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ABSTRACT

A cell of an arrangement of n hyperplanes is rich if its boundary contains a piece
of each hyperplane. We give an asymptotically tight upper bound on the number of
rich cells, as n tends to infinity.
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1. INTRODUCTION

Given an arrangement of n hyperplanes in R¢ we call a cell of the
arrangement rich if its boundary contains a piece of each of the hyperplanes,
i.e., if it has n facets, one supported by each hyperplane. Here in Sections
2-5 we find bounds for f(d, n), the maximum number of rich cells over all
such arrangements, we find f(2, n) precisely, and we prove the following
theorem.

THEOREM 1. Forn >d > 3,

f(d,n) = (dﬁz) + O(n?"?).

The hyperplanes are in convex position if there is some rich cell in their
arrangement. In Section 6 we find a “Carathéodory number” for lines in the
plane: We show that a set of lines in the plane lie in convex position, provided
every five of the lines are in convex position.

2. A RECURRENCE RELATION

Let H={H, H,,..., H,} be n hyperplanes in R? and consider the
arrangement &/(H) of these hyperplanes and let f,(d, n) be the number of
rich cells in &(H). We want to determine f(d, n), the maximum number of
rich cells over all such arrangements.

LEmMa 1. fld,n) < f(d,n — 1)+ f(d — 1,n — 1), where n,d > 2.

Proof. Let n,d 2 2. Consider the contribution of H,: A rich cell of
&#(H) can only occur when H, cuts a rich cell of #(H — H,). H, can cut
such a cell into at most two rich cells of #(H).

If some hyperplane H, is parallel to H,, then no region on H, can act as
a facet of two rich cells as H, lies uniquely in H,', say, and cannot bound a
facet in H_. Hence,

fo(d,n) <f(d,n—-1) <f(d,n—1) +f(d—-1,n—1).

Otherwise, say H, divides a rich cell C of &/(H — H,) into two rich cells
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C, and Cy of #(H). Then some region R of H, is a shared facet of C, and
Cg and R lies in the (d — 1)-flat H,. We claim that R has (n — 1) facets. If
R has less than (n — 1) facets, then some H, N H, (1 <k < n) does not
support R. H, does not cut the facet of cell C due to H,. This facet must lie
uniquely in one half-space H,', say, but then H, can support a facet of only
one of the cells C, or Cy. Thus R has (n — 1) facets and is a rich cell in the
arrangement of the (d — 2)-flats H, " H,, k=1,...,n — 1, lying in H,.
There can be at most f(d — 1,n — 1) such regions R in H,. All other rich
cells in &(H — H,) can yield at most one rich cell in &(H):

fild,n) <f(d,n—1) +f(d = 1,n —1). m

3. BOUNDARY CONDITIONS

The results when d = 1 are obvious: f(1,1) = 2, f(1,2) = 1, and f(1, k)
= 0 whenever k > 3. Also it is clear that f(d, 1) = 2 for all d. We could use
this as the starting position for the recurrence, but a better bound can be
obtained if a few more cases are investigated.

LEMMA 2. Whenever k < d, f(d, k) = 2%

Proof. We have observed that f(1,1) = 2 and f(d,1) = 2 for all d, so
the result holds for d = 1 and when k = 1. It follows by induction that
fld k) < 2% and this bound is realized by an arrangement of k < d mutu-
ally orthogonal hyperplanes in R<, which has 2* rich cells. [ ]

LEMMA 3. Whend > 2,

f(d,d+1)=(gii)+(d;1)+---+(d+l)

=9d*1 _ 4 — 2,

Proof. (i) Consider the arrangement of & of (d + 1) hyperplanes in
general position in R?. This arrangement has one bounded cell: a simplex. All
other cells are unbounded and “hang from” the faces of this simplex. The
only cells in this arrangement that are not rich are the (d + 1) cells that hang
from the vertices of the simplex:

fdmy = (A (T3] e (410),
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(i) If any two of the hyperplanes are parallel, then each of the parallel
planes cannot divide a cell rich in the remaining d planes into two cells rich
in the (d + 1) planes. So in this case, there can be no more than f(d,d — 1)
rich cells and f(d,d — 1) = 24-1 ¢ 94+l _ J _ 9 whenever d > 2.

(iii) In R?, if three lines have a point in common, then there are no rich
cells in the arrangement.

In R3, if four planes have a line in common, then the arrangement is
equivalent to four lines with a point in common in two dimensions and has no
rich cells. If four planes have exactly one point in common, the arrangement
of three of the planes has at most 2° rich cells (Lemma 2). The addition of
the fourth plane cannot divide any of these rich cells into two new rich cells
because this can occur at most zero times (this is the number of rich cells
when three lines in a plane have a point in common), and 23 g9t -3-2.

