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1. The main result

The “integer convex hull” of B¢, the ball of radius centred at the origin, is,
by definition
P: = convZ® nrBY),

which is clearly a convex polytope. How many vertices déebave? Motivation

for the question comes from different sources: integer programming (cf. [CHKM]
[BHL]), classical enumeration problems ([J],[Sch], or more generally [W],[Vin]),
and from the theory of random polytopes (see later). For the dase? it is
shown in [BB] that

(1.2) 0.33r%/3 < fo(P,) < 5.55r%/3

wherefy(P) denotes the number d¢fdimensional faces of the polytofe The
limit, as R — oo, of the average of ~%/3fy(P;), on an interval R, R+ H], is
determined by Balog and Deshoullier [BD], and turns out to B&3..., (H
must be large). Our main result extends (1.1) to dny 2 and to anyfi(P;)
with k =0,...,d — 1.

Theorem 1. For every d > 2 there are constants;(d) and ¢(d) such that for
alk € {0,....,d — 1}

(12) C(d)rF < f(P,) < co(d)rdFE .

* Partially supported by Hungarian Science Foundation Grant T 016391, and Research Grant 96—
31/13 of the Academy. Part of this research was carried out while this author was visiting, with an
ESPRC grant, the Department of Mathematics at University College London whom he thanks for
their hospitality.
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Using Vinogradov's< notation this can be written adT T < fu(Pr) <
rd%t . Here the implied constants depend only on dimensipwe will keep to
this as a convention throughout the paper (unless stated otherwise).

It is the authors’ conviction that lattice points and random points, in relation
to convex bodies in “general position”, behave similarly. Theorem 1 is another
confirmation: (1.2) is in complete analogy with random polytopes. To see this,
choosen = [r9 Vol B4] random, independent, and uniform points fr@#, and
let K, denote thelr convex hull. Then, according to [BL] and []d+1 <<
Efc(Kn) < n ¥, whereE stands for expectation. But T < 9% < ne,
showing that the convex hull af random points and the convex hull of the
lattice points lying inrBY have the same number kf-dimensional faces.

2. The upper bound

The upper bounds in (1.2) follows from a result of Andrews [An] who proved
the casek = 0 of the following more general

Theorem 2. Assume PC RY is a lattice polytope with nonempty interior. Then
2.1) f(P) < (Vol P)%
where the implied constant depends only on d.

The result was rediscovered by Arnol'd [Ar] (cade= 2), Konyagin and
Sevastyanov [KS], cas > 2, k = 0 with indication to anyk. W. Schmidt [Sch]
proved (2.1) in slightly stronger form. A more general argument a@By and
Vershik [BV] implies the casel > 2, k = 0. Here we give yet another proof,
based on convex geometry and the technique of cap coverings. What we get is
a slight improvement over (2.1), which is also indicated in [KS]tcAver (or
flag) of the polytopeP is a chain of incident faceBy C F; C --- C Fq_1 with
dimF; =i. Write T(P) for the number of towers dP.

Theorem 3. Under the previous assumptions
(2.2) T(P) < (VoI P) .

As clearlyf (P) < T(P), (2.2) indeed generalizes (2.1). The proof, however,
starts with the cask =d — 1 of (2.1) and uses, twice, a trick of Andrews later.

3. Lower bounds and approximation

W. Schmidt [Sch] asked whether the expon%g% in (2.1) is best possible (when

d > 2). In the casel = 2 this is clear from [Ar] and [Sch], Arnol'd also indicates

the general case. The lower bounds of Theorem 1 show that the exponent in (2.1),
and also in (2.2), is best possible. An argument of the first named author (given
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in [BD]) proves that the average &{(P;), overr € [R,R+H]is of orderRd T .
This is a weaker, or average, version of the dase0 of Theorem 1.

