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ABSTRACT 

A cell of an arrangement of n hyperplanes is rich if its boundary contains a piece 
of each hyperplane. We give an asymptotically tight upper bound on the number of 
rich cells, as n tends to infinity. 
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1. INTRODUCTION 

Given an arrangement of n hyperplanes in [w”, we cal1 a cell of the 
arrangement rich if its boundary contains a piece of each of the hyperplanes, 
i.e., if it has n facets, one supported by each hyperplane. Here in Sections 
2-5 we find bounds for f(d, n), the maximum number of rich cells over all 
such arrangements, we find f(2, n) p recisely, and we prove the following 
theorem. 

THEOREM 1. FOT- n 2 d 2 3, 

f(d n> = (d : 2) + O(nd-3). 

The hyperplanes are in convex Position if there is some rich cell in their 
arrangement. In Section 6 we find a “Caratheodory number” for lines in the 
plane: We show that a set of lines in the plane he in convex Position, provided 
every five of the lines are in convex Position. 

2. A RECURRENCE RELATION 

Let H = {H,, H,,..., H,} be n hyperplanes in [w ” and consider the 
arrangement d(H) of these hyperplanes and let f,(d, n) be the number of 
rich cells in ti( H ). We want to determine f( d, n), the maximum number of 
rich cells over all such arrangements. 

LEMMA 1. f(d, n) <f(d, n - 1) +f(d - 1, n - l), where n, d > 2. 

Proof. Let n, d > 2. Consider the contribution of H,: A rich cell of 
M(H) tan only occur when H, cuts a rich cell of M( H - H,). H, tan tut 
such a cell into at most two rich cells of ~4 H ). 

If some hyperplane H, is parallel to H,, then no region on H, tan act as 
a facet of two rich cells as H, lies uniquely in HT , say, and cannot bound a 
facet in Hi. Hence, 

f,(d,n) <f(d,n - 1) <f(d,n - 1) +f(d- 1,n - 1). 

Otherwise, say H, divides a rich cell C of i;s( H - H,) into two rich cells 
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(ii) If any two of the hyperplanes are parallel, then each of the parallel 
planes cannot divide a cell rich in the remaining d planes into two cells rich 
in the (d + 1) planes. So in this case, there tan be no more than f(d, d - 1) 
rich cells and f(d, d - 1) = Zd-’ < 2df’ - d - 2 whenever d > 2. 

(iii> In [Wz, if three lines have a Point in common, then there are no r-ich 
cells in the arrangement. 

In [w3, if four planes have a line in common, then the arrangement is 
equivalent to four lines with a Point in common in two dimensions and has no 
rich cells. If four planes have exactly one Point in common, the arrangement 
of three of the planes has at most 23 r-ich cells (Lemma 2). The addition of 
the fourth plane cannot divide any of these rich cells into two new rich cells 
because this tan occur at most zero times (this is the number of r-ich cells 
when three lines in a plane have a Point in common), and 23 < 24 - 3 - 2. 

In the following text, we will use only f(3,4) and f(2,3). The general case 
tan be found in [l]. ??

COROLLARYl. f(3,4) = 11 andf(4,5) = 26. 

3.1. Results for Two Dimensions 
It has already been shown that f(2,l) = 2 and f(2,2) = 4 by Lemma 2 

and that f(2,3) = 4 by Lemma 3. 

LEMMA 4. f<2,4) = 2 und f@, 5) = 1. 

Proof. (i) This tan be shown by case analysis. 
(ii> Observe that any two convex sets in the plane tan have at most four 

tangent lines in common. ??

COROLLARY 2. f(2, k) = 1 wheneuer k > 5. 

4. AN UPPER BOUND 

THEOREM 2. For n > d > 3, 
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Pruof. The result holds for d = 3 by using the recurrence relation and 
the results for f(3,4) and d = 2. It tan be shown (using an inductive 
argument) that the result holds for f(d, d), i.e., that for d 2 3, 

f(d, d) = 2” < (;d+_8;;;z. 

Inductively assume then that the result holds true in (d - 1) dimensions 
and that in d dimensions the result holds for up to (n - 1) hyperplanes. 
Then 

f(d,n) <f(d,n - 1) +f(d - 1,n - 1) 

Q 

= 

5. A LOWER BOUND 

(rr + 7)“-2 
+( 

12 + 7)“_” 

(d - 2)! (d - 3)! 