In the following text, we will use only (3, 4) and f(2, 3). The general case
can be found in [1]. [ |

CoroLLARY 1. f(3,4) = 11 and f(4,5) = 26.

3.1, Results for Two Dimensions
It has already been shown that f(2,1) = 2 and f(2,2) = 4 by Lemma 2
and that f(2,3) = 4 by Lemma 3.

LEMMA 4. f(2,4) = 2 and f(2,5) = 1.

Proof. (i) This can be shown by case analysis.
(ii) Observe that any two convex sets in the plane can have at most four
tangent lines in common. |

COROLLARY 2.  f(2, k) = 1 whenever k > 5.

4. AN UPPER BOUND

THEOREM 2. Forn >d > 3,

(n+ 8)‘1_2

fldin) < =79y



RICH CELLS IN AN ARRANGEMENT OF HYPERPLANES 571

Proof. The result holds for d = 3 by using the recurrence relation and
the results for f(3,4) and d = 2. It can be shown (using an inductive
argument) that the result holds for f(d, d), i.e., that for d > 3,

(d+8)"?

f(d,d) =29 < R

Inductively assume then that the result holds true in (d — 1) dimensions
and that in d dimensions the result holds for up to (n — 1) hyperplanes.
Then

fld,n)y <f(d,n-1)+f(d-1,n-1)

(n+ 7)(1*2 N (n+ 7)“’_3
(d - 2)! (d - 3)!

((n+7) +1)"7?
(d — 2)!

=2

(n+ 8)d72
T T d-2)!

5. A LOWER BOUND

In this section we construct an example that gives a lower bound:

Cram 1. f(d, n) > (dﬁz) +(df3

) + o +(g),wheren =zd+ 1.

The method involves constructing an arrangement in space one dimension
higher than that required and cutting this with a hyperplane to get an
arrangement in R?. First consider an arrangement of n > d + 1 hyperplanes
through the origin in R?. Let H, = {x: {(a;, x) = 0, a; € R“). These planes
dissect the space into cones C = {x € R%: (ga, x) <0, i=1,...,n},
where ¢,..., &, = +1 or —1is asign sequence. Such a cone is rich if it has
n facets. A simple duality argument shows that ¢,,..., &, determine a rich

cone if and only if Cone{e,q,,..., £,a,} has n extreme rays. We denote this
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property by “*”. Set g(d, n) to be the maximum number of rich cones in a
dissection by n planes in R?

Cramm 2. Ifn = d + 1, then
g(d, n) >2{(3: ;) + (Z: i) + o +(" o 1)} = K(n, d).

Proof. let aj,...,a, n>d + 1, be lexicographically ordered on the
moment curve. There are K(n d) sign sequences ¢, ..., g,, & = *1, each
with at most (d — 3) sign changes. We claim that all resulting sequences &,q,
satisfy “*”. This will prove Claim 2. Assume that the sequence resulting from
£, e does not satisfy the property “*”. This implies that there is some j
with the property &;a; € Cone{g;a;: i €{1,...,n} — {j}}. Then by
Carathéodory’s theorem [13] &a; € Cone{a a; i € D}, where D c(1,..., n}

—{j} and |D|=d. Set D’ —DU{]} and let D' ={i,...,iz,} with
iy <iy < v+ <iy, ;. Thus,

d+1 >0 ifi, #j

. Z Vs k7

0= Y ay5,a, with op{ _ 1 ifi—=i
o , ifi=j.

We know from the properties of the moment curve that in any such linear
dependence the signs of the coefficients of the ¢, alternate (and that none of
them is zero) [5]. Let us call the intervals between sign changes in the &,
sequence blocks. There are at most d — 2 blocks. If a block that does not
contain j contains two (consecutive) i;s, then the g, S have the same sign in
the above linear dependence, which is impossible. If the block that contains j
contains four (or more) i;s, then again two consecutive ;s have the same
sign—again impossible. So if we count the number of g, S which can be
distributed among the blocks, we have the number of a, s < 3+4(d—-3)=
d < d + 1, which is a contradiction. [ |

Proof of Claim 1. We use this result to show Claim 1. Take the above
example in R?*! with n + 1 vectors a,, ..., a,, . In this arrangement the
plane <a,, x) = 0 supports a facet in each of (at least) K(n + 1,d + 1) rich
cones. So the plane {a,, x) = 1 intersects (at least) half this number of the
rich cones. Each such intersection is a rich cell in R? = {x: {(q,, x) = 1},
with the hyperplanes of the arrangement being H; N R i=2....,n+ 1

n

This example provides a lower bound for f(d, n) and finishes the proof of
Theorem 1.
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6. CONVEX POSITION

We propose the following generalizations of the concept of convexity for
k-dimensional flats in d-space: Let & be a family of k-flats in R4 lying in
general position. We say that & is in convex position if there is a compact
convex body touching every member of # (see also [4]).

