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Abstract. We prove that if the three angles of a triangle T in the plane are different from 
(60~176176 (30 ~ 30 ~ 120~ (45~176176 ~ 60~176 then the set of vertices of those 
triangles which are obtained from T by repeating 'edge-reflection' is everywhere dense in the 
plane. 

Introduction 

An edge-reflection of a triangle T 1 is a triangle T2 which is symmetric to T 1 with 
respect to the line determined by an edge of 7"1 (see Fig. 1). By a chain of triangles 
we mean a sequence of triangles 

T1, T2, T3 . . . .  

such that T~ (i > 2) is an edge-reflection of T~_~, and T~ ~ T~_2 for i > 3. Two triangles 
ABC and PQR are equivalent to each other if ABC = PQR or there is a finite chain 
of triangles T~ . . . . .  T~ such that 7"1 = ABC and T~ = PQR. This is clearly an 
equivalence relation. 

Let us denote by f2as c (or simply by g2) the set of vertices of the triangles 
equivalent to a given triangle ABC. Figure 2 shows part of f2 for four types of 
triangles with angles 

(60 ~ 60 ~ 60~ (30 ~ 30 ~ 120~ 

(45 ~ 45 ~ 90~ (30 ~ 60 ~ 90~ 

We are going to prove that except for the above four types of triangles, ~ is 
everywhere dense in the plane (Theorems 2 and 3). 

The Angles of a Triangle 

In this paper all angles are measured by degree (o). A triangle ABC is called rational 
if its three angles are all rational angles, otherwise, ABC is called irrational. It is 
obvious that if ABC is irrational, then at least two angles are irrational. 
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Let  ~ be a ra t ional  angle and  m/n be the irreducible fract ion equat l  to ~/180 ~ If  
m is even, then the angle ct is called even-type, otherwise it is called odd-type. Further,  
an odd- type  angle is called (odd/odd)-type or  (odd/even)-type accordingly as the de- 
n o m i n a t o r  of  the irreducible fract ion is odd  or even. F o r  example,  30 ~ is (odd/even)- 
type and  60 ~ is (odd/odd)- type.  If  2ct is odd- type,  then clearly ~ is (odd/even)-type.  

Theorem 1. Among the three angles ct, r, 7 of a rational triangle ABC: 

(1) At least one angle is odd-type. 
(2) The number of (odd/even)-type angles is v ~ 1. 
(3) The number of (odd/odd)-type angles is ~ 2. 

Proof. First  suppose  tha t  the three angles ~, r ,  7 are all even-type.  Then  since 
~/180 ~ + fl/180 ~ + 7/180 ~ = 1, we have  

even/odd  + even /odd  + even /odd  = 1 

which implies even + even + even = odd,  a contradict ion.  Thus  (1) follows. 
Next ,  suppose  that  ~ is (odd/even)-type,  but  r ,  7 are not.  Then,  f rom 2~/180 ~ + 

2fl/180 ~ + 27/180 ~ = 2, we have 

odd/n + even /odd  + even/odd  = 2 

which implies odd  = n. even, a contradict ion.  Thus  (2) follows. 
Finally,  suppose  ~, fl are (odd/odd)- type,  but  7 is even-type.  Then  we have 

odd /odd  + o d d / o d d  + even /odd  = 1 

which implies tha t  even = odd  + odd  + odd,  a contradict ion.  Thus  (3) follows. 
[] 

Corollary I .  In a rational triangle ABC, one of the following three cases occurs: 

(1) Two or three angles are (odd/even)-type. 
(2) One angle is (odd/odd)-type, and the other two are even-type. 
(3) Three angles are (odd/odd)-type. 

Rational Triangles 

L e m m a  1. Let ABC be a rational triangle. Let AB'C' be the triangle symmetric to 
ABC with respect to the point A, and let AB"C" be the triangle symmetric to AB'C' 
with respect to the bisector of the angle /__ A = ct (see Fig. 3): 

(1) I f  ~ is (odd/even)-type, then AB'C' is equivalent to ABC. 
(2) I f  ~ is (odd/odd)-type, then AB" C" is equivalent to ABC. 
(3) I f  ~ is even-type, then AB"C" is equivalent to AB'C'. 