((n + 7) + 1)“-2 

(d - 2)! 

(rz + 8)-’ 

(d-2)! ’ 

In this section we construct an example that gives a lower bound: 

CLAIM 1. f(d, n> a (drg)+(do3)+...+(U)>~)lererr~d+1. 

The method involves constructing an arrangement in space one dimension 
higher than that required and cutting this with a hyperplane to get an 
arrangement in [Wd. First consider an arrangement of n > d + 1 hyperplanes 
through the origin in US”. Let Hj = {x: (ui, x) = 0, ai E Rd). These planes 
dissect the space into cones C = {x E [Wd: (E~u,, X> < 0, i = 1,. . . , n}, 
where Ei,. . . , E, = + 1 or - 1 is a sign sequence. Such a cone is rich if it has 
n facets. A simple duality argument Shows that Ei,. . . , E, determine a rich 
coneifandonlyifCone(&,al,..., E,u,) has 71 extreme rays. We denote this 
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property by “*“. Set g(d, n) to be the maximum number of rich cones in a 
dissection by n planes in Rd 

CLAIM 2. Zfn > d + 1, then 

Proof. Let Ul,. . . > U”, n 2 d + 1, be lexicographically ordered on the 
moment curve. There are K(n, d) sign sequences &i, . . . , E,, ci = f 1, each 
with at most (d - 3) sign changes. We Claim that all resulting sequences ciui 
satisfy “*“. This will prove Claim 2. Assume that the sequence resulting from 
81, * *. , E, does not satisfy the property “*“. This implies that there is some j 
with the property tja. E Cone{.siui: i E (1, . . . , n} - {j}}. Then by 
Caratheodory’s theorem [13], cjuj E Cone( eiui: i E D), where D c (1, . . . , n} 
- {j) and ID] = d. Set D’ = D U (j} and let D’ = {i,, . . . , id+l} with 

i, < i, < *** < id+i. Thus, 

Cl+1 

o= &k~i,uik witha, F-, 
if i, #j, 

k=l 
- , if ik =j. 

We know from the properties of the moment curve that in any such linear 
dependence the signs of the coefhcients of the ujt altemate (and that none of 
them is Zero) [SI. Let us cal1 the intervals between sign changes in the .si 
sequence blocks. There are at most d - 2 blocks. If a block that does not 
contain j contains two (consecutive) iks, then the uits have the same sign in 
the above linear dependence, which is impossible. If the block that contains j 
contains four (or more) iks, then again two consecutive ai,s have the same 
sign-again impossible. So if we count the number of U,~S which tan be 
distributed among the blocks, we have the number of U,~S < 3 + (d - 3) = 
d < d + 1, which is a contradiction. ??

Proof of Claim 1. We use this result to show Claim 1. Take the above 
example in Rd+ ’ with n + 1 vectors u,, . . . , u,, 1. In this arrangement the 
plane (ui, x) = 0 supports a facet in each of (at least) K(n + 1, d + 1) rich 
cones. So the plane (u,, x) = 1 intersects (at least) half this number of the 
rich cones. Esch such intersection is a rich cell in Rd = {x: (ui, x) = 1}, 
with the hyperplanes of the arrangement being Hi n Rd, i = 2,. . . , n + 1. 

??

This example provides a lower bound for f(d, n) and finishes the proof of 
Theorem 1. 
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6. CONVEX POSITION 

We propose the following generahzations of the concept of convexity for 
k-dimensional flats in d-space: Let Er be a family of k-flats in Rd lying in 
general Position. We say that 9 is in convex Position if there is a compact 
convex body touching every member of F(see also [4]). 

Obviously, any set of n Q d + 1 Points in general Position in Rd induces 
an (n - II-dimensional simplex and is therefore in convex Position. On the 
other hand, by Caratheodory’s theorem, if all (d + 2)-tuples of n distinct 
Points in d-space are in convex position, then all Points are in convex 
Position. Our original reason for studying rich cells was to establish some 
analogous results for k-flats in convex Position, but we could only handle the 
planar case. 