The proof of the lower bounds in Theorem 1 is based on a result from the
theory of approximation of (smooth) convex bodies by polytopes. To state what
we need, write% (D) for the collection of convex bodies witl? boundary
and radius of curvature at every point and every direction betwg@&n dnd
D. (HereD > 1)) LetK € (D) and assumé C K is a convex polytope.
Approximation ofK by P is measured as the “relative” missed volume, i.e.,

Vol(K \ P)

appri<,P) = =

The result we need (cf. [G1]) says that for addye Z (D) and for any polytope
P c K havingn vertices

(3.1) apprk,P) > n-e.

On the other hand, there is a polytoPeC K with n vertices satisfying

(3.2) apprk,P) < n-a,

Here> and <« depend orD as well. More precise asymptotic information is
available on best approximation (cf. [G2]): the constant is cdgiifies the%
power of the affine surface area l&f But we won’'t need this precision.

The proof of the lower bounds is based on

Theorem 4. For every d> 2

d—1
d+1 |

Vol(rB¢ \ P;) < r¢

This implies the cask& = 0 of Theorem 1: Assumi(P;) = n. By (3.1) and
Theorem 4

\Vol(rBY \ P) g9=i_g _ _ 2
- @ 7 I d+ =r d+
Vol rB¢d < ' '

—_2_
a—

n 1K

showing thatfo(P;) = n > rd%t indeed. On the other hanthy(P;) < rd@
from Theorem 1 which together with (3.1) imply that

r—d1 < fo(P) a1 < appr(BY, P,),

i.e., P, is a “best” aproximating polytope tB? in the sense of (3.2). So we
have

Corollary .
fo(Pr) "1 < appr(BY, P;) < fo(Py) 1.
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A long time ago, C. A. Rogers [R] proved the following analogue of (3.1).
For every polytope® ¢ BY with n facets
(3.3) apprB?,P) > n-a1.

From this the cask =d — 1 of Theorem 1 (the lower bound) follows the same
way as above. Casds=1,....d — 2 of Theorem 1 need special, and more
involved treatment. The proof would be simpler if, for every convex polyt®pe
one would have

(3.4) f(P) > min{fo(P), fa—1(P)}.

This would follow from the unimodality conjecture (see [Z]), which is known
to be false. But (3.4) may still be true. It is known to hold for simple (and then
simplicial) polytopes, see Bjner [Bj].

4. ReplacingBY by K
In this section we assume
(4.1) K € (D) and O¢c intK.
Let P, be the integer convex hull ofK, i.e.,
Py = PA(K) = conv@Z? N AK).

Here X is large (we keep the lettar for radius of curvature). The questions,
and the answers, of the previous sections extend to this case, with the constants
implied in < depending ord andD:

Theorem 5. Assume K satisfies (4.1). Then,as~» oo,
4.2) NFE < f(PA(K)) < AT

We will indicate, after the proofs foBY, how the extension goes.
The generalization of Rogers’ result (3.3) to this case has to be stated and
proved separately:

Theorem 6. Assume K satisfies (4.1) and € K is a polytope with n facets.
Then ,
apprK,P) > n—a-1

with the implied constant depending only ond

Again, the proof of the lower bound in Theorem 1 fo= 1,...,d —2 would
be simpler if the following unusual approximation statement were true.

Conjecture. Assume K satisfies (4.1),&{1,...d —2} and P C K is a polytope
with fc(P) =n. Then

2
a—

apprK,P) > n—
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5. Proof of Theorem 4

We start by introducing notation and terminology. letc Z9 be a primitive
vector, outward normal to the facE{p) of P,. The hyperplanéd (p) = aff F (p)
cuts off a small cafC (p) from rBY and

(5.1) Z9nintC(p) = 0.

Let p = p(p) be the radius of thed(— 1)-ballH (p) N rBY and leth = h(p) be
the width, in directionp, of the capC. Then

(5.2) p? = (2r —h)h and sorh < p? < rh.

