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We prove that there are at most exp{cA1^} different lattice polygons of area A. This
improves a result of V. I. Arnol'd.

1. Introduction

Two convex lattice polygons are said to be equivalent if there is a lattice preserving
affine transformation mapping one of them to the other. This is an equivalence relation.
Equivalent polygons have the same area. Let us write H(A) for the number of equivalence
classes of convex lattice polygons having area A. Arnol'd [3] proved that

dAl/3 < log H(A) < c2A
l/3 log A (1.1)

if A is large enough. Here, and in what follows, c\, c2, ...denote absolute constants (in
the following we will make no effort to make the constants best possible). We will also
use Vinogradov's <C notation. Thus f{x) <C g(x) means that there are constants C3 and c$
such that f(x) < c^g(x) + a, for all values of x. With this notation (1.1) says

The aim of this paper is to improve the upper bound.

Theorem 1. log H{A) < Al'\
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The constant implied by <C is not too large: logH(A) < \\Al/3> if A is large enough.
This can be established by carrying out the computations explicitly.

Theorem 1 will follow from a result concerning two-dimensional partitions (cf. [1]).
Given two positive integers a and b, write N(a, b) for the number of sets V <= 1}+ such
that ^veV v < (a, b). Here Z+ denotes the set of two-dimensional vectors with positive
integer components.

Theorem 2. log AT (a, ft) -C \/ab.

This estimate is exact (apart from the implied constants) when a < b < a2, and
symmetrically, when b < a < b2. We will obtain a better estimate for the range a2 < b.

Let us denote the number of equivalence classes of d-dimensional convex lattice
polytopes of volume A by Hd(A). It follows from the results of [2], [3] (cf. [4] and [6])
that

A(d-i)/(d+i) < logHd{A) < ^W-D/W+Dlog A

We think that the upper bound here can be improved to logHd(A) < A{d~X)/{d+X). There
appear to be several points at which the approach of this paper does not extend to the
^-dimensional case. This will soon be apparent to the reader.

2. Further results

Write 0> for the set of all convex lattice polygons. Define U(h,k) as the rectangle
{(x,y) € JR2 : 0 < x < h, 0 < y < k), where h, k are positive integers. We will need a
special element from each equivalence class in 0>. The following lemma identifies one.

Lemma 3. For every P G 3P there is a Pi € & equivalent to P such that

Pt<=U(h,k)

with hk < 4 Area P.

A similar fact is proved in [3]: namely, that every P e & has an equivalent in the
square U(A, A), where A = 36 Area P.

Let us use vert P to denote the set of vertices of the polygon P. Arnol'd proves the
upper bound in (1.1) by showing that for any P e ^

| vert P | < ( AreaP)1 / 3 . (2.1)

Several proofs exist for this: Andrews [2] was probably the first; others are by Arnol'd
[3], and Schmidt [7]. Here we give a simple proof based on the following:

Lemma 4. Any convex polygon with n vertices and unit area has three vertices that span a
triangle of area <C n~3.

3. Proof of Theorem 1 using Theorem 2

We begin by proving Lemma 3.
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Proof of Lemma 3. Given u e Z2, u j= 0, we write Lu(x) for the line parallel to u and
passing through x. The line Lu(z) is a lattice line if z G Z2. Assume u e Z2 is primitive
(i.e., its components are relative prime) and let v € Z2 be another vector that, together
with u, forms a basis of Z2. Then all lattice lines Lu(z), z € Z2, are of the form Lu(fv)
with / an integer.

