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Affine perimeter and limit shape

By Imre Barany') at Budapest

. 1
Abstract. It is proved here that, as n — co, almost all convex — Z2-lattice polygons
n

lying in a given convex compact set K = R? are very close to a fixed convex set K,. The
distinguishing property of K| is that its affine perimeter is the largest among all convex
sets contained in K.

1. Main results

For a compact convex set K = R? let 2 (K) denote the set of convex polygons P = K
1 . .
whose vertices belong to the lattice ;ZZ. Inspired by a result of Arnold [Ar], Vershik

asked about 15 years ago if there is a limit shape to some collections of convex lattice
polygons. This was answered in the affirmative in [Ba] and [Ve] for the case Z,(K) with
K the unit square (see also [Si]). Here we extend this result for every convex compact set
K with nonempty interior by showing that, as n — 0o, the overwhelming majority of the
members of #,(K) are very close to a fixed convex set K.

This fixed convex set K, the limit shape of the elements in 2, (K), is characterized
as the convex subset of K with the largest affine perimeter. Write € for the family of all
convex compact sets in R? with nonempty interior, and set ¥(K) ={Se%:S < K}. The
affine perimeter (the definition is in the next section) of Se® is denoted by AP(S). The
existence and unicity of K, is the content of

Theorem 1. For every Ke ¥ there is a Ky€ 6(K) such that AP(K,) > AP(S) for
every S € €(K) different from K.

Let (A4, B) stand for the Haussdorf distance of 4, B< R?. The limit shape of the
members of Z,(K) is K.

1) Partially supported by Hungarian Science Foundation Grant T016391.



72 Barany, Affine perimeter and limit shape
Theorem 2. For every Ke ¥ and every ¢ > 0,

fo {PERAE): 6P K) <8}l _

1.
n- e |Z,(K)|

Almost all the paper is devoted to the proof of this limit shape theorem. We will
need to know, asymptotically at least, the size of 2 (K). We state this as

Theorem 3. For each Ke @,

lim n~23log|2.(K)| = 3(AP(K,) .

n— oo

Here and in what follows

3
1.1) [ = zf%

with {(x) being Riemann’s zeta function. The theorem shows that | 2 (K )| remains essen-
tially the same after any area-preserving affine transformation, which is a priori not obvious
(at least for the author). Clearly |2, (K )| is invariant under lattice preserving affine trans-
formations and of course, (LK), = L(K,) for every nonsingular affine transformation L.

In the next two sections we define the affine perimeter and prove Theorem 1. We
prove and use the fact (Lemma 1 and (3.3)) that the affine perimeter is a concave functional
on ¥ with respect to Minkowski addition. This has been known for Blaschke addition in
stronger form (see Lutwak [Lu]) and in any dimension. In section 4 we give the proof
that lim infn~?/?log|2(K)| 2 3(AP(K,) and a sketch of thé proof of the other ‘half”
of Theorem 3, namely, that the lim sup is at most 3{ AP(K,). The details are presented
in the next section. We conclude with the proof of the limit shape theorem.

2. Affine perimeter

The affine perimeter (and more generally, the affine arclength) can be defined in
many ways (cf. [Bl], [Le], [Lu], [Sc]) the most pleasant for us being the following (see
[BI] for the facts cited below). Given S € € choose a subdivison Xy, ..., Xy, Xy +1 = X; Of
the boundary 0S and lines ¢, supporting S at x; for all ie [m] where [m] = {1, ..., m}.
Write y; for the intersection of ¢; and ¢, ,, (if £, = ¢;, , then y; can be any point between
x; and x;, ). Let T; denote the triangle with vertices x;, y;, x; ., and also its area. The
definition is:

@2.1) AP(S) = 21im 3 /T,
1

where the limit is taken over a sequence of subdivisions with max |x; —x; .| = 0. The

1,..., m

existence of the limit, and its independence of the sequence chosen, follow from the fact

m 3
that )’ ﬁ decreases as the subdivision is refined. Consequently
1
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m 3
2.2) AP(S) =2infY |/T,.
1

We record further properties of the map AP: % — R, (see [BI], [Le]):
(2.3) AP(AS) = A*3AP(S), when 1>0,

(2.9 AP(LS) = (det L)'/3*AP(S), when L: R* - R? is linear,
2n
2.5) AP(S) = [ k"3ds= [ r*Pdg,
oS 0

where « is the curvature and r = r(¢) = k"' is the radius of curvature at the boundary
point with outer normal w(¢) = (cos ¢, sin¢). In (2.5), of course, dS has to be sufficiently
smooth.

