
A COLORED VERSION OF TVERBERG'S THEOREM
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ABSTRACT

The main result of this paper is that given r red, r white, and r green points in the plane, it is possible
to form r vertex-disjoint triangles Aj,...,Ar in such a way that A, has one red, one white, and one green
vertex for every / = l , . . . , r and the intersection of these triangles is non-empty.

Introduction

Let n, d, r with n ̂  (d+ l ) r be positive integers and consider a finite set @n of n
distinct points in IRd which are divided into d+\ subsets %,...,%+1, called colors,
each of cardinality at least r. We say that &n is r-properly colored. If plt..., pd+1 are
points of 9>n then we say that {pv...,pd+1} and the simplex (possibly degenerate)
conv(/7l5 ...,/?d+1) which they determine is multicolored if, after suitable relabelling,
p(e%, / = \,...,d+\.

One of the best known elementary results in convex sets is Radon's theorem [6].

RADON'S THEOREM. Any d+ 2 points in Ed can be divided into two disjoint subsets
X, Y with conv X 0 conv Y ̂  0.

The famous extension of Radon's theorem due to Tverberg [7] is as follows.

TVERBERG'S THEOREM. Any r(d+ \) — dpoints in Ed can be divided into r disjoint
sets Xv...,Xr with (~) J^convX( ^ 0.

Recently, studies of the well-known &-set problem [1,2,4] have aroused
considerable interest in the possible existence of a colored version of Tverberg's
theorem. The results of this paper will, in particular, yield the bound O(«80/2?) on the
number of possible ways a set of n points in E3 can be divided in half by a hyperplane.
This is an improvement over 6>(«191/64) given in [2]. However, by a different method,
the better bound O(nm+E) has been obtained recently [1].

The colored Tverberg problem

Determine the least value N(r, d) such that if n ^ N(r, d) and ^,, is an r-properly
colored subset of Ed then there exist r disjoint multicolored subsets of ^ n ,

{Pi.>.--->/Wu};-i. s a v '
such that

For obvious reasons, we call the special case when r = 2 the colored Radon problem.
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Almost nothing is known about this problem. In [2] it is shown that N(3,2) ^ 7
for d ^ 3, r ^ 3 it is not known that any finite N(r,d) exists.t

We make the conjecture that N(r, d) = r(d+1). We shall prove it for d = 1,2. The
colored Radon theorem N(2,d) = 2(d+1) has been proved by many people
independently and we shall reproduce the proof due to L. Lovasz (1989, private
communication).

THEOREM. For positive integers r and d

(i) N(r, 1) = 2r,
(ii) 7V(r,2) = 3r,
(iii) N(2,d) = 2(d+\).

Note. If we have a set & in Ed which is r-properly colored, we shall say that &
is r-divisible if there exist r disjoint multicolored subsets {pltj, •••,Pd+ijYj-i

We mention further that the case when r = 3 of (ii) of the theorem has been proved
(independently) by J. Jaromczyk and G. Swiatek [5]. Actually, their proof extends
easily to the general (r ^ 3) case as well.

Proof of the theorem

(i) N(r, 1) = 2r. This we can do by induction. Trivially JV(1, 1) = 2. Now assume
that N(r, 1) = 2r for some r ^ 1. Let ^2(r+1) be an (r + Improperly colored set of
2(r+ 1) points on the real line. Let inf^ = A and suppose that A is colored 1. Let B
be the largest point of & that is colored 2. The removal of A and B from ^2(r+1) yields
an r-properly colored subset which we can divide into r multicolored intervals with
a common point of intersection which can be chosen in the interval [A, B]. The
inclusion of the multicolored interval [A,B] yields the required r+\ multicolored
intervals.

(ii) N(r,2) = 3r. We adopt the Tverberg approach of taking points P,P2,...,P3r

and Q, P2,..., P3r in algebraically independent positions. Assuming that the set
P,P2,...,P3r is r-divisible we shall prove that the set Q,P2,...,P3r is r-divisible. Since
there certainly are positions for P,P2,...,P3r which are r-divisible, (ii) will be estab-
lished if we can prove the above result.

