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Abstract. We prove a fractional version of the Ersi-Szekeres theorem: for akyhere

is a constant, > 0 such that any sufficiently large finite ¥t R? containsk subsets

Y1, ..., Y, each of size= ¢¢| X|, such that every sé¥, ..., y} with y; € Y; is in convex
position. The maintool is a lemma stating that any finite6et RY contains “large” subsets

Y1, ..., Ygsuchthatall setgys, ..., Y} with y; € Y; have the same geometric (order) type.

We also prove several related results (e.g., the positive fraction Radon theorem, the positive
fraction Tverberg theorem).

1. Introduction

The Erdis—Szekeres theorem [ES1] says that among sufficiently many points in general
position in the plane one can fikdthat are in convex position. It is a classical result in
combinatorial geometry with a number of generalizations and extensions (see, e.g., [S2]
and [EP]). This paper increases this number by one: we prove a fractional version of the
Erdds—Szekeres theorem.

A finite set inRY is in general positionif it contains nod + 1 points lying in a
hyperplane. A finite se¥ ¢ RY is in convex positiorif every y € Y is a vertex of
convY. Givenk setsYy, ..., Y, a set{ys, ..., ¥} is called atransversalof theY;, if
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V1 € Y1,..., Yk € Yk. We write [n] = {1, ..., n}. The fractional version of the Eod=
Szekeres theorem follows:

Theorem 1. For every integer k> 4 there is a constant,c> 0 with the following
property Every sufficiently large finite set X R? in general position contains k subsets
Y1, ..., Yewith |Yi| > ¢ X]| (i € [K]) such that every transversal of thei¥ in convex
position

The proof is based on what we like to call the same type lemma. With further ap-
plications in mind we present it in colored version and in arbitrary dimension. Two
m-tuples(xy, ..., Xm) and(yi, ..., Ym) (%, ¥ € RY) are said to havéhe samegorder)
typeif the orientations of the simplices, - - - x;,,, andy;, - - - yi,,, are the same for every
1<i; <-- <igy1 < m. Thisis the same as saying that the signs off(de} - - - (Xidlﬂ)]
and def(’y) - - - (") ] are equal. Properties of order types have been intensively studied,
mainly in relation to computational geometry; a survey on these investigations can be
found in [GP1] or in [GP2].

Theorem 2 (Same Type Lemma). For every two natural numbers d and m there is a
constant ¢d, m) > 0 with the following propertyGiven finite sets X ..., Xm C RY
such that X U X, U --- U Xy, is in general positionthere are subsets; Y X; with
1Yi| > c(d, m)| X;| such that all transversals of the Wave the same type

We mention without elaborating that the sé&tsX, ..., Xy, in the above theorems
could be replaced by probability measures. Then the sulfsetsuld be of measure at
leastcy or c(d, m), respectively.

Recently, Theorem 1 was proved for= 4 by Nielsen (personal communication).
Solymosi (unpublished) found the following weaker version of Theorem 1: given
points in general position in the plane, one can always choose a sequence otjength
from among them such that akyconsecutive members of this sequence are in convex
position.

The proofs of the above two theorems, followed by a discussion on direct conse-
guences, are given in the next two sections. Related results (e.g., the positive fraction
Radon theorem, the positive fraction Tverberg theorem) are described in Section 4.

2. Proof of Theorem 2

Itis enough to work with the case = d 41, the theorem would then follow by applying
the casen = d + 1 to every(d + 1)-tuple X, ..., Xi,,, (1 <i1 < --- <igpr < m).
So assumen=d + 1.