The affine length of a convex curve is defined analogously. We will need the following
fact. Given a triangle T = conv{a, b, ¢}, let M be the unique parabola which is tangent to
ac at a and to bc at b.

(2.6) Among all convex curves connecting a and b within T the arc of the parabola
M has the largest affine length.

3. Proof of Theorem 1

Define AP*(K)=sup{AP(S): Se%(K)}. There is a sequence S,e%(K) with
AP(S,) » AP*(K). Choose a convergent (in Haussdorf metric) subsequence Sy, — Ko.
Obviously K, € ¢(K). Since AP : € — R is upper semicontinuous (see [Lu] or find a simple
proof for the planar case), AP(K,) = AP*(K), so existence is easy. For unicity we need
two properties of K,. The first is:

(3.1) 0K, contains no line segment.

Proof. Assume the contrary and let x be the midpoint of the line segment /< 0K,,.
Consider a parabola M touching ¢ at x (and on the same side of # as K,). Let ye M n 0K,
be the point so that the arc M, of M between x and y lies entirely in int K. Consider
all parabola-arcs connecting x to y and touching ¢ at x. This family can be parametrized
by the tangent direction at y so it has a ““last” element Q, which is contained in K. Let
ze Q,, be the first element on 0K, different from x (z = y is possible). Then Q,, and 9K,
have common tangent at z. According to (2.6), the affine length of Q,, is larger than that
of the corresponding arc of dK,. So replacing this arc by Q,, results in a convex set con-
tained in K and having larger affine perimeter than AP(K,) = AP*(K). O

Evidently 0K, ¢K * @ as otherwise a slightly enlarged copy of K, would be con-
tained in K and would have larger affine perimeter than AP*(K). Thus 0 K,\dK consists
of (countably many) convex arcs A,, A,, ... to be called free arcs. The second property

we need is:
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(3.2) Each free arc A4 is an arc of a parabola whose tangents at the endpoints are
tangent to K, as well.

Proof. Let x,y € A be so close that the intersection point of the tangents to 4 at x
and y lies in K. Replacing the arc of 4 between x and y by the suitable parabola-arc would
increase the affine perimeter. Thus each small enough subarc of A4 is an arc of a parabola
and so A itself is an arc of a parabola as well. The second half of (3.2) is easy. O

Lemma 1. Assume H, = conv{a,, b,, ¢;} for i =1, 2 are triangles with a,c, and a, c,,
(and byc, and b,c,, resp.) parallel and of the same direction. Let Hy = conv{a,, by, ¢y}

1 1 1
where a, = 5@ +a), by = 5 b1+ b,), ¢o = 5(61 +¢,). Then

1
HY® 2 5 (B! + H}P).

Proof. The statements is ‘““affinely invariant” so we may assume that
co=¢,=¢,=(0,0) and a,=(a,0), b, =(0,b) with a,6>0.
Then a, =(a+ h,0),a,=(a—h,0)and b, =(0,b+ k), b, =(0,b— k) with

|h|<a, |k|<b.

