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Abstract. We prove a fractional version of the Erd˝os–Szekeres theorem: for anyk there
is a constantck > 0 such that any sufficiently large finite setX ⊂ R2 containsk subsets
Y1, . . . ,Yk, each of size≥ ck|X|, such that every set{y1, . . . , yk} with yi ∈ Yi is in convex
position. The main tool is a lemma stating that any finite setX ⊂ Rd contains “large” subsets
Y1, . . . ,Yk such that all sets{y1, . . . , yk}with yi ∈ Yi have the same geometric (order) type.
We also prove several related results (e.g., the positive fraction Radon theorem, the positive
fraction Tverberg theorem).

1. Introduction

The Erdős–Szekeres theorem [ES1] says that among sufficiently many points in general
position in the plane one can findk that are in convex position. It is a classical result in
combinatorial geometry with a number of generalizations and extensions (see, e.g., [S2]
and [EP]). This paper increases this number by one: we prove a fractional version of the
Erdős–Szekeres theorem.

A finite set inRd is in general positionif it contains nod + 1 points lying in a
hyperplane. A finite setY ⊂ Rd is in convex positionif every y ∈ Y is a vertex of
convY. Givenk setsY1, . . . ,Yk, a set{y1, . . . , yk} is called atransversalof the Yi , if
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y1 ∈ Y1, . . . , yk ∈ Yk. We write [n] = {1, . . . ,n}. The fractional version of the Erd˝os–
Szekeres theorem follows:

Theorem 1. For every integer k≥ 4 there is a constant ck > 0 with the following
property. Every sufficiently large finite set X⊂ R2 in general position contains k subsets
Y1, . . . ,Yk with |Yi | ≥ ck|X| (i ∈ [k]) such that every transversal of the Yi is in convex
position.

The proof is based on what we like to call the same type lemma. With further ap-
plications in mind we present it in colored version and in arbitrary dimension. Two
m-tuples(x1, . . . , xm) and(y1, . . . , ym) (xi , yi ∈ Rd) are said to havethe same(order)
typeif the orientations of the simplicesxi1 · · · xid+1 andyi1 · · · yid+1 are the same for every
1≤ i1 < · · · < i d+1 ≤ m. This is the same as saying that the signs of det

[(xi1
1

) · · · (xid+1
1

)]
and det

[(yi1
1

) · · · (yid+1
1

)]
are equal. Properties of order types have been intensively studied,

mainly in relation to computational geometry; a survey on these investigations can be
found in [GP1] or in [GP2].

Theorem 2(Same Type Lemma).For every two natural numbers d and m there is a
constant c(d,m) > 0 with the following property. Given finite sets X1, . . . , Xm ⊂ Rd

such that X1 ∪ X2 ∪ · · · ∪ Xm is in general position, there are subsets Yi ⊂ Xi with
|Yi | ≥ c(d,m)|Xi | such that all transversals of the Yi have the same type.

We mention without elaborating that the setsX, X1, . . . , Xm in the above theorems
could be replaced by probability measures. Then the subsetsYi would be of measure at
leastck or c(d,m), respectively.

Recently, Theorem 1 was proved fork = 4 by Nielsen (personal communication).
Solymosi (unpublished) found the following weaker version of Theorem 1: givenn
points in general position in the plane, one can always choose a sequence of lengthckn
from among them such that anyk consecutive members of this sequence are in convex
position.

The proofs of the above two theorems, followed by a discussion on direct conse-
quences, are given in the next two sections. Related results (e.g., the positive fraction
Radon theorem, the positive fraction Tverberg theorem) are described in Section 4.

2. Proof of Theorem 2

It is enough to work with the casem= d+1, the theorem would then follow by applying
the casem = d + 1 to every(d + 1)-tuple Xi1, . . . , Xid+1 (1 ≤ i1 < · · · < i d+1 ≤ m).
So assumem= d + 1.

Partition [d + 1] into all possible unordered pairs of (nonempty) subsets:
(I1, J1), . . . , (I2d−1, J2d−1). For anyi ∈ [d + 1], we will find a chain of subsetsXi =
X0

i ⊃ X1
i ⊃ · · · ⊃ X2d−1

i = Yi such that, for allα ∈ [2d − 1],

|Xα
i | ≥

1

d + 1
|Xα−1

i |. (1)
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We proceed in 2d − 1 steps. In stepα we find the subsetsXα
i in the following way. Let

zi be the center ofXα−1
i in the sense of [DGK], i.e., every open half-space containing

zi contains at least [1/(d + 1)]|Xα−1
i | points of Xα−1

i . We may assume that the set
{z1, . . . , zd+1} is in general position, since otherwise we may achieve it by a small
perturbation of the setsXα−1

i . Consider the hyperplaneHα parallel with aff{zi : i ∈ Iα}
and with aff{zi : i ∈ Jα} and positioned half-way between them. WriteH I

α andH J
α for the

two half-spaces bounded byHα so thatH I
α ⊃ aff{zi : i ∈ Iα} andH J

α ⊃ aff{zi : i ∈ Jα}.
TakeH I

α closed andH J
α open, say. Define

Xα
i =

{
H I
α ∩ Xα−1

i for i ∈ Iα,
H J
α ∩ Xα−1

i for i ∈ Jα.