In fact it will be convenient to prove the stronger result that when the points are
in algebraically independent positions then the interiors of the r multicolored
triangles contain a common point of intersection. As in Tverberg's approach we
consider the set (1 - /) P + tQ, P2,..., P3r, 0 < t < 1, and consider the set T of those t
in [0,1] for which (1 — t) P + tQ,P2,..., /)

3r is r-divisible. The set T is non-empty, since
0 € T, and closed; let t0 be the maximum of T. We show that /0 = 1 (and the result
follows) by showing that if t0 < 1 then there exists t > t0 with teT. Now suppose that
/„ < 1 and consider the situation at tQ.

Since we are unable to continue using the subdivision of

used at f0 one of two possibilities must have occurred:
(ii.i) Two of the multicolored triangles used at /„ will intersect in a degenerate

t See note added in proof.
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way; that is, if the triangles are Tx, T2, then Tx and T2 are weakly separated by a line
/ and a vertex of T2 will lie on an edge of Tv All other triangles will contain this vertex
of Zl in their interior.

(ii.ii) Three of the multicolored triangles used at t0 will intersect in a single point
0, say, which lies in the relative interiors of their edges. All other triangles will contain
0 in their interior.

We first consider possibility (ii.i).
Let Tx have vertices A, B, C, and T2 have vertices A', B\ C, where A' is the point

(1 -t^P+t^Q. If / \ /" are the two half-planes determined by / we suppose that Tx

lies in /+ and Z lies in /". We suppose that A' lies in the edge BC and as / increases
from f0, A' moves to a position A[ in the interior of /" and hence the triangles ABC,
A'tB'C do not intersect. Another possibility is that B lies on the edge A'C but the
arguments for this possibility are similar and will therefore be omitted.

What we shall show is that it is possible, as A' moves slightly to A't, to rearrange
the six points A, B, C, A't, B\ C into two multicolored triangles whose interiors meet
within any given neighborhood of A' (of B if B lies in the edge A'C) by varying the
distance between / and /0 accordingly. This ensures that for t > tQ and / close to f0, the
r multicolored triangles (the two newly distributed triangles and the r - 2 remaining
triangles in the r-division at /0) have a common point in their interiors.

Case 1. In the line I the three points A', B, C do not have distinct colors. Let us
suppose that the color 3 is not amongst the colors of A', B, C. Then A has color 3 and
we suppose that B' has color 3. Then AA[C, B'BC are the required triangles.

Case 2. In the line I the three points A', B, C have the distinct colors 1, 2, 3
respectively. If the line through A A' meets the interval (B'C) then the triangles
AB'C, A'tBC will do.

A 1
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Otherwise suppose that B'C lies on the same side of the line AA' as does B. If B'
is colored 2 then B'AC, BC'A' will do. If B' is colored 3 then B'BA', AC'C will do.
So, if /„ < 1, (ii.i) cannot arise.

We now consider the possibility (ii.ii).
There are three multicolored triangles Tx, T2, Tz, with the point (1 — to)P + t0Q in

Tx, whose intersection is a single point, 0 say, belonging to the relative interiors of the
sides of Tlt T2, Tz. Further, if Tx{i) is the multicolored triangle with (\-tQ)P + t0Q
replaced by (l-t)P + tQ, an increase from t0 to / means that 7J(/), T2, Tz no longer
have a common point of intersection.

We consider the nine vertices of Tv T2, Tz, three colored 1, three colored 2, and
three colored 3 which we try to rearrange as the vertices of three multicolored
triangles whose intersection still contains 0 but also contains an interior point. Thus
when (1 - /0) P +10 Q is moved to (1 - 1 ) P + tQ, t > t0 but t — tQ small, the rearranged
triangles still have a non-empty intersection. In fact we shall try to rearrange two of
the three triangles so that one contains 0 in its interior and the other contains 0 on
its boundary. We may not always succeed but we gain information about the
arrangement of points. This will be done in step 1 below. In step 2 we shall rearrange
all three triangles using the information gained in step 1.