1 1 1
The areas are H, = Eab, H, = 2 (a+h(b+k),and H, = 7 (a — h)(b — k) and the lemma
3
follows from the concavity of the map (x,y)—]/xy. O

The lemma implies that AP : € — R is a concave functional when € is equipped with

1
Minkowski addition; i.e., for Sy, S, € ¢ and with S, = :,z-(S1 +S,)
1
(3.3) AP(S) 2 5 (AP(S)) + AP(S,)).

For the proof take n > 0 and a subdivision x,, ..., x,, of 0S5, with corresponding
triangles Ty, ..., T, so that AP(S,) +7n = 2i T;}’3. There are corresponding subdivisions
x3(j), ..., X, (j) of 0S; with the same tangelnt directions at x;(j) as at x; and triangles
7} ('j), ..., T,(j), for j=1,2. Further, x; = —;—(x,.(l) + x;(2)) and Lemma 1 can be applied
giving

m m m 1
AP(S)+nz2Y 'z Y () + Y T,()' 2 2 (AP(S,) + AP(S))) .
1 1 1
For later reference we repeat the inequality

(3.4) 2V TR 2 Y T + Y L)
1 1

1
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We. will need a slight strengthening of (3.3) when S, and S, have smooth enough
boundarles‘ and well-defined bounded radius of curvature r(¢). In this case (3.3) holds
with equality if and only if S, is a translate of S,. For the proof one notices that

1
ro(@) = 3 (r1(#) + r,(¢)) and then, to have equality in (3.3), one has to have
2/3 1 2/3 2/3
rg’c = 3 >+ ry"?)

for every ¢, according to (2.5). This implies r, = r, for every ¢ proving the claim.
Assume now §,, S, € 4(K) with AP*(K) = AP(S,) = AP(S,). Define

3 1 1 1 1 3
K1=ZS1+ZS2, K0=§S1+§S2, K2=ZSI+ZSZ

Clearly, all of them belong to ¥(K) and have affine perimeter equal to AP*(K). (3.1)
shows that the point z;(¢) € 9K, (and s;(¢)€ dS;, resp.) where the outward normal to
K;(S)) is w(¢) is uniquely determined for all ¢ € [0,27) and i =0, 1,2, j =1, 2. Of course,

%(zl(tb)-{—zz(qﬁ)):zo(d)). The advantage of using K; (instead of S;) is that the set

{¢p€[0,27):z;,(¢)eint K} is the same for i=0,1,2; we denote it by G. G is open in
[0,2m), its complement F = [0,27)\G is the disjoint union of

Fo={¢peF:z,(¢)=2,(¢)} and Fy={peF:z,(§)+z,(¢)}.

Every ¢ € F, is an isolated point of F. This is so since s, (¢), z; (@), 2o (@), z,(}), 5, ()
are all on the boundary of K, are distinct, and are contained in the line segment between
5,(¢) and s, (¢). Consequently, z;(y) € int K for every y + ¢ but close enough to ¢.

Evidently F is nonvoid. Even | F| = 3 follows as the outer normal to a parabola-arc
changes less than 7.

We claim that F, =@ which implies K, = K, and so S, = §,, and so the theorem.
Assume, on the contrary, that some @, € F,;. Then, for i =0,1, 2, z;(¢,) is the endpoint of
a free arc of 0K;, whose other endpoint is z;(¢,), say. If ¢, € F;, then z,(¢,) is the endpoint
of another free arc of dK;, whose other endpoint is z;(¢,), etc. This sequence is either
finite and ends with ¢, (which happens if and only if F, =), or finite and ends with a
point y, € F,, or infinite and its limit is a point y, € F,, again. We can start the other
direction from ¢, and define y_ similarly. The integrals (where y_=0 and y, = 27 in
case F, = ()

v+
[ r3de
W=

represent the affine perimeter of 0K; between z;(y_) and z,(y, ). So they have to be equal
for i=0,1,2. (The r,(¢) exist because JK; here are just parabola-arcs.) But then, as we
have seen, 0K, between z;(y_) and z;(p,) is a translated copy of JK, between the same
two points, so they coincide. Consequently, ¢o€ F,. O
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Remark 1. It is not clear whether the unicity part of Theorem 1 remains true in
higher dimensions. The problem is to find an addition of convex bodies such that the affine
surface area is concave and convex combination of two bodies in ¥ (K) is again in € (K).
Simple examples (with tedious computations) show that the Minkowski sum does not
satisfy the concavity requirement. Lutwak [Lu] proved a stronger inequality than (3.3)
for the Blaschke sum. But the Blaschke convex combination of two convex bodies from
%(K) need not be a subset of K. Luckily, the Blaschke and Minkowski sums coincide in
the plane and that is what works for Theorem 1.