Write |x| for the Euclidean length ot € RY. Letting Area to denoted(— 1)—
dimensional volume, we have

(5.3) AreaF (p) = ((p)|p| < p**

where/(p) > 0. |p| is, in fact, the determinant of the latti& N H (p). So

Up) € zd.

1
(d-1)!
Lemma 1. The contribution to/ol(rB9\ P;) of the caps @p) with h(p) < r—
is < rdT
Proof. Everything that is contained in suchGYp) is also contained in

B9\ (r — r—%t)Bd
i d —d=1\q d dd=t
whose volume is Jus<r —(r—r—e1) )Vol B« r%s. 0O

From now on we can only consider facé&tép) with
(5.4) h(p) > r %,

We are going to use the Flatness Theorem (cf. [K], [KL]) saying that the
lattice width of a lattice point free convex body (Rf') is at mostcyd? where
Co is a universal constant. Applying this @©(p), or rather to inC(p) which is
lattice point free by (5.1), we get a primitive vectpre Z% such that

(5.5) max{q(x —y) x,y € C(p)} < cod?.

Case 1:whenh(p) < cod?|p|~1. In this casep is a flatness direction fo€ (p)
(since consecutive lattice hyperplanes with normake at distancgp| ! apart).
Thenp? < rh < r|p|~* and

AreaF (p) = ((p)lp| < 'L < (rlp| )7,
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implying
d—1 _ g«
lp)<r = Ip|” 2.

T . We writeb = b(d) for the implied constant.

As U(p) > @21y we get|p| <r
The lost volume in Case 1 is

< Y AreaF(ph(p) < Y P < riz |p| =
p P d—1
[p|<br @I

d— d—1

a1
a1 br d+1 L g1 J
(5.6) < rz X" 2 xUThdx <« rfeT
0

as a simple computation reveals.

Case 2:whenh(p) > cod?|p|~1. Then someg € Z9, distinct fromp, is the
flatness direction o€ (p).

AssumeC(p) is between hyperplanagx = ¢; andgx = ¢, with 0 < /1 <
0y < |q|r and f, — ¢1 < cod?. Setk; = |q|r — 4 andx = ki /[q], (i = 1,2).
Consider the two—dimensional plane containing,0and the centre of (p). We
show first, assuming, > 0, that¢ (see the figure) gets small asgets large.
Indeed, using (5.4)

— _ _ 2
Sin¢=X1 X2= X1 — Xo < kl k2 < Cod _ <<r*ﬁ
sincel|q| > 1.
N\
2p
N
T
v z
7 T ,
Fig. 1.

As ¢ and (see the figure) are almost equal, (5.6) implies
(5.7) X1 =r(1—cosy) < rsirf¢ < P

We can estimatge from the figure, again. As cas> 1/2 for large enouglr,
we get
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_(2r = xa)xe— (2r — X)X
P Ve V@ e S VT =X + (2 — )%

(2r — x1 — X2) (X1 — X2) ki—k2 +/|q] r
58) < <2 < )
©8 VR + ) A Vhrvi <\ Tk
The same estimate follows directly whes = 0. From thish < p?r ! <«

(Jalky)~t. Now (5.4) showsk|q| < r&t. Set nowk = [ki]. As p is not a
flatness direction, ¥ k; — ko < k;. Sok > 1 and

k|q|<<r%.

Collect theF(p) with fixed flatness directioy and fixedk into groups. The
missed volume in the corresponding caps is

(5.9) <) AreaF (p)h(p) < Smaxh(p)

whereS is the surface area aB¢ between hyperplanegx = ¢, andgx = (5.
Since¢ is small,

S < 2 ([(Zr —x)xa] T —[(2r — x2)x2]L51) AreaBd~!

< (V@ —xx— V@ =l —xxal T < ﬁ (|qu|)

where we used the second half of (5.8). Evidently mg) < p?/r < (|q|k)~*.

We continue (5.9):
a2
1 r[rk\ 2 41 _dn, d-5
=r 2 ‘q‘ 2k z .