Partition [d + 1] into all possible unordered pairs of (nonempty) subsets:
(I, J1), ..., (Ixa_q, Jna_q). For anyi € [d + 1], we will find a chain of subsetX; =
X055 XI5 ... X¥1 =Y, such that, for alk € [2¢ — 1],

1 _
|Xia|2m|xft 4. 1)
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We proceed in2— 1 steps. In step we find the subsets? in the following way. Let
Z be the center on“l in the sense of [DGK], i.e., every open half-space containing
z contains at least [Xd + 1)]|Xi“*1| points of Xf‘*l. We may assume that the set
{za,..., Z411} IS in general position, since otherwise we may achieve it by a small
perturbation of the set&®*. Consider the hyperplarne, parallel with affz: i € 1,}
andwithaffz: i € J,} and positioned half-way between them. Wiit¢ andH,? for the
two half-spaces bounded by, so thatH! > aff{z: i € 1,} andH;] > aff{z: i € J,}.
TakeH, closed andH; open, say. Define

X =

Hl nXxet  for iel,,
H)nXxet  for ied,.

Inequality (1) follows now from the property of the centgrsSo at the end we have
Y = XZ71 ¢ X with

MEXCES il )

We claim now that every simplex with verticgs € Y1, ..., Ygr1 € Ygy1 has the
same orientation. Suppose the contrary angyg - - - y;,, be another simplex with a
different orientation. Then, for a suitablec (0, 1), the pointsu; = ty; + (1 — t)y;

(i € [d+ 1]) all lie on a hyperplandd. By Radon’s theorem [R], applied iH to the
pointsus, ..., U441, there is a partitioril, J) of [d + 1] with

conu;: i e I} Nnconv{u;: i € J} # 0. 3)

Now (I, J) = (ly, Jy) for somew. We have confu;: i € 1} C convJ{Yi: i € I} C
conv J{X: i el}C H! and similarly conyu;: j € J} C H;, a contradiction with

3).
The argument in the last paragraph was used for a different purpose by Goodman
et al [GPW]. O

Remark 1. Denote byc(d, m) the infimum of the constants for which Theorem 2 is
true. The above proof gives

c(d, m) > (d 4+ 1)~@-D(, @

A slight improvement on (1) and consequently on (2) and (4) comes from using the
ham—sandwich theorem instead of the center point theorem.

Remark 2. In the plane, (4) can be improved to
c2.m > 220, (5)
-m

To see this observe first that the sts ..., X, may be reordered so that there are
vertical (say) lineso, I1, ..., Im (in this order from left to right) such tha€; has at least
(1/m)| X;| elements betweeln_; andl;. Write X for the set of points oi; between
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li—1 andl;. Now, for any triple 1< p < g <r < m, only X, has to be separated from
X, and X} (I, separateX|, from the other two, ant}; separateX| from the other two).
This can be reached by a lihéhat halvesx}, andX; simultaneouslyl cutsXj, into two
parts. Keep the larger part and halfXf and of X{ on the other side df

Remark 3. There is a cone version to the same type lemma. This states, under the
same conditions, the existence¥ofc X, |Yi| > ¢'(d, m)|X;| such that

detlyi,. ... ¥iy)
has the same sign for all choicgs € Yi,, ..., Vi, € Yi,. The proof is essentially the
same, starting with the case = d. However, as a first step, halvg, ..., Yy by a

hyperplane and keep those halves that are on the other side to the origin. Then use two
partitions of f] and separating hyperplanes that pass through the origin.

Remark 4. Itis clear from the proof that the statement of Theorem 2 is also valid for
transversals of the coryy. The same is true in the case of Theorem 1.

Remark 5. With some effort, Theorem 2 can also be proved wKe X, U - - - U Xy,
is not in general position.

Remark 6. It follows from Theorem 2 that for ank and any finite point seX in
general position inRY there existk positive fraction subsetXy, ..., X, so that the
convex hull of every choice is combinatorially the cyclic polytopeorertices.

3. Proof of Theorem 1

Let m = m(k) be the Erd5-Szekeres number fer Choose vertical linelg, 14, ..., Im
(listed from left to right) so that at leagtl/m)|X|| points of X lie betweer;_; andl;
(i € [m]); denote byX; the set of these points. Apply the same type lemma to obtain
subsetsr; € X; such that all transversals of thg are of the same type and, of course,
IYi| > c(2, m)|Xi| (i € [m]).