The same proof gives the following “pointed” extension of Theorem 1 that we will
need later. Write (K, x) = {Ce¥(K):xe C}.

Theorem 4. For every K€% and every x € K there is a K,(x) e (K, x) such that
AP(K,(x)) > AP(S) for every S 4 (K, x) different from K, (x).

4. Sketch of the proof of Theorem 3

We need a theorem of Vershik (Theorem 2.3 in [Ve]) which, when applied to the
convex body C e %, says

@.1) lim lim n~%3log|{Pe®,:5(P,C)<e}| = 3{AP(C)

e=>0 n— oo

with the same { as in (1.1). In fact in [Ve] the right hand side is 3 [ k'/3ds but a similar
proof gives (4.1) (see also Remark 2 at the end of section 5).

Now shrink K|, by a factor of A < 1 with center in int K, and apply (4.1). Using (2.3),
for small enough ¢, all Pe 2, with §(P, 1K) < ¢ are contained in K, showing that

liminfrn~23log|2(K)| = A*33({AP(K,) .
Since A <1 is arbitrary,
(4.2) liminfrn~?3log|2(K)| = 3(AP(K,),
which is “half” of what we have to prove.

The idea of the other half is simple. Fix a set of primitive vectors v, ..., v, € Z>

whose lengths are about the same and whose directions are distributed fairly evenly in
. . 2 .

[0, 27), i.e., the angle between v; and (1, 0) is essentially i;n. (m = m(n) is to be chosen
) 1

later.) Pick a line #; with direction v; that passes through a point xie;ZZnK so that

X={x,, ..., x,} is in convex position (see the Figure). This gives rise to a convex polygon
P(X) whose ith edge is contained in #; and contains Xx;.
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Figure

Write N(X) =|{Ce Z,(P(X)): X = dC}|. Evidently
(4.3) |Z,(K)| £ ) N(X)

L 1 . s
where the summation is taken over all X={x,,...,x,} < ;Zan in convex position

with respect to vy, ..., v,. (The overcounting is due to the possibility that P(X) is not
contained in K but the error is small if m is large.) Now

44) N = [1p(T)
1

where T, =conv{x;,y;, x;,,} is a triangle, y; being the intersection of /, and Z,,, and
1 . . Ce

p(T;) denotes the number of convex — Z2-lattice curves connecting x; to x;,, within 7;.
n

We are going to use good estimates for p(7;) from [Ba] which we now describe.

Let T be the triangle conv {z, z + aa, z + aa + b} where a, b € Z* are primitive vectors

(a=+ +b), a, B’> 0,and z,z +aa+ Bbe%ZZ. Define
4.5  det(T) = |det(a, b)|, n(T)= %det(T) max (@82, fu~2).

We have from Theorems B and D of [Ba] (cf. [Ve] and [Si] as well)

(4.6) p(T) S n*Texp {6{n?3T'3(1 +100det (T) n''*(T))},
4.7 p(T) < exp {(12)/B)n>PTH3} .

The explicit (and non-important) constant 12 3|/ {(3) in (4.7) comes from [BP] and [BV].

In the “generic” case (when all the n(7;) are small) we have

6 Journal fir Mathematik. Band 484
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4.8) N(X) Zexp {6{n2/3<2 7}”3+0(1)>}.
1

As (3.4) shows, the map X+ ) T;'/3 is concave and for large enough m, its maximum is

1 m
reached when P(X) is very close to K,,. Then Y T;'/? < AP(K,) + n, for any > 0, implying
1

(4.9) N(X) Zexp{3{n*PAP(Ky)(1+0(1))}.

This would prove the other “half” of the theorem since the number of terms in (4.3) is
K ..

less than (nm ) < exp {mlog(n*K)} and this is small compared to N(X) if m = m(n) is

much less than n?/3,

Details of this argument, with a separate treatment of the nongeneric cases, is pre-
sented in the next section.