L == |
lalk 'V [alk \|q]

This is to be summed foral = 1,2,... andq € Z9 primitive with k|q| < R
whereR « r % . Then the total missed volume is

R R
< 7Y S ok < rLTZ/ x|~ Fk 2 dx
XER, [x|<E

k=1 qezd k=1
R R R R a2
d—1 d—5 d+1 d—1 d—5
< rz Yy kz [t Tdt<rz Y k7 (o

R
(5.10) = r TR Zk72<<(rR)% <<rd%7

as one can check easily.O

d—

Remark 1.This proof shows the inequalitf(P;) < r¢ T (from Theorem 1)
directly. Actually, it shows the stronger result that

0P, N Z9| < r9%.
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To see this one has to use the simple fact

AreaF (p)

Fp)nzY <« ————
IF(p) | ol

valid for every facef (p) of P,. This gives, in Case 1,

AreaF d-1 1 o
SIFE)NZY <Y re(:' (P) <<ZP(F|);| <Y rFp %,
p p p p

which is <« rdddﬁl, according to (5.6). Case 2 is even simpler. Then

AreaF
IF(p)NZ% < ref;'(p) < AreaF (p)h(p) < Vol C(p)

and (5.9), (5.10) can be applied.

Remark 2 An essentially identical proof works wheBf' is replaced byK satis-
fying (4.1). The main difference is that (p) N AK is not a ball. But it is very
close to an ellipsoid (sincke(p) is very small, less than— & : this is shown by
Lemma 1). This ellipsoid is sandwiched between two concentric balls of radii

\/%T‘ and+/2\hD. This shows that the correspondipgand Areda (p) can be
bounded as in (5.2) and (5.3) with the implied constants dependifiy aswell.

We elaborate on how to deal withand+ on the figure. Lely € OK be the
point where the outer normal 1€ is q. Then the figure shows the intersection
of P, with the two—planeH parallel withq, containing the centre o€ (p) and
the pointAy. Write r for the radius of curvature aty of H N AK. Clearly,r /A
is between 1D andD. The boundary oH N XK, in a neighbourhood oAy is
very close to the circle of radiuswith centre\y —rq/|g|. Now ¢ andi are the
same as on the figure and the estimation ofssamdx; works the same wayh(
on the figure may be different from the depth of the &fp) but their ratio is
bounded as a function d.)

6. Auxiliary results
Let K be a convex body ilRY. Forx € K and\ > 0 define
Mk (5, ) =x + A{(K = x) N (x — K)}.
This is the M-region introduced by Macbeath [M] in 1953. We define two

functionsu,v K — R by

(6.1) u(x)
(6.2) w(x)

Uk (X) = Vol Mk (%, 1)
vk (X) =min{Mol(K " H)x € H, H is a halfspack
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The setK (v > t) = {x € K v(x) >t} is evidently convex. So i&(u > t) (see
[M]) but we will not need this. It follows from the existence of théwner—John
ellipsoid thatK (v > t) is nonempty wher < 5% Vol K.

Several properties of these functions, their level sets, and ditheegions
are established in [M], [ELR], [BL], [B]. We list those that will be needed later.

Lemma A. ([ELR]) If M (x,1/2)N M (y, 1/2) # 0, then M(x,1) C M (y, 5).
Lemma B. (simple) ux) < 2u(x).
Lemma C. ([BL]) If v(x) < (2d)~24 Vol K, thenv(x) < (3d)?u(x).

Lemma D. ([B]) K (v > t) contains no line segment on its boundary (provided
t > 0).

Lemma E. ([ELR],[B]) Let C be a cap, i.e., C= K nH with some halfspace H.
If ¢ < (2d)~% and CNK (v > ¢ Vol K) is a single point x, then G- M (x, 3d)
andes Vol K < \Wol C < deVolK.

Lemma F. ([BL]) For every convex body k= R®
VoI K (v < e VoI K) < e#1 Vol K
with the implied constant depending only on d.