Inequality (1) follows now from the property of the centerszi . So at the end we have
Yi = X2d−1

i ⊂ Xi with

|Yi | ≥ (d + 1)−(2
d−1)|Xi |. (2)

We claim now that every simplex with verticesy1 ∈ Y1, . . . , yd+1 ∈ Yd+1 has the
same orientation. Suppose the contrary and lety′1y′2 · · · y′d+1 be another simplex with a
different orientation. Then, for a suitablet ∈ (0, 1), the pointsui = tyi + (1− t)y′i
(i ∈ [d + 1]) all lie on a hyperplaneH . By Radon’s theorem [R], applied inH to the
pointsu1, . . . ,ud+1, there is a partition(I , J) of [d + 1] with

conv{ui : i ∈ I } ∩ conv{ui : i ∈ J} 6= ∅. (3)

Now (I , J) = (Iα, Jα) for someα. We have conv{ui : i ∈ I } ⊂ conv
⋃{Yi : i ∈ I } ⊂

conv
⋃{Xα

i : i ∈ I } ⊂ H I
α and similarly conv{uj : j ∈ J} ⊂ H J

α , a contradiction with
(3).

The argument in the last paragraph was used for a different purpose by Goodman
et al. [GPW].

Remark 1. Denote byc(d,m) the infimum of the constants for which Theorem 2 is
true. The above proof gives

c(d,m) ≥ (d + 1)−(2
d−1)(m−1

d ). (4)

A slight improvement on (1) and consequently on (2) and (4) comes from using the
ham–sandwich theorem instead of the center point theorem.

Remark 2. In the plane, (4) can be improved to

c(2,m) ≥ 1

m
2−(

m−1
2 ). (5)

To see this observe first that the setsX1, . . . , Xm may be reordered so that there are
vertical (say) linesl0, l1, . . . , lm (in this order from left to right) such thatXi has at least
(1/m)|Xi | elements betweenl i−1 andl i . Write X′i for the set of points ofXi between
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l i−1 andl i . Now, for any triple 1≤ p < q < r ≤ m, only X′q has to be separated from
X′p andX′r (l p separatesX′p from the other two, andlq separatesX′r from the other two).
This can be reached by a linel that halvesX′p andX′r simultaneously.l cutsX′q into two
parts. Keep the larger part and half ofX′p and ofX′r on the other side ofl .

Remark 3. There is a cone version to the same type lemma. This states, under the
same conditions, the existence ofYi ⊂ Xi , |Yi | ≥ c′(d,m)|Xi | such that

det(yi1, . . . , yid)

has the same sign for all choicesyi1 ∈ Yi1, . . . , yid ∈ Yid . The proof is essentially the
same, starting with the casem = d. However, as a first step, halveY1, . . . ,Yd by a
hyperplane and keep those halves that are on the other side to the origin. Then use two
partitions of [d] and separating hyperplanes that pass through the origin.

Remark 4. It is clear from the proof that the statement of Theorem 2 is also valid for
transversals of the convYi . The same is true in the case of Theorem 1.

Remark 5. With some effort, Theorem 2 can also be proved whenX1∪ X2∪ · · ·∪ Xm

is not in general position.

Remark 6. It follows from Theorem 2 that for anyk and any finite point setX in
general position inRd there existk positive fraction subsetsX1, . . . , Xk so that the
convex hull of every choice is combinatorially the cyclic polytope onk vertices.

3. Proof of Theorem 1

Let m = m(k) be the Erd˝os–Szekeres number fork. Choose vertical linesl0, l1, . . . , lm
(listed from left to right) so that at leastb(1/m)|X|c points ofX lie betweenl i−1 andl i
(i ∈ [m]); denote byXi the set of these points. Apply the same type lemma to obtain
subsetsYi ⊆ Xi such that all transversals of theYi are of the same type and, of course,
|Yi | ≥ c(2,m)|Xi | (i ∈ [m]).

For everyi ∈ [m], fix yi ∈ Yi . The Erdős–Szekeres theorem implies that some
yi1, . . . , yik are in convex position. Then, by the same type lemma, every transversal of
theYi j is in convex position.