Now choose u e Z2 in such a way that the number of lattice lines Lu(tv) that intersect
P is minimal. These lines are Lu(kov), Lu((ko + l)v), . . . , Lu(k\v). Set k = k\ — ko. Clearly
&o < fei, since otherwise P is contained in a lattice line. Moreover, Lu(fcoi>) and Lu{k\v)
contain vertices, po and pi, of P. Now let Lu(iv) be a lattice line parallel with u that has
the longest intersection with P. Denote the two endpoints of Lu(iv) n P by p2 and P3. It is
not difficult to see (we leave the details to the reader) that there are parallel supporting
lines, Lz(p2) and Lz(p3), to P at the points P2 and P3. Clearly, P3 — P2 = OLU for some
a ^ 0, and we may assume a > 0 (exchanging the names of p2 and p3 if necessary). As P
contains the quadrangle with vertices po, pi, p2, P3,

Area P > -ka.

Let us write Q\ for the parellelogram determined by the four lines Lu(kov), Lu(k\v), Lz{p2),
and Lz(pi). Then P a Q\. Write z = jiu + yv, where we assume y > 0 (otherwise replace z
by —z). Define w = v + Su, where S denotes the integer nearest to /?/?• It is evident that
u, w form a basis of Z2. Let Lw(ho), . . . , Lw(h\) be the lattice lines intersecting P and set
h = h\ — ho. Then the choice of u means that h > k.

Let us write Q for the parallelogram determined by the lines Lu(kov), Lu(k\v), Lw(hou),
and Lw(hiu). As u, w form a basis, Q is a lattice parallelogram. Let Lw(jou), ••-, Lw(jiu)
be the lattice lines that intersect Q\. Since P cz Qx, we must have jo < ho and j \ > h\. The
projection of Q\ along w on the line Lu(po) has length (j\ — 7*0) IIvv|| at least. It consists
of two pieces: the projections of the two non-parallel sides of Q\. One of them is simply
P3 — P2 = <XM (in vector form), so its projection has length a||u||. The other is

ky~lz = k{Py~lu + v) = k{(Py~l - 5)u + w},

whose projection has length k\fiy~x — 5\\\u\\ < k||u||/2. This implies that (j\ — jo)\\u\\ <

k < h < j \ — jo < a + k/2.

Then ^k < a, so the length of the u-side of Q is h\\u\\ < 2<x|Ju||, implying

Area Q = kh<2ka<4 Area P.

We are almost done. Choose u, w as the basis (0,1), (1,0) of Z2 and translate the suitable
vertex of Q to the origin. With this lattice preserving transformation, P is mapped to an
equivalent Pi and Q is mapped to U(h,k). •

We now turn to the proof of Theorem 1.
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Proof of Theorem 1. From each equivalence class, fix P, which is contained in U(h, k)
according to Lemma 3. We know from the proof that P has common points with all four
sides of U(h,k).

Let the vertices of P be po, p\,..., pn (where po = Pn) in anticlockwise order. We choose
Po so that it is the rightmost point of P on the line y = 0. Let pj be the first vertex with
x-component equal to h. Then the sum of the vectors (pi—Po)+(P2—Pi) +—h(py—py-i) <
(h,k), where this inequality is understood componentwise. Set u, = p,—p,_i, for i = 1,. . . , j .
The set of vectors V = {v{,..., Vj} uniquely determines the shape of P in the "South-East"
corner of U(h, k), and different shapes determine different set of vectors. (Actually, two
sets of positive vectors may determine the same shape.) Obviously V consists of distinct
positive integer vectors and satisfies ^veV

 v — (̂ > ^)- The number of such sets V is at most
N(h, k). The same estimate holds for the North-East, North-West, and South-West corners
of U(h, k) as well. Finally, there is at most one edge of P on each side of the rectangle
U(h, k), and the number of ways of choosing them is at most h4k4. So the number of
convex lattice polygons in U(h, k) that touch each side of it is at most h4k4(N(h, k))4. Then
the number of equivalence classes with area A is

H(T)< £ h4k4{N(h,k))4.
hk<4A

By Theorem 2, every term here is at most (44)4exp4c.41/3. The number of terms is
obviously A log A. This proves the Theorem. •

4. Proof of Theorem 2

Proof. By symmetry, we assume that a < b. We have to consider two different cases:
when a < b < 2a2 and when 2a2 < b. The behaviour of N(a, b) is different in each case.