Proof. Suppose  ~ is (odd/even)-type,  i.e., ~/180~ = (2m + 1)/(2n). Then  2n~ = 
(2m + 1)180 ~ - 180 ~ (mod 360~ Hence,  in a chain of  triangles 

ABC, ABC1, AB 1 C1, AB1C 2, A B 2 C  2 . . . . .  A B n C  n 
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Fig. 3 

with c o m m o n  vertex A (Fig. 3), the last tr iangle AB,,C,, will coincide with AB'C' or  
AB"C". However ,  since an even number  of  edge-reflections results in a congruent  
triangle of the same 'sense', we must  have ABnCn = AB'C'. This proves (1). Similarly, 
we can get (2) (3). [ ]  

If 0 =  60 ~ 90 ~ 120 ~ or 180 ~ then cos 0 = 1/2, 0, - 1 / 2 ,  or - 1 .  And it is well 
known that  if Icos 01 is a rat ional number  other  than 0, 1, 1/2, then 0 is irrat ional  
(see, e.g., Hadwiger -Debrunner  I-1], p roblem 8). 

L e m m a  2. Let 0 (0 ~ < 0 _< 180 ~ be a rational angle. Then cosO is a rational number 
if and only if  0 = 60 ~ 90 ~ 120 ~ or 180 ~ 

L e m m a  3. For a given angle a and a real number r > 0, let A(r,a) denote the set of 
all points represented by linear combinations of plane-vectors 

(r" cos k~, r .  sin kc0, k -- - 1, 0, 1, 2, 

with integral coefficients. I f  cos ~ is irrational, then A(r, ~) is everywhere dense in the 
plane. 

Proof. Suppose that  2 := 2 cos a is irrational.  Since 

(r. cos a, r- sin ~) + (r. c o s ( -  a), r .  s i n ( -  a)) = (2r, 0) 

A(r, c 0 contains 

{m(2r, 0) + n(r, 0): m, n e Z} 

Hence the closure A(r, c 0 of A(r, a) contains the x-axis. Similarly, A(r, ~) contains the 
line determined by the vector (cos c~, sin ~). Fur ther ,  since A(r, a) is closed under  the 
addition, we have the lemma. [ ]  

In the rest of this section, let ABC be a rational triangle with vertex A at the 
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origin. We use the same notat ion A(r,~t) as in Lemma 3. The angles and edges of 
the triangle A B C  are denoted by ct, fl, 7 and a, b, c, as usual. 

Lemma 4. I f  ct, fl are (odd/even)-type, then f2 contains A(2c, 2~). Hence, if ~ ~ 30 ~ 
45 ~ 90 ~ then ~2 is dense in the plane. 

Proof. From Lemma 1(1) and Fig. 4, it follows that  O contains A(2c, 2~). The latter 
part follows from Lemmas 2, 3 and ~ # 60 ~ []  

Fig. 4 

L e m m a  5. I f  ct, fl, 7 are all (odd/odd)-type, then f2 contains A(a + b + c, or). Hence, if  
ct :/: 60 ~ then Q is dense in the plane. 

Proof. From Lemma 1 (2) and Fig. 5, f2 contains A (a + b + c, ~). The latter part 
follows from Lemmas 2, 3. [] 

Lemma 6. I f  ~, fl are even-type and 7 is (odd/odd)-type, then ~ contains 
A(a + b - c,r Hence ~2 is dense in the plane. 

Proof. From Lemma 1(2), (3) and Fig. 6, ~2 contains A(a + b - c, ~). Since one of~t, 
fl is less than 120 ~ the latter part  follows from Lemmas 2,3. []  

Theorem 2. Let  A B C  be a rational triangle with angles ~ <_ fl <_ y. I f  

(g, fl,7) # (60~176176 (300, 30~ 120~ 

(45 ~ 45 ~ 90~ (30 ~ , 60 ~ , 90 ~ ) 

then 12aB c is everywhere dense in the plane. 
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Proof. Let us consider the three cases (1), (2), and (3) of Corollary 1. 
Case (1). I fABC has two (odd/even)-type angles different from 30 ~ 45 ~ 90 ~ then 

f2 is dense in the plane by Lemma 4. If the two angles are 30 ~ 45 ~ then the third 
angle is 105 ~ which is (odd/even)-type. Hence, unless (~,fl, y ) =  (30~176176 
(45 ~ 45 ~ 90~ f2 is dense in this case. 