Remark. Again, writeck for the infimum of the constants for which Theorem 1 is true.
The above proof gives

ck ≥ 1

m(k)
2−(

m(k)−1
2 )

which is doubly exponential ink: it is known that 2k+1≤ m(k) ≤ (2k−4
k−2

)+1 (see [ES1]
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Fig. 1. The regionsA01, A02, C01, C02.

and [ES2]). Fork = 4 and 5 we can do better. We give the proof ofc4 ≥ 1
22 and invite

the reader to prove or improvec5 ≥ 1
352.

Proof of c4 ≥ 1
22. Assume|X| is divisible by 22 and set|X| = 22n. Choose vertical

lines l0, l1, l2, l3 (listed from left to right) so that writingA, B, C for the set of points
betweenl0 andl1, l1 andl2, andl2 andl3, respectively, we have|A| = 10n, |B| = 2n,
|C| = 10n. The halving line,l4, of A andC bisectsB. Assume at least half ofB is above
l4, and denote this subset ofB by B0. Let A0, C0 be the half ofA, C belowl4, respectively.
Take the linel5 that bisectsA0 into two subsetsA01, A02, |A01| = n, |A02| = 4n, and
C0 into two subsetsC01, C02, |C01| = 3n, |C02| = 2n, as in Fig. 1. Now push the linel3
towardl2 and stop when it passed eithern points ofC01 or n points ofC02 (whichever
comes first). Further, halve the setA02 by a vertical line. Denote the obtained regions as
in Fig. 2. We know that|A01| = n, |A1| = |A2| = 2n, |B0| ≥ n, |C1| ≥ 2n, |C3| ≥ n,
and max{|C2|, |C4|} = n. We now distinguish two possible cases.

Case1: |C2| = n. The setsA01, B0, C2, andC3 are “convexly independent” sets of
size≥ n in this case.

Case2: |C4| = n. Take the halving line ofA1 andC1. It bisectsA1, A2, andC1 into
upper and lower parts to be denoted byAu

1, Au
2, Cu

1 , andAl
1, Al

2, Cl
1. Now either|Au

2| ≥ n,
in which caseAl

1, Au
2, Cl

1, C4 are “convexly independent” of size≥ n, or |Al
2| > n, in

which caseAu
1, Al

2, Cu
1 , B0 are “convexly independent” of size≥ n.

Fig. 2. The regionsAi ,Ci .
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4. Further Consequences

4.1. Positive Fraction Radon Theorem

A simple consequence of the same type lemma is a positive fraction Radon theorem
saying that the setsY1, . . . ,Ym obtained have the following property as well. Any(d+2)-
setD ⊂ [m] has a two-partitionD = I ∪ J such that the Radon partition of every set
{yi ∈ Yi : i ∈ D} is {yi : i ∈ I } ∪ {yi : i ∈ J}.

The proof is straightforward. The Radon partition is induced by the signs of the
coefficients in the affine dependence∑

i∈D

αi yi = 0,
∑
i∈D

αi = 0.

The sign ofαi is just the sign of det[
(yj

1

)
: j ∈ D\{i }] which depends only onD\{i } (and

not on the choice).

4.2. Positive Fraction Tverberg Theorem

With a little effort, one can get a positive fraction Tverberg theorem as well. For simplicity,
we state it whenm= (d + 1)(r − 1)+ 1. A partitionZ = Z1 ∪ · · · ∪ Zr of a finite set
Z ⊂ Rd is called aTverberg partitionif

r⋂
i=1

convZi 6= ∅.

Theorem 3. Assume d, r ≥ 2,and let m= (d+1)(r −1)+1 and X1, . . . , Xm ⊂ Rd.
Then there are positive fraction subsets Yi ⊂ Xi (i ∈ [m]) and r-partitions Iα1 ∪· · ·∪ I αr ,
α ∈ [a], of [m] (with a ≥ 1) such that all Tverberg r-partitions of any set of the form
{yi : i ∈ [m]} where yi ∈ Yi are

⋃r
j=1{yi : i ∈ I αj }, α ∈ [a].

Proof. Let v1, . . . , vr ∈ Rr−1 ber vectors such that their only linear dependence is

v1+ · · · + vr = 0. (6)

For x ∈ Rd, write x = (x
1

) ∈ Rd+1. The tensor productvj ⊗ x is anr − 1 by (d + 1)
matrix and is regarded as an element ofRm−1. Further, letx1, x2, . . . , xm ∈ Rd and
g: [m] → [r ].