It is easy to see that any family of four lines in the plane is in convex 
Position, and this is the largest number with this property. 

THEOREM 3. Zf any ftve members of afinite family of lines in the plane 
are in convex Position, then all of them are in convex Position. 

Proof. Suppose, in Order to obtain a contradiction, that there is a family 
_Y= {Z,, . . . , Z,, 1} of n + 1 lines, for some n > 5, which is not in convex 
Position, but any proper subfamily of 9 is in convex Position. 

Any family of n > 5 lines divides the plane into n e ’ + 1 cells. 
( 1 

Observe that by Lemma 4 at most one of these cells tan contain a piece (i.e., 
a Segment or a half-line) of each line on its boundary. 

Suppose now that n > 5 and that E,, i intersects the (unique) cell C 
determined by {Z,, . . . , Z,}, whose boundary contains a piece of each li, 
l<i<n. Then Zn+i cuts C into two pieces-C, and Ca-and we tan 
assume without loss of generality that C, has at least as many sides as C,. 
Clearly, C, has at least one side (belonging to, say, 1,) which is not incident 
to the common boundary Segment of C, and Ca. We tan assume that C, has 
no other side with this property. Otherwise, deleting its supporting line from 

9, we would obtain a subfamily in nonconvex Position. 
Then, if l,, I meets C in a bounded line Segment, let 1, and 1, _ 1 denote 

the sides of C intersected by l,, i (sec Figure 1) and let C: and Cr be the 
uniquely determined cells containing a piece of every line in the arrange- 
ments _.Y- (Zr, Z,} and 9- (Z,_ i, Z,), respectively. Obviously C:, Cf 2 C, 
and at least one of them is not met by 1,. Thus, 9 - (1,) or _Y - (Z, _ i} is not 
in convex Position, which is impossible. 
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_----- 1 n+l 

FIG. 1. 

Otherwise, Z,, 1 meets C in a unbounded ray intersecting the side 1, _ 1, 
say. Let C; be as before. If 2, does not meet Cr, then 9- {Z,_,) is not in 
convex Position, a contradiction. If on the other hand, Z, meets Cr, then 2, _ i 
meets the cell determined by 9 - (Z,_ i} in a bounded line Segment and a 
contradiction is obtained using the above information. 

Suppose next that n > 5 and that Zl,+ 1 does not intersect C. Assume 
without loss of generality that the sides of C adjacent to its vertex closest to 
Z n+l belong to 1, and Z,. then 9 - (1,) is in nonconvex Position, which is a 
contradiction. 

The case n = 5 tan be treated by case analysis. ??

REMARK 1. There is another way of showing that no family 9= 
(Z i, . . . , 1, + i} exists with the property required in the above proof, provided 
that n is sufficiently large. Assign to every Zi the unique cell Ci in the 
arrangement P- {ZJ whose boundary contains a piece of each line in 

_F’- {Zi}. Let CF = Ci if Zi does not intersect Ci; otherwise, let CT c Ci be a 
cell in the arrangement of _Y with at least n/2 + 2 sides. It is easy to Show 
that at least (n + 1)/5 of the C,? are distinct (because each cell belongs to at 
most five indices). The total number of sides of the C,? is at least $(n + 
lXn/2 + 2). 

On the other hand, it is well known that n + 1 cells in an arrangement of 
n + 1 lines cannot have more than 0(n4/3) sides [B, 21, a contradiction if n is 
large enough. 

The first part of this argument generalizes to higher dimensions, but the 
total number of facets of c,n cells in an arrangement of n + 1 hyperplanes in 
R” (d > 3) tan be as large as c2n2. 
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If we want to generalize the (first) proof of Theorem 3 to families of 
hyperplanes in [Wd (d > 31, then the Problem is that by the example given in 
Section 5 there tan be more than one cell in an arrangement Z’ of hyper- 
planes whose boundary contains a Portion of every member of ,Z?. 

REMARK 2. Instead of considering convex Position, it may be more 
convenient to study projectively the convex position of hyperplanes, that is, if 
there exists a permissible projective transformation that maps the family of 
hyperplanes onto a family in convex Position. In this formulation the Problem 
is closely related to a question of McMullen [6, 71. In fact the results in these 
Papers provide a lower bound for the possible Caratheodory number. 
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