5. Proof of Theorem 3

For each ie[m] choose a primitive vector v;e Z> whose direction is between
1\ 2n 2n .
<i— 5) — and i— and whose length, |v;|, is between .7m and 1.3 m. The proof of the
m m
existence of such vectors is elementary and is therefore omitted.

Without loss of generality we can assume Area K= 1. E, the largest area ellipse

inscribed in K satisfies AP(F) = 2—“ and AP*(K) = AP(E).

2 ‘/5,

Next choose a set X = {x,,...,Xx,} < %ZZmK in convex position with respect to
vy, ..., U, (see the Figure). This gives rise to the convex polygon P(X) and triangles
T;=conv{x;, y;,X; .1} Set ¢,=|x; — x; ;] and p(X) = iei; p(X) is the usual perimeter

. 1
of conv X and is always smaller than p(K), the perimeter of K.

We first handle the case when p(X) is small.
1
Lemma 2. Ifp(X)< 5 (AP*(K))%'2, then N(X) < exp {3{n** AP*(K)}.

Proof. Let ¢, denote the angle between v; and v, . ,; clearly

w

(5.1) r

1A

;

IIA

m .

I
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Then e; is the longest side of 7; and one easily proves T; < 2 e?. The inequality between

the 2/3- and the arithmetic mean implies ~dm

(5.2) S e < /m (i e,->2/3

Consequently

iT1/3< ___5__ 1/3ie2/3< 5 /3( (X))2/3< __1__ USAP* K
- i P 300 (K) .

4dm

Using this in (4.7) and (4.3) we obtain

(5.3) N@)éﬁpﬂ»gmp%23anw“in“%
1 1

3 1 \/3
§exp{12 “3)('5'66) n2/3AP*(K)}

<exp{3¢{n?3AP*(K)}. D

From now on we consider X = {x, ..., x,,} with p(X) large, namely
1 [/2r\Y? 1
4 X)= —(AP*(K))¥? 2 > -,
(54 P 2 52 (AP*(K)) '”(V) ;

where we made use if the inequality AP*(K) = —%

We now define three subsets I,, I,, I3 of [m]; the numbers m, (large) and p (small)
will be specified later. In the triangle 7; we have y; — x; = o;v; and x; , | — y; = f;v; ., with
o;, f; = 0. Set

I ={ie[m):o0;>m B}, L ={ie[m]:B;>mo},

e={ewh0ume<u“’}

3n\'3 3
Lemma 3. ) T;'°< (m——> (p(X))*3.
1

iely

&; [0, [0; 44l ;¢ _ 1.3
. t : d < —, we get
Proof Asmi< g = Tpor il Tol " ol =7
1 3n 2Iﬁv,ﬂl 39n ,  3n ,
— 2 < 2
E—Zsmd)lavllﬁv,HI:z [o; v, la0,] 1 dmm, e; mmle'

Inequality (5.2) implies Y. e?/> < [1;|'/* (Y ¢;)*', thus showing
11 ll
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LT s <E>m (I;;‘ll)%(p(x»m

Iy ,nl

as required. O

Lemma 3 and (4.7) and p(X) < p(K) imply with an absolut constant c,

(5.5 [1p(T@) < exp {123 ROLEEN T.-‘“} < exp {e;m; 13 (p(K))* 0?3}
Iy 1

1/3
Lemma 4. Z T3 < (2) u2’3(p(X))2/3,

iels

. 5 .
Proof. Since T, £ — e}? we infer
4m

5 1/3 5 1/3 p(X) 2/3
'1/3 < 2/3 < | -
T () T s () n(et?)

Similarly to (5.5), we get with a constant c,
(5.6) [1p(@) <exp {12 KL 7;“3} < exp {c, ™23 (p(K))*3n?3} .
I3 1

Finally we compute the error term in (4.8) when ie I, =[m]\(/;ul, U ;). First
det(v;v; , ) < 10m is straightforward, so

10 mm

1
n(T) = ;det(vivi+l)max(aiﬁi—2’ Bio‘i—z) = ! max (o; ', ﬁi—l) .

