b2r − d−1

d+1 .

Write F for the collection of these facets. We apply the proof method of Theo-
rem 6, this time withrBd instead ofK . So choose a systemF1, . . . ,Fm of facets
(from F ) maximal with respect to the condition that

M (yi ,1/2) ∩ M (yj ,1/2) = ∅,
whereyi is the point wherev is maximal on affFi . The previous proof, combined
with Remark 3, gives

m � r d d−1
d+1 .

Now define

Fj = {Fi ∈ F : 2j r − d−1
d+1 ≤ hi < 2j +1r − d−1

d+1 }.
Clearly logb1 ≤ j ≤ logb2 implying the existence of aj such that

Fj ≥
(

log
b1

b2

)−1

m � r d d−1
d+1 .

Fix such aj .
Now let L be a k–face of Pr and fix a pointxL ∈ L. If L ⊂ Fi for some

Fi ∈ Fj , then the capC(yi ) lies in a ball with centrexL and radius 2
j
2 +2r

1
d+1 .

Indeed, asxL ∈ L ⊂ Fi ⊂ C(yi ), the distance betweenxL and yi is at mostρi .
The diameter ofC(yi ) is

2ρi = 2
√

(2r − hi )hi ≤ 2
√

2r · 2j +1r − d−1
d+1 = 2

j
2 +2r

1
d+1 .

Consider now theM –regionsM (yi ,1/2) for i with Fi ∈ Fj . Since they
are pairwise disjoint, so are their intersections with the sphereSR of radius
R = r − 9

82j r − d−1
d+1 , centred at the origin. A straightforward, if tedious, computation

shows thatSR ∩ M (yi ,1/2) contains a spherical cap of radius 2
j
2 −1r

1
d+1 . These

caps are all contained in the intersection ofSR with the ball of radius 2
j
2 +2r

1
d+1

(centred atxL). An easy computation shows that there are at most 8d−1 such caps.
This implies that at most 8d−1 facets fromFj containL. So the total number of

k–faces is at least 8−(d−1)|Fj | � m � r d d−1
d+1 . ut

Remark 4.The extension of this estimate toK ∈ C (D) from Bd is similar to
the one outlined in Remark 2. Details are left to the reader.
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[BV] I. B áŕany, A.M. Vershik, On the number of convex lattice polytopes, GAFA Journal,12

(1992), 381–293.
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