For everyi € [m], fix yi € Y;i. The Erd’s—Szekeres theorem implies that some
Yi,» - - -, ¥i, @re in convex position. Then, by the same type lemma, every transversal of
the;, is in convex position. O

Remark. Again, writecy for the infimum of the constants for which Theorem 1 is true.
The above proof gives

1 m(g—1
_— ="y
= mio”

which is doubly exponential ik: it is known that  +1 < m(k) < (Zkk:;) +1 (see [ES]]
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Fig. 1. The regionsAo1, Aoz, Co1, Co2-

and [ES2]). Fok = 4 and 5 we can do better. We give the prootpf> 212 and invite

; 1
the reader to prove or improwg > .

Proof of ¢ > 212 Assume X| is divisible by 22 and sgfX| = 22n. Choose vertical
lineslg, 11, I, I3 (listed from left to right) so that writingd, B, C for the set of points
betweerly andly, I; andl,, andl, andls, respectively, we havpA| = 10n, |B| = 2n,
|C| = 10n. The halving linel,4, of AandC bisectsB. Assume at least half d@ is above
l4, and denote this subsetBfby By. Let Ag, Co be the half ofA, C belowly, respectively.
Take the linds that bisectsAg into two subset®\g1, Aoz, |Aoil = N, |Ag2l = 4n, and
Co into two subset€p1, Coz, |Co1l = 3n, |Co2| = 2n, as in Fig. 1. Now push the lifg
towardl, and stop when it passed eithepoints of Cy; or n points ofCy, (whichever
comes first). Further, halve the &3, by a vertical line. Denote the obtained regions as
in Fig. 2. We know thatApi| = n, |A1] = |A2] = 2n, |Bg| > n, |Cy| > 2n, |C3| > n,
and max|C;|, |C4|} = n. We now distinguish two possible cases.

Casel: |Cy| = n. The setsAg;, By, Co, andC; are “convexly independent” sets of
size> nin this case.

Case2: |C4| = n. Take the halving line of; andC;. It bisectsA;, Az, andC; into
upper and lower parts to be denoted4sy Ay, CY, andA!, A,, C!. Now eitherl AY| > n,
in which caseAl;, AY, C!, C, are “convexly independent” of size n, or |A,| > n, in

which caseA!, A, CY, By are “convexly independent” of size n. O
By
_\\
Aoy Cy | Cy
| c
C 4

Fig. 2. The regionsA;, C;.
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4. Further Consequences
4.1. Positive Fraction Radon Theorem

A simple consequence of the same type lemma is a positive fraction Radon theorem
saying thatthe setds, ..., Yy, obtained have the following property as well. Ag4-2)-
setD ¢ [m] has a two-partitiorD = | U J such that the Radon partition of every set
{yieYi:ieD}is{y:iellU{y:ield}

The proof is straightforward. The Radon partition is induced by the signs of the
coefficients in the affine dependence

Zaiyi =0, Zaizo.
ieD ieD

The sign of; is just the sign of de(fg): j € D\{i}]which depends only o®\{i} (and
not on the choice).

4.2. Positive Fraction Tverberg Theorem

With alittle effort, one can get a positive fraction Tverberg theorem as well. For simplicity,
we state it whetm = (d + 1)(r — 1) + 1. A partitionZ = Z; U - - - U Z, of a finite set
Z c RYis called aTverberg partitionif

)
[convz # 0.
i—1

Theorem 3. Assumedr > 2,andletm= (d+1)(r —1)+1and X, ..., Xm C RY.
Then there are positive fraction subsetstY X; (i € [m]) and r-partitions fFU---U 17,

a € [a], of [m] (with a > 1) such that all Tverberg r-partitions of any set of the form
{yi:i e[m}whereyeY arelJ_y(yi: i elf} aclal