Obviously, any set of n < d + 1 points in general position in R? induces
an (n — 1)-dimensional simplex and is therefore in convex position. On the
other hand, by Carathéodory’s theorem, if all (d + 2)-tuples of n distinct
points in d-space are in convex position, then all points are in convex
position. Our original reason for studying rich cells was to establish some
analogous results for k-flats in convex position, but we could only handle the
planar case.

It is easy to see that any family of four lines in the plane is in convex
position, and this is the largest number with this property.

THEOREM 3. If any five members of a finite family of lines in the plane
are in convex position, then dall of them are in convex position.

Proof. Suppose, in order to obtain a contradiction, that there is a family
F={,....1,,,) of n +1 lines, for some n > 5, which is not in convex
position, but any proper subfamily of .# is in convex position.

Any family of n > 5 lines divides the plane into ("; 1) + 1 cells.

Observe that by Lemma 4 at most one of these cells can contain a piece (i.e.,
a segment or a half-line) of each line on its boundary.

Suppose now that n > 5 and that [, intersects the (unique) cell C
determined by {/,,...,1,}, whose boundary contains a piece of each [,
1 <i<n. Then I,,, cuts C into two pieces—C, and C,—and we can
assume without loss of generality that C, has at least as many sides as C,.
Clearly, C, has at least one side (belonging to, say, /,) which is not incident
to the common boundary segment of C, and C,. We can assume that C, has
no other side with this property. Otherwise, deleting its supporting line from
%, we would obtain a subfamily in nonconvex position.

Then, if [, |, meets C in a bounded line segment, let [, and [, _,; denote
the sides of C intersected by [, , (see Figure 1) and let C| and C}' be the
uniquely determined cells containing a piece of every line in the arrange-
ments . — {l;,1,} and .Z— {l,_,,1,}, respectively. Obviously C},C} 2 C,
and at least one of them is not met by [,,. Thus, & — {l,} or & — {l,,_ } is not
in convex position, which is impossible.
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Otherwise, [,, | meets C in a unbounded ray intersecting the side [, _,,
say. Let C| be as before. If [, does not meet C}, then & — {I,_,} is not in
convex position, a contradiction. If on the other hand, I, meets C{, then [, _,
meets the cell determined by & — {I,_,} in a bounded line segment and a
contradiction is obtained using the above information.

Suppose next that n > 5 and that [, | does not intersect C. Assume
without loss of generality that the sides of C adjacent to its vertex closest to
l,,1 belong to I, and [,. then % — {l,} is in nonconvex position, which is a
contradiction.

The case n = 5 can be treated by case analysis. ]

REMARK 1. There is another way of showing that no family %=
{I,,...,1,.,} exists with the property required in the above proof, provided
that n is sufficiently large. Assign to every I, the unique cell C; in the
arrangement . — {l;} whose boundary contains a piece of each line in
Z—{l,}. Let C} = C, if I, does not intersect C,; otherwise, let C}¥ C C, be a
cell in the arrangement of .# with at least n/2 + 2 sides. It is easy to show
that at least (n + 1)/5 of the C}* are distinct (because each cell belongs to at
most five indices). The total number of sides of the C} is at least 3(n +
1)(n/2 + 2).

On the other hand, it is well known that n + 1 cells in an arrangement of
n + 1 lines cannot have more than O(n*/?) sides [8, 2], a contradiction if n is
large enough.

The first part of this argument generalizes to higher dimensions, but the
total number of facets of ¢, n cells in an arrangement of n + 1 hyperplanes in

RY (d > 3) can be as large as c,n%.
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If we want to generalize the (first) proof of Theorem 3 to families of
hyperplanes in RY (d > 3), then the problem is that by the example given in
Section 5 there can be more than one cell in an arrangement # of hyper-
planes whose boundary contains a portion of every member of 7.

REMARK 2. Instead of considering convex position, it may be more
convenient to study projectively the convex position of hyperplanes, that is, if
there exists a permissible projective transformation that maps the family of
hyperplanes onto a family in convex position. In this formulation the problem
is closely related to a question of McMullen [6, 7]. In fact the results in these
papers provide a lower bound for the possible Carathéodory number.
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