WhenK € (D) andx is close to the boundary df, u(x),v(x) are easy
to estimate. For instance, as we saw it in Remark 2, the boundatyisfvery
close to an ellipsoidE in the vicinity of x, and for ellipsoidsug (x) and vg(x)
are simple to determine, ang(x) = 2vg(x). It follows that, writingh = h(x)
for the width of the cag< NH giving the minimum in (6.2)

(6.3) hs < uk(X) < vk (X) < h'Z

with the implied constants depending only dnD.

7. Proof of Theorems 2 and 3

Set VoIP =V and define, with clear anticipatios,= [3(15d)¢d!V]~!. Let F
be a facet ofP (with outer normalp). Let x- be the point on the boundary of
P(v > ¢V) where the outer normal coincides with According to Lemma D,
Xe is unique. LetC(xg) =P N {x p(x — xg) > 0}.

Claim. For distinct facet$ andG of P

M(xe,1/2)NM(xg,1/2) = 0.

Proof. According to Lemma E

eV < Vol C(xg) < deV andC(xg) C M (Xg, 3d).
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AssumeM (xg,1/2) "M (X, 1/2) # 0. Lemma A shows then, thal (xs,1) C
M (Xg,5), and so

F C C(x) C M(Xe,3d) C M(xg, 15d).

SinceG C C(Xg) C M(Xg,3d) C M(xg,15d) as well, M (Xg, 15d) contains
d + 1 affinely independent lattice pointd:from G and at least one more form
F. The volume of their convex hull is at leastd!. Thus by Lemma B

GTl, < Vol M (Xg, 15d) < (15d)%u(xg) < (15d)? - 2:V =

a contradiction. O

2
3d1’

So theM —regionsM (X, 1/2) are pairwise disjoint?(v < V) contains half
of each: the half cut off by the halfspagg¢x — x=) > 0. Then by Lemma F
(which is a version of the affine isoperimetric inequality)

1 1 _
5 5 VoI M (xe, 5) < VoI P(v < eV) < eV < VI,
F

On the other hand, by Lemma C
VoI M (xe,1/2) = 27%u(xe) > 279(8d) %u(xe) > (6d) 9V > 1.
This clearly implies
fa_1(P) < V¥ = (VoI P) % .

From this we show, using an idea of Andrews, thP) < (\Vol P)%.
Let z be a vertex ofP with neighbouring verticesy, . .., w,. Define

2 1
P, = con\/{u’l‘{éz 3wt AMwi —2z) 1 A > 0}}.
As z ¢ P,, there is a faceF, of P, separating them. This facet is of the form
con{3z + w; : somei}. SetQ = NP, for all verticesz of P. ThenF, is a
facet ofQ as well andF, # F for distinctz,y. Q is a lattice polytope iniz¢
)

fo(P) < f4-1(Q) < (VoI Q)& < (VoI P) .

We are now in a position to prove Theorem 3.

Proof of Theorem 3We are going to define a polytofg C P which is a lattice
polytope infﬁj)zd (wheres(d) depends only onl), and a mag from the towers
of P to the vertices of that maps distinct towers to distinct vertices. This will
show

T(P) < fo(Q) < (s° Vol Q)& < (Vol P) % .
The proof is by induction and we start with= 2. The vertices oP arez, ..., z,
in this order. The vertices d® will be
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1
3
The towers ofP arez, {z,z+1} andz.1, {7z, z+1}. Define

2
—z +

1 2 .
3 Z+1, andgz; +§zi+1 fori=1,...,n.

1
3
This is evidently fine; we ges(2) = 3.

Now ford > 3. For every faceF of P the inductional hypothesis guarantees

the existence of a lattice polyto@" C F (in the Iatticeﬁzd NaffF) and
a mapping

2
54+l

1
Z+1 andf(z+1,{z,z+}) = 3% %3

2
f(z,{z,zﬂ})=§z+

fF {towers ofF} — {vertices ofQ"}.

