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§1. Introduction. The following question of V. Stakhovskii was passed to
us by N. Dolbilin [4]. Take the barycentric subdivision of a triangle to obtain
six triangles, then take the barycentric subdivision of each of these six triangles
and so on; is it true that the resulting collection of triangles is dense (up to
similarities) in the space of all triangles? We shall show that it is, but that,
nevertheless, the process leads almost surely to a flat triangle (that is, a triangle
whose vertices are collinear).

THEOREM 1. Successive barycentric subdivisions of a non-flat triangle con-
tain triangles which, to within a similarity, approximate arbitrarily closely any
given triangle.

We can produce a random sequence of triangles by successively choosing
one of the six triangles from each barycentric subdivision. So, if Tn is a triangle,
we choose Tn+X at random from the six triangles into which Tn is subdivided.
This gives a Markov chain (Tn). In contrast to Theorem 1 we shall show that
the shapes of these triangles converge, almost surely, towards the flat triangles
as n->co.

THEOREM 2. Given a triangle, we repeatedly subdivide it barycentrically
and randomly choose one of the resulting triangles. Then, with probability one,
the shapes of the triangles will converge to flat triangles.

Any triangle Tis similar to a triangle with vertices 0, 1 and a in the complex
plane. The complex number a represents the shape of the triangle. Let 7}
(j= 1,. .. , 6) be the six triangles of the barycentric subdivision of T. Then
the shape crj of 7} is given by gj(cr) for some Mobius map g, of the upper half-
plane H+ onto itself. In this way the proof of Theorem 1 reduces to showing
that the orbit of a point in H+ under the semigroup generated by g\,.. ., g6

is dense in H+. Although much has been written on discrete subgroups of the
group Aut (H+) of Mobius transformations of H+ onto itself (see, for example,
[1]), almost nothing seems to have been written on semigroups. With this in
mind, the following result may be of independent interest.

THEOREM 3. Suppose that g and h are non-commuting elements of
Aut (H+), and that h is an elliptic element of infinite order. Then the semigroup
generated by g and h is dense in Aut (H+).
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The proofs of Theorems 1, 2 and 3 are given in Sections 3, 4 and 2,
respectively.

The first named author was partially supported by OTKA; the paper was
written while he was visiting University College, London, whom he thanks for
their hospitality.

§2. The proof of Theorem 3. Our proof is based on hyperbolic geometry,
but it is more convenient to work with the unit disc A as the hyperbolic plane
rather than H+. Let g and h be non-commuting elements of Aut (A) with h
elliptic of infinite order. Then h is a hyperbolic rotation and, by conjugation,
we may assume that h fixes the origin. Since geAut (A) we have

az + c
g ( ) lcz + a

for some a and c satisfying \a\2- \c\2= 1.
Now let S1 be the closure (in the topological group Aut (A)) of the semigroup

generated by g and h. If S contains an elliptic element/of infinite order, then
S contains all iterates/" and so, being closed, S contains all hyperbolic rotations
about the fixed point of/ We shall denote the group of hyperbolic rotations
about w by Rw so, in particular, Ro c S.

We now know that S contains the maps

u < ^ e z + 0
 A u / ^ e"az + e"c

tiZ) = d h ( )

for all real t, and it is clear that for a suitable choice of /,

trace (h,g) = 2 Re (e"a) = 2 cos \0,

where 9 is some irrational multiple of n. For such t, the transformation h,g
is a rotation of infinite order. Now h,g has a fixed point w, say, in A and we
conclude, as above, that Rw c S. It is important to note that w # 0 (else c = 0
and then g and h would commute); thus S contains both Ro and Rw, where

Now take any point z in A, not on the geodesic through 0 and w, and form
the hyperbolic triangle with vertices z, 0 and w. Let az, a0 and aw be the
hyperbolic reflections across the side of the triangle opposite z, 0 and w, respec-
tively. As

we see that aoaw is in S. Also a0a,4, is a rotation through some angle <p(z)
about z. Since (p is a continuous function but is not constant, it follows that
the angle <p(z) is an irrational multiple of n for a dense set of z. Then aoaw is
a rotation of infinite order. Thus S contains the group Rz for a dense set of
points z in A and, as S is closed, we now see that S contains all hyperbolic
rotations.
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Finally, it is known that any element / in Aut (A) can be expressed in the
form a/J, where a and P, are reflections in some geodesies A and B. Draw a
geodesic C which crosses both A and B and let y denote reflection in C. Then
f=aP = {ay){yP)eS. This proves that S=Aut (A).