Next,

e.

i v lav; + B;v; 44| |05

o v; €;

IA

| - 1.3 . m
! <{1+4+4 — —— <26 _—
% ol e s\t S Lommy @)

i

where the last inequality follows from i ¢ I;. Consequently

since p(X) > 1/4, and sum of the error terms in (4.8) for i€ I, is

14 1/4 3.,2\1/4
zloOdet(n)(n<n))1’4§uouoOOm( °> (’” ’"‘) .
Io

n 7
Now fix m; =m and p=1/m,. By (4.6) we have

];IP(T;') = (I;I n?T))exp {3(n*? (IZ T3+ con™4m2)} .
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Using this, (5.5) and (5.6) in (4.4) we get

3
(5.7) N =[1pm) < T]
1 ji=

j=0

[1p(T)
iel;

m
<exp {Ban” Y. T;''? + error terms} .
1

m
According to Lemma 1 or rather (3.4), the mapping X+ Y T;!/? is concave on
1
m-tuples X in convex position. Therefore for each m, it has a maximum at some X,,. The

limit of a suitable subsequence of P(X,,) is a convex set K* e ¢(K) with
AP(K*) = limsupAP(P(X,))

since AP is upper semicontinuous. But AP*(K) =2 AP(K*) so K* = K,. Then for every
n > 0 there is m, such that for m > m,, and for every m-tuple X = K in convex position,

2Y T3 < AP*(K) + 1.
1

Now set m = n'/1%, The error term in (5.7) is

n?3{con™ 4 m? 4 (¢ + ) (p(K))*Pm™ 13 + ¢y (p(K))*Pm ™23} + 3 log (n?),
Io

which is less than ¢n?/3 ~1/4® with the constant ¢ depending only on the perimeter of K.
Thus

N(X) = exp {3Cn2/3(AP*(K) + 'I)} exp {cn?/3=1/34)
< {exp3(n*(AP*(K) + 2n)}

if n is large enough. Combining this with Lemma 2 and (4.3), and using Area K =1, we
have for large enough n,

|Z,(K)| £ Y. N(X) £ Y exp {3{n**(AP*(K) + 21)}

< (rrl:) exp (30n?(AP*(K) +21)} < exp {3({n**(AP*(K) + 31)}. ©

We will need a “pointed” version of Theorem 3 (cf. Theorem 4). For x € K € ¥ write
2 (K,x)={PeP?(K): xe P}. The above argument can be used to prove

Theorem 5. For each K€ % and each xe K

lim n~2log| 2 (K, x)| = 3LAP(K,(x)) .

n— o

Remark 2. A slight extension of Vershik’s theorem can be proved along similar
lines. Specifically, let y be a (bounded) convex curve in the plane, and let 2,(y, €) denote

the collection of convex 1Zz-lattice curves C with 6(C,y) < &. Then
n
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lim lim n=%3log|2(y,e)| = 3(AP(y).

e—>0 n—>

In the proof one has to use the fact that logp(T) = 6{n*/3T*/3(1 + o(1)) under suitable
conditions on the triangle T (see Theorem A of [Ba], Theorem 3.1 of [Ve], or Theorem
1 of [Si]).

6. Proof of the limit shape theorem
We have to show that

F=%,,={Pe?(K):6(K,, P) = ¢}

is a ““small” subset of £ (K). We will do so by partitioning & into finitely many sets that
are small as a consequence of Theorems 3 and 5.

Assuming Area K= 1, let E be the maximum area ellipse contained in K. It is well

%. Clearly AP(K,) = AP*(K) = AP(E). The affine isoperimetric
inequality implies Area K, = Area E = 5—751/? and so the maximum area ellipse E, in K,
2
T

has area at least —.
27

known that Area £ >

We prove the theorem first in the special case when E, coincides with a circle of

radius r centered at the origin (and explain the general case later). Clearly,r = |/n/27>1/3
which implies, in turn, that diam K < 3.