Make sure, by contractin@" suitably if necessary, th&@" NQ® = () for distinct
facetsF,G. It is not hard to see that one can take, as centre of contraction, a
point from ge—;Z¢ N convF. Contraction by the factor /2 suffices siQF is

a lattice polytope in the Iatticg(mzd NnaffF. Set

Q = conv(UrQP),

Qis a?z)zd—lattice polytope (withs(d) = 2ds(d — 1)), contained irP. To define
fletToC Ty C--- C Tg—1 be a tower ofP. ThenTy_; = F for some facef.
Define

f(To,...,Tg_1) =FF(To,..., Tq_2) e vertQF cvertQ. O

8. Proof of Theorem 6

In this section the implied constants dependdmand D as well. We assume
Vol K = 1. Then Are®dK > 1.

Let F be a facet ofP and denote by the point where the functionk is
maximal on aff~. Note thatx- need not be contained . But the capC(X)
cut off from K by affF must have small< n—%) volume as otherwise there
is nothing to prove. Writdh: for the depthof the facetF in K; this is the same
as the width of the ca£(xz). As K € & (D) and he is small, (6.3) applies
yielding

d+l
2

d+1
(8.1) he? < u(xe) < v(xe) < he? .

Similarly,
d—1 d—1
(8.2) h-? < AreaK NnaffF) <« AreaM (=, 1) NaffF) < hg? .

Choose a system, ..., ym € {X F a facet, maximal with respect to the
condition that for distinct, |
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M(yi,1/2)NM(y;, 1/2) = 0.
Half of eachM (yi, 1/2) is contained irk \ P. So with (8.1) we get

Mo N1 1
(8.3) ;hﬁ <<;§VOIM(yi,§)§VoI(K\P).

On the other hand, by Lemma A, for every fagetof P there is an such
thatM (X, 1) C M(y;, 5). In this case the outer unit normals to the fadetand
F(yi) cannot differ much. Thelg, the total  — 1)-volume of the projections
of all such facetd onto affF(y;) is essentially equal to thel (— 1)—volume of
these facets. So we get, using (8.2) as well,

(8.4)

m m LI
AreadP =) "AreaF <> S < > ArealaffF (y;) N M(y;,5)] < ZhidT'
F 1 1 1

Of course, Are@P > 1. We combine (8.3), (8.4), and the inequality between
the 4> and %! means:

(8.5) (i\)dl« xht §<Zhi2> <<<V°'(K\P)>M.

m m m
This gives
apprQ(,P) = w > ml_ddill = m_diil 2 n_ﬁ’

Vol K
sincen>m. 0O

Remark 3.The proof works even if the maximal systeyn,...,ym is chosen
from a subset of the facets, if the total ¢ 1)—volume of these facets is 1.
This observation will be used in the next section.

9. Lower bounds fork =1,...,d — 2
We show first that most of the surface aredPpfcomes from facets whose depth
his betweerblr—% and bgr‘% whereb; < 1 is small, 1< b, is large.

Lemma 2. The contribution to the surface area of Bf the facets with h<
_ d—1
by~ is < by 7 rd-1,

Proof. The surface area ¢ (p) with h = h(p) < blr—% is at most

d—1

_ a1
P AreaB ! < (th)7 < b, 7 re.