The triangles Tx, T2, T3 have three edges AB, DE, GH, one each respectively,
passing through 0, with third vertices C, F, I respectively. We regard the nine vertices
as arranged circularly around 0 with each edge AB, DE, GH carrying a normal
direction to indicate the half-plane containing the third vertex. Of course, the
intersection of the three half-planes is precisely 0.

Step 1 (when we try to rearrange Tx and 7 )̂. Consider two of these edges AB,
DE. Two of these vertices, say B, E, will be given the same color, say 3.

Case 1. When A and D have different colors, say 1,2. Figure 1 indicates the three
different possible arrangements.

D D D

(a) If Fe AD (the circular arc between A and D taken clockwise) and the segment
FC does not meet the sector DOB then FCB, ADE are the required triangles. If FC
meets DOB then FEC, ABD are the required triangles.

Consequently in case (a) we may suppose that F lies in E~A, the common arc of
intersection of the triangles Tx and T2.

(b) If C lies in DB and the segment FC does not meet the sector BOE then FCE,
ABD are the required triangles. If FC meets the sector BOE (and C lies in DB), then
ACE, FDB are the required triangles. Consequently we may suppose that C lies in
AD. Symmetry implies that F also lies in AD.
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D

2Jc2

(a) (b)

FIG. 2

Consequently, in case (b), we may suppose that both C and F lie in AD, the
common arc of intersection of the triangles Tx and 7 .̂

(c) If the segment FC does not meet the sector BOE then ADB and CFE are the
required triangles.

Consequently, in case (c), we may suppose that the segment FC meets the sector
BOE, the common sector of intersection of the triangles Tx and T2.

Case 2. When A, D have the same color, 1 say. Figure 2 indicates the two possible
arrangements.

(d) If F is in AD then we may change the region of intersection from EOA to DOB
by interchanging F and C, that is, using the triangles ABF, DEC. The intersection
T3 n ABF D DEC contains 0 and an interior point, as required. So we may suppose
that F and C lie in EA, the arc of intersection of the triangle 7̂  and T2.

(e) If C lies in DB and Flies in EA we may change the region of intersection AOD
to BOE by using the triangles ABF, CED. The intersection 7̂  n ABFf] DEC contains
0 and an interior point, as required.

If C lies in DB and Flies in AD we may change the region of intersection AOD to
DOB by using the triangles ABF, CED. The intersection T3 D ABFO DEC contains 0
and an interior point, as required. So we may suppose that C lies in AD.

By symmetry we may suppose that Falso lies in AD, the arc of intersection of the
triangles 7J and T2.

So in the cases (a), (b), (d), (e) (at least) one of the points Fand C lies in the sector
of intersection.

Step 2 (when we rearrange all three triangles).
DE, GH as in Figure 3.

Consider the three diameters AB,

FIG. 3

There will be three regions of pairwise intersections of the triangles 7J, T2,
determined by the arcs DB, HE, AG. Consider the pairs EA, GD, BH.
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Case 1. When one of these pairs, say E and A, receive the same color, 1 say.
Then, by (b) and (e) we see that the arc IXB contains both points C and F. The other
two regions of pairwise intersection will contain at least one point of C, F, I, and
hence produce an obvious contradiction, unless one of the pairwise intersections,
corresponding to AB, GH, say, falls into case (c). Thus A, G are labelled with the same
color 1 and B, H receive different colors, necessarily 2, 3 (say B receives color 2). Now
either D has color 2 and (a) applies to DE and GH or D has color 3 and (d) applies
to DE and GH. In both cases HE contains /. Consequently C, F and / lie in the arc
D£and hence the chord C/does not meet the (interior of) the sector AOG as required
by (c) applied to AB, GH.