Case (2). If ABC has one (odd/odd)-type angle and two even-type angles then 
f2 is dense in the plane by Lemma 6. 

Case (3). If ABC has three (odd/odd)-type angles, and ABC is not equilateral, 
then g2 is dense in the plane by Lemma 5. []  
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Irrational Triangles 

The following lemma will be obvious. 

Lemma 7. Let 

PQR, PQRt,  PQ1R1, PQ1R2, PQ2R2 . . . .  

be an infinite chain of triangles with common vertex P. Then: 

(1) for any point X ~ P, there exists an n such that 

min(/_ XPQn, /__ XPR, )  < 60 ~ 

and 
(2) / f / _  QPR is irrational, then the closures of the sets 

{Q, Q1,Q2,Q3 . . . .  } and {R, R1 ,R2,R a . . . .  } 

are concentric circles with center P. 

Lemma 8. For any irrational triangle PQR and a point Y ~ P, there is a triangle 
P U V  equivalent to PQR with irrational angle L. U and 30 ~ < / YPU < 150 ~ 

Proof. Note  that an irrational triangle has at least two irrational angles. Hence, if 
/_QPR is irrational then the lemma follows from Lemma 7(2). In the case /_.P 
rational, the two angles/__ Q,/_ R are both irrational, whence, applying Lemma 7(1) 
for a point X such that / X P Y  = 90 ~ we have the lemma. [] 

Theorem 3. I f  ABC is an irrational triangle, then I2aB c is everywhere dense in the plane. 

Proof. Suppose there is a point Y in the plane for which 

d := i n f { l Y -  W[: W~ I2} 

is positive. Then for any e > 0, there is a triangle PQR which is equivalent to ABC 
and 

I P - Y l < d + e .  

By Lemma 8, we may always suppose that /_ Q is irrational and 30 ~ < / YPQ < 
150 ~ Hence, if e is sufficiently small, the circle with center Q and radius PQ cuts the 
circle with center Y and radius d. Therefore, by Lemma 7(2), there is a point P' of 
f2 with distance < d from Y, a contradiction. []  

Remarks 

Remark 1. For  a triangle T = ABC, let q~(T) denote the set of triangles obtained 
from T by repeated reflections. Describing a triangle T' ~ qS(T) by its vertex A' e R 2, 
the angle of side A'B' and x-axis, and its orientation, we can identify ~(T)  with a 
set in R 2 x [0, 360) x { - 1, 1 }. Our result assertsthat except for the four exceptional 
cases, the canonical projection of ~ (T)  into R 2 is everywhere dense in R 2. 
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The same proof gives the following: If T is irrational, then q~(T) is everywhere 
dense in R 2 x [0, 360) x { - 1, I}. If T is rational, then the canonical projection of 
�9 (T) onto [0, 360) takes only finitely many values, say at ,  a2 . . . . .  an. Further, except 
for the four exceptional cases, ~(T) n (R 2 x {al} x { -- 1, 1}) is everywhere dense in 
R 2 x {a,} x { - 1 ,  1} for every i. 

Remark 2. In [2], Laczkovich studied the problem of tiling polygons with similar 
triangles. A triangle T is said to tile the polygon P, if P can be decomposed into 
finitely many non-overlapping triangles similar to T. Among others, he proved that, 
except right triangles, only three types of triangles with angles 

(22.5~176 112.5~ (450,600,75 ~ ) or (15~176 120 ~ ) 

can tile the square. Further, among rational right triangles, only two types of 
triangles with angles (45 ~ 45 ~ 90~ (15 ~ 75 ~ 90 ~ can tile the square. 

Remark 3. A sequence of (at least two) congruent regular tetrahedra in R 3 is called 
a tetrahedral snake if two consecutive tetrahedra share exactly one face, and every 
three consecutix;e tetrahedra are distinct. In 1956, Steinhaus posed the question: In 
a tetrahedral snake of finite length, can the last tetrahedron be a translation of 
the first one? This problem was solved negatively by Swierczkowski (see Wagon [4-1, 
p. 68). 

It was proved in [-3-1 that the set of those points which are obtained as the vertices 
of tetrahedra in tetrahedral snakes starting from a fixed regular tetrahedron is 
everywhere dense in the space. Analogous results hold in any dimension n _> 3. 

Acknowledgment. The authors would like to thank the referee who pointed out that our result 
can also be proved by group theoretic arguments. 
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