The total number of facets ig r?, so the surface area in question is indeed

d—1 d—1

&= d-—1 d—1 =
< b Zrerde =p 7 rd-t, 0
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Lemr{pa} 3. The contribution to the surface area of Bf the facets with h>
bor — @ is < by trd-1

Proof. Define D(p) as the set of pointg € rBY such that the segment <]
intersects the facedt (p). Clearly, theD(p) are pairwise internally disjoint and
their union isrBY\ P;. Lety € F(p) be the point closest t®,, the centre of the
capC(p). Let m(p) denote the length of the longest segment parallel withat
is contained irD(p). Clearly, this segment starts wat

Claim. m(p) > h(p)

The claim implies the Lemma as follows. The halfline starting at the origin
and containingy intersects the boundary oB¢Y aty’. So convF (p) U {y’}) C
D(p) and its volume equal% AreaF (p) times thep—component of the vector
y’ —y. The latter is at Ieas%m(p) sincep is almost parallel withy’ —y. So,
using Theorem 4,

a
-

dd+

i

r > Vol(rB\ Pr) > > Vol D(p)

all p

> ) %m(p) AreaF(p)> Y h(p)AreaF(p)

d—1
alp h(p)=bar ~

> bpr @ > AreaF(p),

d—1
h(p)>bpr ~ a1

which proves the Lemma.
Now for the claim. Setp = p(p), m = m(p), etc, andps = |y — xp|. If

plgp,/l—d—fl,then
p—p1 1 1
>P P (11— —=|h> h.
m=— —< d—1> Z2d-1)

and we are done. So suppgse> py/1— 5.

Write By for the d — 1)-ballrBY N aff F (p). Let C denote thed — 1)—cap
cut off from By by the hyperplane orthogonal to— x, and passing througi.
The diameter ofC is 2y/p? — p2 < —2=p. C containsF (p) and so it contains

Vd—1
d affinely independent vectors, . .., vq € Z9. The hyperplane aff (p) is then
covered by lattice translates of the parallelotope spanneg byvy, ..., vq — v1

andx, is contained in one of the translates. As it is well-known, this translate
has a vertex at distance at mdsyd — 1 max|v; — v1| < 1/d — 1diamC < p
from x,. So this vertex is inBy and consequently ifr (p). Then it cannot be
closer tox, thanp,, the shortest distance betwegnandF (p):

p1 < %\/d —1maxvi — vy < %\/d — 1diamC = v/d — 1,/ p2 — p2.
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This showsp; < p4/1— % and the previous argument applies again:
pP—=p1 1 1
>——=h>|1-4/1-=]h>—h.
m=z— "= ( d) < 2d
O

Now choose a smalb; = by(d) and a largeb, = b,(d) so that half of the
surface area o, comes from facet§ (p) satisfying

byr =% < h(p) < byr .

Write .7 for the collection of these facets. We apply the proof method of Theo-
rem 6, this time withrBY instead ofK . So choose a systeR, . .., Fr, of facets
(from .7) maximal with respect to the condition that

My, 1/2)nM(y;, 1/2) =0,

wherey; is the point where is maximal on aff;. The previous proof, combined
with Remark 3, gives

d—1

m>> rdd+1_

Now define
F={Fe7 dr % <h <2},
Clearly logb; <j < loghb, implying the existence of a such that

= by - dd=t
F > | log— m>>r- &t
by
Fix such gj.

Now let L be ak-face ofP; and fix a pointx. € L. If L C F; for some
Fi € .7, then the capC(y) lies in a ball with centreq. and radius 2*2r a.
Indeed, asq. € L C Fj € C(y;), the distance betweex andy; is at mostp;.
The diameter ofc(y;) is

2pi = 2,/(2r —h)h, < 2V/2r .24~ =252 aa,

Consider now theM—regionsM (y;,1/2) for i with F; € .74. Since they
are pairwise disjoint, so are their intersections with the spl@ref radius
R= rfgzj r—@t, centred at the origin. A straightforward, if tedious, computation
shows thatSz N M (yi, 1/2) contains a spherical cap of radiu’séru*h._ These
caps are all contained in the intersectionSafwith the ball of radius 2*2r ¥
(centred ak ). An easy computation shows that there are at mbst 8uch caps.
This implies that at most8 ! facets from7 containL. So the total number of
k—faces is at least 89D > m > rd®. 0O
Remark 4.The extension of this estimate # € % (D) from BY is similar to
the one outlined in Remark 2. Details are left to the reader.
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