We make use of the following observation [BO] and [S1]: Tverberg partitions of
{x1, . . . , xm} are in one-to-one correspondence with linear dependences of the form

m∑
i=1

αi vg(i ) ⊗ xi = 0, αi ≥ 0. (7)

To see this assume (7) holds. Then the setsI j = {i : g(i ) = j } partition [m]. We claim
that

⋂
j∈[r ] conv{xi : i ∈ I j } 6= ∅, i.e., the sets{xi : i ∈ I j } form a Tverberg partition.
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Equation (7) can be written as

0=
r∑

j=1

vj ⊗
∑
i∈I j

αi xi .

Multiplying from the left by vectorsu> ∈ Rr−1 orthogonal tor − 2 of the vectors
v1, . . . , vr shows, using (6), the existence ofx ∈ Rd+1 with

x =
∑
i∈I1

αi xi = · · · =
∑
i∈Ir

αi xi .

Checking the last components givesxd+1 =
∑

i∈I1
αi = · · · =

∑
i∈Ir

αi so that, indeed,

r⋂
j=1

conv{xi : i ∈ I j } 6= ∅.

The argument can be reversed showing that a Tverberg partition gives rise to a linear
dependency of the form (7).

Returning to the proof of Theorem 3, consider therm sets{vj ⊗ xi : xi ∈ Xi }, to
be denoted byvj ⊗ Xi . Choosek ∈ [m] and a mapg: [m]\{k} → [r ] and apply the
proof of the same type lemma (cone version) to the setsvg(i )⊗Xi (i ∈ [m]\{k})with the
following extra requirement. Whenvg(i )⊗Xα−1

i is to be replaced by the subsetvg(i )⊗Xα
i ,

replacevj ⊗ Xα−1
i by vj ⊗ Xα

i for every j ∈ [r ]. Do this for everyk ∈ [m] and every
g: [m]\{k} → [r ]. The outcome is positive fraction subsetsYi ⊂ Xi (i ∈ [m]) such that
for everyk ∈ [m] and everyg: [m]\{k} → [r ] the sign of

det[vg(i ) ⊗ yi : i ∈ [m]\{k}]
(whereyi ∈ Yi ) depends only onk andg (and not on the choice ofyi ). To finish the
proof observe that solutions to (7) are determined by the above determinants.

4.3. Tverberg-Type Result on Multicolored Simplices

Pach [P] used a modification of the same type lemma to prove the following. Given sets
X1, . . . , Xd+1 ⊂ Rd there are subsetsYi ⊆ Xi with |Yi | ≥ C(d)|Xi | (i ∈ [d + 1]) and
a point p ∈ Rd such that for every choiceyi ∈ Yi (i ∈ [d + 1]) the point p lies in
conv{y1, . . . , yd+1}. This was proved in the plane by [BFL] withC(2) = 1

12 but was not
known ford > 2.

Here is a sketch of a modified version of Pach’s neat argument. (It differs from
Pach’s proof by applying a different point selection theorem and by applying the same
type lemma instead of a weaker separation argument.) Consider the complete(d + 1)-
partite hypergraphH = (V, E) with vertex setV = X1 ∪ · · · ∪ Xd+1. The “point
selection” theorem of [ABFK] implies the existence of a pointz ∈ Rd and an edge
set E′ ⊂ E, |E′| ≥ p|E|, where p = p(d) > 0, such thatz ∈ conve for each
e∈ E′. By a weak form of the hypergraph version of Szemer´edi’s regularity lemma (see
[KS] or [P] for this particular case), for everyη > 0 there are subsetsZi ⊂ Xi with
|Zi | ≥ b(p, η)|Xi | for all i ∈ [d + 1] (whereb(p, η) > 0 is a constant) such that for



342 I. Bárány and P. Valtr

every choice of subsetsYi ⊂ Zi with |Yi | ≥ η|Zi |, there is an edge{y1, . . . , yd+1} ∈ E′

with yi ∈ Yi . Chooseη = c(d, d+ 2) from Theorem 2, and apply Theorem 2 to the sets
Z0, Z1, . . . , Zd+1 whereZ0 consists of “many” copies of the pointz. We getYi ⊂ Zi ,
|Yi | ≥ η|Zi | (i = 0, 1, . . . ,d+1), such that all transversals of theYi have the same type.
There is an edge{y∗1, . . . , y∗d+1} ∈ E′ with y∗i ∈ Yi . We havez ∈ conv{y∗1, . . . , y∗d+1},
and consequentlyz ∈ conv{y1, . . . , yd+1} for each choiceyi ∈ Yi .
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Note added in proof: J. Solymosi found a new and nice proof of Theorem 1 that gives
a better constant forck as well. His constant is roughly 2−16k2

.