It is clear that there is a small # = 5 (¢) > 0 such that Ce ¥(K) and 6 (K, C) = ¢ imply

6.1) either (1-n)K,¢C or C4(1+nK,.
For the partitioning of & we need

Lemma 5. There are halfplanes H,, ..., H,, each with (1 —n/2) K, ¢ H;, and points
Xy, ..., X, € Kno(1 + n/2) Ky, where p and q depend only on n, such that the following holds.
For every C e ¢ (K) satisfying (6.1) either there is an H; with C = H; or there is an x; with

x;eC.

p q
The lemma implies that # = | ) #, U (] &; where
1 1

H,={CeF:CcH} and F={CeF:x;eC}.

J

Here &, c ¢(H;n K) and AP*(H,;n K) < AP*(K), as K|, is unique and is not contained
in H;n K. Then for all i and for a suitably small 6, depending only on 7,

AP*(H.nK) < AP*(K) — 26, .
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So by Theorem 3, for large enough n,

(6.3) | #,] < exp {3(n**(AP*(H,nK) +4,)}
<exp{3{n*3(AP*(K)—4,)}.

To estimate the size of % we use Theorems 4 and 5. Obviously #; < {Se4(K): x;€ S}
and AP (K, (x; ) < AP(KO) since K, is unique and x; ¢ K. So for all j and for a su1tably
small J, dependmg only on 7, AP(K (x;) < AP(K ) —28,. Then, by Theorem 5, for
large enough n,

(6.4) | #| < exp {3{n?3(AP(K,(x))) + 8,)}
< exp{3¢(n*3(AP*(K) - 9,)}.

Together with (6.3) this finishes the proof of the limit shape theorem in the special case
when E| is a circle. To prove the general case we apply the affine map L carrying E, to
the circle, to K, K,, E,. We then find the halfspaces H; and points x; via Lemma 5, and
use L™'H; and L™'x; to obtain the analogons of (6.3) and (6.4).

Proof of Lemma 5. We let w(x) denote the vector (cosa, sina) e R%. Write H(x)
for the halfplane with 0 € H(«) and outer normal w(«) whose bounding line is tangent to
the circle of radius 1/10 centered at the origin. We claim that every C e ¥ (K) with 0 ¢ C

2n
is contained in some of the halfplanes H ( 10 O) =1,...,100.

By separation there is a halfplane H with 0 € 0H and C = H. Denote its outer normal
by w(¢). Elementary computations (using diam K < 3) show that C < H(«) holds for all
o with |« — ¢| < 1/30. But every interval [¢ —1/30, ¢ + 1/30] (mod 2 ) contains an angle

2n
of the form zm

Next write H'(x) for the halfplane with 0 € H'(x) and outer normal w(x) whose
bounding line is tangent to (1 — #/2) K,. We claim that if 0 e Ce ¢(K) but (1 —n) K, ¢ C,
then there is a f € [0,2n) such that C< H'(x) for every a € [ —n/6, B + n/6] which is,
again, understood mod 2.

Indeed, there is a halfplane H' containing C whose bounding line is tangent to
(1 — n) K, since otherwise (1 — ) K, < C. Then C< H'(x) whenever KnH' < H'(«). An
elementary computation (using diam K < 3 and the “nice” position of K,) shows that
KnH'c H'(«) holds for allae [ — /6, B +n/6] where w(pP) is the outer normal of H'.

2n
Now define the halfplanes H, by H;= H < 1 OO) ifi= ., 100 and

H,= H'((i—101)n/3),
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ip 6n ) 67 .
if i=101,...,101 + 7 . So with p =101 + 7 , for any C e ¥(K) with

1-mKy¢t C,
there is an ie {1, ..., p} so that C < H,.

Finally, consider a subdivision x,, ..., X,, X, +; = x; of the boundary of (1+#/2) K,
with the property that | x; — x; ., | <#/6. We claim that every C € ¢(K) with (1 — ) K, = C
and Cq (1+ n) K, contains at least one of the points x,, ..., x,. Every such C contains
some point y from the boundary of (1+ 1) K,, so y = (1 + 1) x with x € 0K,,. The length
of the arc of Cnd(1+#n/2)K, containing (1+ 1/2)x is at least /6, as an elementary
computation quickly reveals. O
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