§3. The proof of Theorem 1. The idea of describing the shape of a triangle
by a single complex parameter a was developed by D. G. Kendall [6]. For
this it is convenient to regard a triangle T as an ordered triple of distinct
points {a, b, c) which are its vertices. For example, we distinguish between the
triangles (a, b, c) and (b, c, a). Of course, in this sense, six different triangles
now correspond to the same triangular set of points. The shape a of the
triangle (a, b, c) is (c — a)/(b — a). This is invariant under all of the similarity
maps z\-+az + p (with a^O). In particular, the map g(z) = (z — a)/{b — a)
maps the triangle (a, b, c) to the triangle (0, 1, a). Furthermore, the triangle
T has shape a if, and only if, it is similar under some orientation preserving
map to (0, 1, a).

Suppose that Tis the triangle (a, b, c). If the triangle T reduces to a point
then it has no shape. Otherwise its shape a is a point of the extended complex
plane. The shapes 0, 1 and oo correspond to triangles with a = c, c = b and b =
a respectively. The triangle T is flat when its shape a lies in the extended real
line. The vertices a, b and c occur anticlockwise around the boundary of T
precisely when a lies in the upper half-plane H+ = {creC: Im (cr)>0}. Finally
note that permuting the vertices of the triangle T gives the six shapes:

1 CT-1 . 1 a
1 — (7 (X (7 O — 1

These arise from the Mobius group which permutes 0, 1 and oo.
Let T= (a, b, c) have shape a. Among the triangles of the barycentric

subdivision of T are the two triangles

a + b a + b + c\ fa + c a + b + i

with shapes G\ and <r2 respectively. An easy computation shows that O\ =
g(cr) and <j2

 = h(a) for the two elements g and h of Aut (H+):

3 3z

Repeated subdivision of T will give all of the triangles/(<r) for / i n the
semigroup generated by g and h, so Theorem 1 will follow once we have checked
that g and h satisfy the hypotheses of Theorem 3. It is easy to check that g
and h do not commute (this also follows from the fact that they have no
common fixed point). A computation shows that

-3z + 6 - | z + |
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(where the final form has determinant 1). Hence trace (h2) = T 6 ( ~ 2 , 2) and
so h2 is a rotation of angle y/, say. Consequently, 2 cos h\j/ = trace (A2) = ^ .
The only rational values of x and y with cos TTX=>> are those with y = 0, ±5,
±1 (see, for example, [3]), so we find that h2, and hence h itself, is a rotation
of infinite order. (Alternatively, if h were of finite order, its trace would be
a + o" 1 for a root of unity o . Hence r = trace (g) = 1/^/6 would be an algebraic
integer. The minimal polynomial for x in Z[X] is 6X2—1 so r is not an algebraic
integer.) This completes the proof of Theorem 1.

(There are other ways to represent the shapes of triangles. For example, if
the side lengths of the triangle are r, s and t, then the point (r2: s2: t2) in the
real projective plane determines the unoriented shape of the triangle. Moreover
barycentric subdivision of the triangle acts as a linear map on the vector
(r2, s2, t2). We may use this to give a different proof of Theorem 1 in a similar
way to that described above.)

Remark. Let Q be a fixed, non-flat triangle. Theorem 1 shows that, if we
begin with a non-flat triangle T, there are triangles Tn in successive barycentric
subdivisions of T which have shapes arbitrarily close to that of Q. This result
can be strengthened by insisting that the sides of Tn are almost parallel to those
of Q. So Tn is arbitrarily close to a homothetic copy of Q.

To prove this, note that an affine linear map A transforms the barycentric
subdivision of a triangle T into the barycentric subdivision of A(T). So it
suffices to demonstrate the result for one fixed triangle T. Let T be the triangle
with vertices (a, b, c) and shape a = g(l+j\/23). This shape is chosen because
it is fixed by the map h: z 1—> (z — 2)/3z considered above. One of the triangles
in the barycentric subdivision of Tis T' = (\(a + c), b, i{a + b + c)) which also
has the same shape a as T. However, the sides of 7" need not be parallel to
those of T. Indeed 7" is obtained from T by rotating by the complex number

_ -\{a + c)\(\b-a\
\\b-k{a + c)\j\b-aj \a\ 724

Now ft) is not a root of unity, since o + o" 1 = 1/^/6 is not an algebraic integer.
So powers of co are dense in the unit circle. Repeating this process we obtain
a sequence of triangles T(k) each with shape <r but rotated by cok from T. For
any rotation R we can thus find a k with Tik) arbitrarily close to a homothetic
copy of R(T).