Case 1: a < b < 2a2. We assume that a divides b, since otherwise we replace b by
the smallest multiple of a that is larger than b. Define /(z) = xa~x + yb~l, where
z = (x, y) e JR2. For t = 1, . . . , a, set

St = {z e Z2
+ : ta~l < f{z) < (t + l)a~1}.

It is easy to see that the number of points in S, is M, = tb/a. This is where we use the
fact that a divides b. It is also clear that F c l [ c (J™, St.

Now we count the number of sets V = {v\,...,vn} c Z+ satisfying £"=1 vt < (a,b).
Assume V has mt vectors in St. Since, for z € St, i(z) is between ta~' and (t + \)a~l, we
get

a n n

^ mttcTl < ]T /(D,) = *f(^ u,) < /(a, fo) = 2.

So we have
a

" 1(f<2a. (4.1)r=l
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The number of ways to choose m\, ..., ma from Si, . . . , Sa is f|"=1 (^ ' ) . Consequently

«.*>* E n ("')• («>
(=1 v ' '

where the summation is taken over all integers mt > 0 that satisfy (4.1).

Claim 5. Under conditions (4.1)

lognL'
The proof is rather routine, so we postpone it until the final section. It is this proof,

however, that reveals why N(a,b) behaves differently in the two cases.
It follows that every term in (4.2) is at most exp{c\/afr}. The number of terms is the

number of possible choices of nonnegative integers m\, ..., ma satisfying (4.1). This is the
same as the number of partitions of all the numbers less than or equal to 2a. It is well
known (see [5] for instance) that this number is exp c\fla. So we get

log N(a, b) <€. \fa + \fa~b < \fab~.

Case 2: 2a2 < b. We are going to estimate the number of sets V a W,2+ such that
Y.vevv ^ (o,b). Let V = {vi,...,vn}, where the vectors i>; = (x,,_y,) are indexed so that
0 < yi < ... < yn. Clearly, given yu . . . , yn, the integers x\, . . . , xn e {I,...,a} can be
chosen in at most

different ways, since n < £"=i x, < a.
Let P(b,a) denote the number of partitions of b into at most a positive summands.

Obviously, the sequence 0 < y\ < ... < yn can be chosen in at most P(b,a) different ways.
To estimate P(b,a), we are going to use the following asymptotic formula due to Szekeres
[8]. Define

d = b - a(a + l)/4, and a = (a + \/2)2/d.

The function r(a) is the inverse of

a(r) = r2( [ {s/2) coth(s/2)ds] \ i.e.,
V/n /

which is valid for |a| < 4. Then, Szekeres's result says

logP(ft,a) = a(2^-log[2sinh(r(a)/2)]) - logd + —

-\iog (^W^)+\iog r'(a) -iog(27r)
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uniformly for a < 2.598.... Here,

2— - log[2 sinh(r(a)/2)] < 2.5 - log a

when a < 1, say, and the terms after — \ogd are bounded. So for a large enough,

log P (b, a) < a (3 - log a) - log d.

Now, 1 > a = (a + \/2)2/d is the same as b > (a + 1/2)2 + a(a + l)/4, which follows from
the b > 2a2 condition. Moreover, a > a2 /b. So for a large enough, we get

log P(b, a) < 3a + alog(b/a2)-logd

lfif/blog(b/a2)

since on substituting s = {/a2/b, the expression in [• • •] is equal to 3s(l — logs), which is
less than 3 when 0 < s < \/\/2.

