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Abstract. A random polytope, Kn, is the convex hull of n points chosen
randomly, independently, and uniformly from a convex body K^Rd. It is
shown here that, with high probability, Kn can be obtained by taking the
convex hull of m = o(n) points chosen independently and uniformly from a
small neighbourhood of the boundary of K.

§1. Introduction and results. A random polytope Kn, inscribed in a convex
body K^R1 is usually defined [2,8] (see also [4] for extensive references)
as the convex hull of points x\,. . ., xn drawn randomly, independently and
uniformly from K. With high probability most points chosen are interior to
Kn and are not needed when forming the convex hull. The aim of this paper
is to give this observation a more precise, quantitative form. Before proceeding,
some definitions are needed.

Given xeK, the Macbeath region, or M-region for short, with coefficient
A > 0 is defined as

On the convex body, we define the function u(x), given by

u{x)=\o\M(x, 1).

Set
Macbeath [7] proved the convexity of the set K(u^t). It is shown in [2]

that the expectation of vol (K\Kn) is of the same order as vol K(u^ 1/n). This
means, rough' speaking, that Kn and K{u^\/n) are "close".

We are interested in the case when Kn^K(u^t), so it is natural to define

p(n, t) = Vxob{Kn^K(u>t)).

This function is increasing both in n and t. Moreover, p(n, 0) = 0 and p(n, t)
tends to one as n -»oo, for any fixed t>0. Our main result shows that p(n, t)
gets very close to 1 when t = const (log n)/n.

In what follows c, < ; , , . . . , c(d), c, (d),. . . denote constants that depend
only on d.

THEOREM 1. For every

pin, P ^ 1 -c(d)rf~{P/m'" '}\P logn)''"2.
V n I
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This shows that Kn^K(u^P(logn)/n) with high probability (if j3 is large
enough). Assume now vol K= 1. This does not change anything except the
normalization factor. Write

ym}~ \Xl,. . ., xn} nKL^P10^"

The points yx,. . ., ym form a random sample of size m from K{u s£ P(log ri)/n)
and Kn = conv {y\, . . . , ym} with probability p(n, /?(log n)/n); thus the number
of points that generate Kn is less than n.

The number m of points needed to form Kn, is a random variable following
the binomial distribution with parameters n and p = vol AXw^ j5(log «)/«). It
is a consequence of the affine isoperimetric inequality (see [2]) that

vol K(u^s)^c, )

for any convex body K<=:Rd (with vol K= 1) and for every g>0. Then

Now to generate Kn with few points (and high probability) the following two-
step random procedure can be applied. Fix n large, determine p and choose
we(0 , . . . ,«} according to binomial distribution ("m)pm(\ —p)"~m (notice that
in is concentrated around its expectation np, so it is much less than «). Select
m points y\, • . • ,ym randomly, independently and uniformly from
K(u^P(logn)/n)). Then conv {yt,. . . ,ym} is a random polytope Kn with
probability p(n, fi(logn)/n) which is large by Theorem 1.

The expectation of the Hausdorff distance between K and Kn is of order
((log n)/n)2/id + )} when AT is smooth enough (see [1]) while the Hausdorff dist-
ance between K and K(u ̂  t) is of order tll(d +'' (more precisely information is
available when d=2 (see [3]))- This shows that the order of magnitude of t-
/J(log n)/n in Theorem 1 cannot be improved.

Our next theorem proves this for all convex bodies, not only for the smooth
ones.

THEOREM 2. For every P>0 and large enough n

The exponent here can be replaced by

[(d-\y+\]2d

in the case of poly topes.

The case of a polytope is the content of Lemma 2 which also improves an old
result of Levi [6] about the maximum volume of a symmetric subset of a convex
body (see also [5] for further information).
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§2. Auxiliary lemmas.

LEMMA 1. Assume zeK and 77 >0. Then
(i) M(z,\)^K{u^u(z)/(d2d)) and

(ii) ifK(u^ri)\Kn^0 then vol (K(u^r1/(d2d))r]\Kn)^l/(2d+])ri.

Proof, (i) Let xeM{z,\) with x = ay + (l-a)z for some 0 < a ^ j and
yebd K with 2z-yeK. Let Hy be a supporting hyperplane of K at j and
denote by Hx and / / r the hyperplanes parallel to Hy that pass through x and
z respectively.

As jc = a j + (l - a ) z and yeM(x, 1) we can easily prove that the pyramid
5v = conv ({y} u (M(z, 1) u Hx)) is a subset of M(x, 1). So

M(X) = vol M(x, 1) > 2 vol (£A). (1)

On the other hand the pyramid 5 r = conv ({y} u (M(z, 1) n //.)) is a subset of
M(z, 1) with

vol (B,)^u(z). (2)
2a

Comparing the volumes of the above pyramids which have common vertex at
y and parallel bases, using (1) and (2) we obtain

d
y-x

y-z
vol (B:)^2(1 -a)"vol (B:)>^-u(z).

dld

Thus xeK(u^u(z)/(d2'1)). As M(z, 5) is centrally symmetric, this completes
the proof of (i).

(ii) Let zeK(u^r])\Kn. Then there exists a half-space //with zebd Hand

Wz,l2)nH<=K\KH. (3)

By (i) and (3) we have that

and

vol [M{U^~ v)\Kny
i- vol (M(Z, ̂

= ̂  vol M(z, 1) = ™ «(z) S ^ 77.