Case 2. When none of the pairs EA, GD, BH receives the same color.
Suppose that two of the diameter pairs, say AB, DE, are similarly colored. Say A,

D colored 1 and B, E colored 3. Then, by (d), both C and F lie in DB. Unless case
(c) arises amongst the other two sets of diameter pairs an immediate contradiction
arises since HE and AG will both contain at least one point of C, Fand /. So suppose
that DE, HG fall into case (c), that is, H is colored 3. But then B and H have the same
color; a contradiction.

So we may suppose that no two of the diameters are similarly colored. Now only
cases (a) and (c) can arise. Let us suppose that case (a) arises for the diameters AB,
DE colored 1, 3, 2, 3 respectively. Then G is colored 1 and H is colored 2.
Consequently C lies in arc DB and as the pair DE, GH also falls into case (a), / lies
in arc HE. The pair AB, GH falls into case (c) and so the chord C/must intersect the
interior of the sector AOG which contradicts C, / lying in DE.

Finally, we suppose that only case (c) arises. Let A, B, D, E be colored 2, 3, 3, 1
respectively. Then H is colored 1 and G is colored 2. The triangle CFI meets the
interior of each of the sectors DOB, HOI, AOG and so contains 0 in its interior.
Consequently CFI, AHD, BEG are the required triangles.

This completes the proof that if /0 < 1, (ii.ii) cannot arise and hence the proof of
(ii) of the theorem is complete.

REMARK. It is not possible to carry through the argument in E3 as we have done
in E2. Notice that in E2, when the intersection of (say) two multicolored simplices
Sx and S2 became a single point 0 it was possible to rearrange the vertices of
Sx and 5*2 so as to form two other multicolored simplices Tx and T2 with 0 in their
intersection. We give an example of two tetrahedra, S1 = conv {A, B,C,D} and
S2 = conv {A', B',C',D'}, where this is not possible. Let the points A, B, C, D, A',
B', C, D' be colored 1, 2, 3, 4, 3, 4, 1, 2, respectively, and let

^ = (1,0,0), B = ( -1 ,0 ,0 ) , C,D close to (1,1,1),

A' = (0 , -1 ,0 ) , B' = (0,1,0), CZXclose to (1 ,1 , -1 ) .

Then Sx n S2 is the origin 0. Assume that Tx and T2 are two multicolored tetrahedra
with vertices from A, B, C, D, A', B', C, D' and 0e7; n T2. As 0$conv{A, C,D,B',
C',D'}, A' and B must be in different tetrahedra, A'€ Tx and Be T2, say. Then A e T2

since 0£conv{2?, C,D,B', C',D'}, and similarly B' eTx. But now the only way to have
all colors in Tx and T2 is to have

Tx = conv {A', B', C, D'} and T2 = conv {A, B, C, D}.
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(ui)N(2,d) = 2(d+1). In Ed+1 consider the cross-polytope X with vertices, ±t>?,
/ = 1,.. . , d+1, where ev..., ed+1 are the unit coordinate vectors. Let # = { 1 ,...,</+ 1;
1', . . . , (d+1)'} be a 2-properly colored set in Ed of 2(d+1) points such that points i
and /' are colored i, where / = 1,.. . , d+1. We define

We can extend a to a continuous map of dX into Ed by taking

rf+l d+l
ff(.x) = L <̂ o"(y<)» where A: = £ A, y, 6 5Z,

^ > 0» Ef-1 ^ = 1, / = 1,.. . , rf+ 1, wt are vertices of Z.
By the Borsuk-Ulam theorem [3] there exist x and —x in dA' with a(x) = <r( — A:).

If {î }?_ I are the vertices in the facet of Z containing x then {— yjf^j are the vertices
in the facet containing — x and {(j(vj}d±\, {o{ — v^)}d^\ are the vertices of two
multicolored d-simplices which intersect in the point o{x).

Note added in proof. The finiteness of N(r, d) has recently been established by
R.T. Zivaljevic and S. Vrecica in a preprint 'The colored Tverberg problem and
complexes of injective functions'.
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