Proof. Letwvs,...,v € R'~!ber vectors such that their only linear dependence is
vi+---4+v =0. (6)
Forx € R, writeX = (}) € R%"L. The tensor produat; ® X is anr — 1 by (d + 1)
matrix and is regarded as an elementR¥f-1. Further, letxy, Xo, ..., Xm € RY and
g: [m] — [r].
We make use of the following observation [BO] and [S1]: Tverberg partitions of
{X1, ..., Xm} are in one-to-one correspondence with linear dependences of the form
m
Zai vgi) ® X =0, o > 0. (7)

i=1

To see this assume (7) holds. Then the $gts {i: g(i) = j} partition [m]. We claim
that(); .,y convxiz i € 1} # 0, i.e., the setgx: i € Ij} form a Tverberg partition.
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Equation (7) can be written as
r
0= Z v ® Zai Xi.
j=1 i€|j

Multiplying from the left by vectorsu” e R'~! orthogonal tor — 2 of the vectors

v1, ..., vy shows, using (6), the existencexok R4+ with
X = Zaix_iz cee = Zaix_i.
iely el
Checking the last components giveg1 = Y, @ =--- = Y ;. o SO that, indeed,

J

The argument can be reversed showing that a Tverberg partition gives rise to a linear
dependency of the form (7).

Returning to the proof of Theorem 3, consider the sets{v; ® Xi: x € X}, to
be denoted by; ® X;. Choosek € [m] and a mapy: [m]\{k} — [r] and apply the
proof of the same type lemma (cone version) to thewgtsp X; (i € [m]\{k}) with the
following extra requirement. Whanyi, ® X*~* is to be replaced by the subsgt, ® X,
replacev; ® Xi"*1 by v; ® X{* for everyj e [r]. Do this for everyk € [m] and every
g: [m]\{k} — [r]. The outcome is positive fraction subs&tsc X; (i € [m]) such that
for everyk € [m] and everyg: [m]\{k} — [r] the sign of

;
convix: i € lj} #@.
=1

detvgi) @ Vit i € [m]\{k}]

(wherey; € Y;) depends only ok andg (and not on the choice of;). To finish the
proof observe that solutions to (7) are determined by the above determinants. O

4.3. Tverberg-Type Result on Multicolored Simplices

Pach [P] used a modification of the same type lemma to prove the following. Given sets
X1, ..., Xg41 C RY there are subsed C X; with |Y;| > C(d)|X| (i € [d+1]) and

a pointp € RY such that for every choicg € Y; (i € [d + 1]) the pointp lies in
convyi, ..., Yq+1}. This was proved in the plane by [BFL] with(2) = liz but was not
known ford > 2.

Here is a sketch of a modified version of Pach’s neat argument. (It differs from
Pach’s proof by applying a different point selection theorem and by applying the same
type lemma instead of a weaker separation argument.) Consider the cotaplete-
partite hypergrapt{ = (V, E) with vertex setV = X; U --- U Xg41. The “point
selection” theorem of [ABFK] implies the existence of a pamt RY and an edge
setE’ C E, |E’| > p|E|, wherep = p(d) > 0, such thatz € conve for each
e € E'. By aweak form of the hypergraph version of Szeet¥'s regularity lemma (see
[KS] or [P] for this particular case), for every > 0 there are subsets C X; with
|Zi| = b(p, n)|Xi| for alli € [d+ 1] (whereb(p, n) > 0 is a constant) such that for
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every choice of subse¥ c Z; with |Y;| > n|Z;|, there is an edggys, - .., Yai1} € E’
with y; € Y;. Choose; = c(d, d + 2) from Theorem 2, and apply Theorem 2 to the sets
Zo, Z1, ..., Zq+1 WhereZ, consists of “many” copies of the poiat We getY; C Z;,

lYil > n|Zi| (i =0,1,...,d+1), suchthatall transversals of tifehave the same type.
There is an edgéyy., ..., Yi,1} € E' with y* € Y;. We havez € convqy;, ..., Y .1}
and consequently € con\ys, . .., Ya+1} for each choicey € ;.
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Note added in proof J. Solymosi found a new and nice proof of Theorem 1 that gives
a better constant fax as well. His constant is roughly?ﬁkz.