Theorem 1 shows that we can find a triangle Tn, by successively subdividing
T, which has shape arbitrarily close to Q. Thus there is a rotation R with
R(Tn) arbitrarily close to a homothetic copy of Q. Hence, by subdividing T{k)

instead of T, we obtain a triangle S arbitrarily close to a homothetic copy of
Q. The triangle S is one from the barycentric subdivisions of T.

§4. The proof of Theorem 2. When we barycentrically subdivide a triangle
Twith shape aeH+, we obtain six smaller triangles. We can order the vertices
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of each of these anticlockwise in three different ways to get 18 different shapes
all lying in H+. As above, these are given by g,(cr) for 18 Mobius trans-
formations gj (j= 1,2,. . . , 18). It is important to note that the gj are indepen-
dent of the original triangle.

The process of repeatedly dividing a triangle barycentrically defines a ran-
dom process on the upper half-plane H+ representing the shape of the resulting
triangles. For suppose that we begin with the triangle T having shape <jeH+.
Barycentric subdivision gives rise to the 18 new triangles with shapes (gj(cr) :j—
1,2,.. . , 18). Choose one of these, gj(\)(cr) say, at random and repeat the
process. This gives rise to a random sequence of triangles with shapes

More formally, let n be the probability measure on Aut (H+) which assigns
probability 1/18 to each of the transformations gj. Then let (Xi'.ieN) be
independent random variables which take values in Aut (H+) and have the
distribution ft. The sequence

then defines a Markov process in H+. We have shown that the union of the
paths of this Markov process are dense in H+. However, Theorem 2 claims
that almost every path converges to the boundary IRu{oo} as «->oo.

Remark. We will, in fact, prove more. Let p be the hyperbolic metric on
H+. Then we will show that there is a A>0 with

— > A almost surely as n -* oo.

The number A is the (first) Lyapounov exponent for the process. This result
will follow from the law of large numbers for non-commuting random products
proved by H. Furstenberg [5]. (See also the accounts of this result given by
P. Bougerol [2] and F. Ledrappier [7].)

In order to apply Furstenberg's results we wish to consider random products
of unimodular matrices. So, rather than working in Aut (H+), we will work
in the double cover SL (2, U). We will alter the notation slightly and think of
/ i a sa probability measure on SL (2, U) and Xn as independent random vari-
ables in SL (2, U) with distribution p. Each element geSL (2, U) acts as a
linear map on U2 and we will denote its norm by ||g||. Since n is supported
on only finitely many points, the integral Jlog \\g\\dfi(g) is certainly finite.
Theorem 1 shows that the smallest closed semigroup containing the support
of n is all of SL (2, U). Hence the smallest closed group containing the support
of n is SL (2, R). This clearly acts irreducibly on R2 and all finite index
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subgroups do so also. Hence we can apply Theorems 8.5 and 8.6 of [5]. These
show that there is a strictly positive constant a so that, almost surely,

- l og | |M- I i - 1 . . .Ar 1 i iHa
n

as «->oo for all non-zero ueU2. By separating ueC2 into real and imaginary
parts we easily see that this conclusion still holds for non-zero ueC2.

Consider the matrix

G=f *JeSL(2,R)
\c d)

and the corresponding Mobius transformation

ao + b
ca + d

It is easy to check that

= 2 cosh p(g(cr), i) Im (cr).

Therefore

— log (2 cosh p(<Jn, i) Im {a))-*a
In

almost surely as «->oo. Consequently,

p(<rB,0
• 2a>0

almost surely as n-><x>. Of course, the triangle inequality shows that the same
conclusion holds with i replaced by any point of H+.

A related application of Furstenberg's work to shapes of triangles was given
by D. Mannion [8] and [9].

Furstenburg's results also show that the sequence an converges almost
surely to a shape a^edH+. It would be interesting to know the distribution
of the limiting shape a^ and the value of the Lyapounov exponent 2a.

The argument Used to prove Theorem 2 requires little information about
the transition distribution /u on Aut {H+). So there are similar results for
certain other stationary Markov chains of triangles. However, there are related
chains which do not converge to flat triangles. As a simple example, consider
the sequence of triangles Tn with shape an defined by choosing Tn+i as one of
the triangles in the barycentric subdivision of Tn which has shape closest in the
hyperbolic metric to co = j(l + iy/3). The number w is the shape of an equi-
lateral triangle. It is easy to check that

K= {aeH+: p(<x, gjl (<o))>p(<r, a) for ; = 1 , 2 , . . . , 18}
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is bounded for the hyperbolic metric in H+. If on$K, then there is aj with

' p ( c 7 n , a )

so p(<T«+i, co)^p((jn, a). It follows that the sequence an remains bounded
and so cannot converge to the flat triangle shapes in dH+.
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