LEMMA 2. Le? B be a convex compact set lying in a hyperplane H of Rd,
with y0 as its centre of gravity. Assume P = conv (B u {x0}) where xo$H. Then

(i) the set MP(\(x0 + yv), 1) contains the pyramid C whose vertex is at x0,
its basis is parallel to B and is passing through a point of the line segment [JC0, j>o]
at a distance (\/d)\\xo-yo\\ from x0 ; and

(ii) vol/>< ' ddu(Hx0 + y0)).
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Proof. For the sake of simplicity we assume x0 = (0,. . . , 0, 1) and the basis
B to be on the hyperplane xd=—l with centre of gravity yo = (0,. . . , 0, -1 ) .

(i) The statement is trivial when d=2. So assume d^3 and let C be the
pyramid with vertex at x0 and basis parallel to B passing through (0,. . . , 0,
I-(2/d)). We have to prove that CcM(0 , l) = P n ( - P ) . Suppose it does
not hold. As C^P there exists a point yeC of the form y = (-a, 1 -(2/d))
with aeK1'1 and such that —y$P.

Denote by Hx, the hyperplane parallel to the basis B and passing through
xe[x0, y0]. As x0 belongs to the cone C and —y$P, the point

d-\ dl d-\ d-\

and belongs to / / ( i_ (2/̂ )).V()- The point j 0 = (0,. . . , 0, - 1 ) is the centre of gravity
of B so the point (0, 1 —(2/d)) is the centre of gravity of the (d— l)-dimensional
convex set H^-a/d))xnr^P which contains y = (—a, 1 —(2/d)).

From a well known result it follows that the point

w-i U
belongs to P. This contradiction proves part (i).

(ii) For the symmetric body M(0, 1) we have that

vol(M(0,1) n Hy)^vo\(M(0,1) n H(l-<2/</»*0) = vol(M(0,1) n //,_, +(2/«o,.J,

for any point j e [ ( - l +(2/c?))x0, (1 — (2/</))x0]. Hence the volume of the part
of M(0, 1) lying between Hi-x + {2/li))Xa and H(l^(2,d))x0 is at least d(d-2) vol C

As vol C= (2/d2) vol (H0-(2/j))xa n P) we conclude from (i) that

2 1

The validity of (ii) now follows since the ratio w(^(x0 + >'o))/vol P is invariant
under affine transformations.

Let K<^Rd be a convex body with g its centre of gravity and let Fg(K) =
vol M(g, l)/vol K. It is known that for all K<=R2, Fg(K)^\ (see [5] for refer-
ences). When we are in RJ with d>2 then Fg(K)>2/(\+dd) ([6]). With the
help of Lemma 2, a better bound will be established.

COROLLARY 1.

Proo/. Let K be embedded in Rll+\ lying on *</+,=() with g = Q. We
construct a cone P with vertex at xo = (0, 1) and basis on xd+, = - 1 in such a
way that P n (xd+, = 0) = K. Then the intersection of the Macbeath region
M(0, 1) of P with xd+l=0 is M(g, 1) of K. By Lemma 2 (i) and the Briinn
Minkowski inequality applied on the symmetric set A/(0, 1) it follows that

vol M(g, l)>vol Pn \xeR : xd+\ = l— f= vol A.
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§3. Proof of Theorem 1. The method of Barany-Larman [2] is used to
establish an upper bound for the expectation of vol (K(u^8)\Kn) for 5>0
with 1 <[8n]<n. So

E(vo\(K(u^8)\K,,) = Prob (x$Kn)dx

( A - l

In

) /2£2e3/2 Y X'-'e-*'2

)e~*"/2(5«)</~1 (4)

[Sn]

for « large enough. In the proof of the above the following inequalities were
used:

/7\2n/ 27!

and

Yi k{k-\) . . .{k-i)yk~^'\^{k+\)e~ryk for

7

1<lSetting Sn = (P/(d21')) log« in (4), we conclude that

E\ vol | K\ u>^-. ^ ^ )\Kn) \^cx{d)TCPK" >(p log « ) "~ ' (5)
d2 n

Using now the Markov inequality, Lemma 1 (ii) with i] = (P log n)/n and (5)
we find

Prob IK(U>^-"W/0)<Prob (vol
V V n I' I \ \ \ dT n ) 1 2"T1 n

P 1O8 "\ trWI P 1Og "

(J9 log /I)""2. (6)
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§4. Proof of Theorem 2. Let xeK and denote by v(x) =
minjvol (ATn H)\ xeH, H a half space}. Then CK(x) is a minimal cap if
CK(x) = Kn H, xeH and its volume is v(x). For sufficiently small value of
v(x) we have that v(x)^(3d)Ju(x) (Lemma 2, [2]). Then

there exists x: u(x) — p and x£Kn

\ n

^ Prob there exists x; u{x) = ji ̂ ^ and CK(x) nKn

\ n

_
— ft

Now we establish a better bound in the case when AT is a polytope. Let x0

be a vertex of K and Q be the minimal cone with vertex at x0 containing K.
The minimal caps for K and Q are the same for suitable points of K near x0.
Hence we may suppose that there exists a hyperplane HXo supporting A' at x0

such that

CK (x) = H(x0 ,x)nK= H(x0 ,x)nQ=CQ(x)

for xeint K, near x0, where //(x0 , x) is the slab between the parallel hyper-
planes Hxo and Hx with xeHx. We may also suppose that the only vertex of
K contained in the slab H(x0, 2x - x0) is x0. Hence the set H(x0, 2x - x0) n Q
is just like the set P in Lemma 2 with centre of gravity of its basis at 2x - x0

and CK(y) = / /(x0 ,y) n Qfor_y£[jc0> 2x —x0]. This implies as is Lemma 2 (ii)
that

v(x) < z - u(x)

Using now the same argument as in the general case, we obtain

COROLLARY 2. For a convex body K in R'1 with a simple vertex (one that
lies in exactly d facets), the following inequality holds:

o'og'
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