So we get

logN(a,b) <log4a + 3^oft < \fab~. D

5. Proof of Lemma 4 and (2.1)

Proof of Lemma 4. Let Q be the convex polytope with n vertices and unit area. We assume
that the Lowner-John ellipsoid of Q is a circle. This can be achieved by an area-preserving
linear transformation. It is easy to see, then, that Q is contained in a circle of radius 1. As
the perimeter of Q is at most 2K, 90 percent of its edges have length at most 20n/n -C n~K
Since the sum of the outer angles of Q is 2n, 90 percent of them are < n~l. Then there are
two consecutive "short" edges with the outer angle between them < n~l, so the triangle
spanned by these edges has area <C n~3. •

Remark. A sharper form of this Lemma follows from a result of Renyi and Sulanke [6],
which says that among all convex polygons with n vertices and of unit area, the geometric
mean of the areas of the n triangles spanned by consecutive triplets of vertices is maximal
for the (affine) regular n-gon. The proof above does not give such an exact estimate,
although it shows the existence of "many" triangles of area <C n~3.

Proof of (2.1). Let P be a convex lattice polytope with |vert P\ = n vertices. Lemma 4,
applied to P, says that some three (consecutive) vertices of P span a triangle A with
"relative" area <C rCl', i.e.,

Area (A) _3

Area (P) < "
On the other hand, any lattice triangle has area at least 1/2. This shows

n = |vert P\ < ( Area P)1 / 3 . •
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6. Proof of Claim 5

M\ MM

m) mm(M — m)M~m

where 0° = 1. Replace the integer variable mt by the real variable st > 0. Now we want
to estimate the maximum of

n —, '—na— I6-1)
st'(Mc — st)

M>~s<

under the conditions
a

X tst < 2a , and s, > 0. (6.2)

Write

r=i

where s stands for the vector (si,...,sa). f(s) is just the logarithm of the product in
(6.1) minus a constant. We want to solve the following conditional extremum problem:
maximize / subject to (6.2). Denote (one of) its solutions by s. We check first that none
of the s, is zero. Assume that s, = 0 and choose an sy ^ 0. Define s' by sj = s, + ej,
s'j = Sj — ei, and s'; = st otherwise. This s' is feasible. Set F(e) = f(s'). By the mean value
theorem (even though F is not differentiable at 0),

F(e) -F(0) ,,n , , Mi-je6 , Mi-Sj + ieO
_ = F (8e) = y log — ^ - - Hog 5 . _ . £ g ,

where 0 < 9 < 1. Since the last expression tends to infinity when e goes to zero, we get a
contradiction.

Now we know that s > 0. If s is in the interior of the feasible region, the gradient of /
at s is 0. Thus st = M,/2 for all t, which contradicts condition (6.2) if a < ft and a is large
enough.

Then s satisfies
a

X tst = 2a, (6.3)
t=i

and there is A > 0 such that

, M, — st Mt

log = At, i.e., st = ——,

for all t = 1, . . . , a. The number A will be determined, or rather estimated, from (6.3),
which says

" t2

Y r- = 2a2/b. (6.4)
(=1



302 /. Bdrany and J. Pach

The left-hand side is monotone increasing in X. At X = 0 it is larger than the right-hand

side, while it is 0 at infinity. So there is a unique solution ^o to (6.4). We now show that

( 6-5 )

Notice that X\ < ^1.25 = 1.0772 The function t2/(l + eh) takes its maximal value on

[0,oo) when (Xt - 2)eh = 2, i.e., Xt = 2.217.... Set h = 2.217.. . / / ] . We show that the

left-hand side of (6.4) at X\ is larger than the right-hand side. This will prove (6.5). The

function t2/(l + eAlt) increases in [0, t[] and decreases afterwards. Thus

t2dt t\ ,_3 / /^<a+1> t2dt

'
0 1+e

- 1-0772...0.483...)>2a2/t

if a is large enough and a < b < 2a2, since the last integral tends to 1.80305... as a goes

to infinity. This proves (6.5).

Next we estimate (6.1) with mt replaced by s( = Mt/{\ + e;-°').

1=1 (=i

The function in the last sum increases in t e [0, (1 + v/5)/(2Ao)] and decreases afterwards.

We continue the last formula using (6.5)

x(x + \)e'xdx + Xo max x(x + l)e~x ) « baTxXx'
2 « Vab,

xe[0,oo) /

if a is large enough. •
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