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FAIR DISTRIBUTION PROTOCOLS OR HOW THE
PLAYERS REPLACE FORTUNE*!

IMRE BARANY

There are n > 2 players Py, P,, ..., P,, each of them having a finite alphabet 4,,..., 4

» Ay
and there is a probability distribution p on A = 4; X -+ X A4,. The players want to choose
a € A according to p in such a way that P, knows only the kth component, a,, of a. This
can be done with the help of an impartial person or “fortune” who chooses a € A according
to p and informs P, on a, only. But what happens if no such person is available? Can the
players find a procedure that replaces fortune? It is proved here that the answer is yes when
n > 4. As an application it is shown that a correlated equilibrium of a noncooperative
n-person game (n > 4) coincides with a Nash equilibrium of an extended game involving, in
addition, plain conversations only.

1. Introduction. The basic situation this paper is concerned with is: there are
n > 2 players P,, P,, ..., P,, each of them having a finite alphabet or strategy set (we
prefer the word alphabet) A,,..., 4,, and there is a probability distribution p on
A=A, X -+ XA, What the players want to do is to choose a € 4 according to p
in such a way that P, knows only the kth component, a,, of a. This can be done with
the help of an impartial person or “fortune” who chooses a € 4 according to p and
informs P, on a, only. But what happens if no such person is available? Can the
players find a procedure, or protocol, as we will call it, that replaces fortune?

A protocol is an agreed upon procedure according to which the players exchange a
set of messages. A message is a piece of information transmitted from one player to
another one. To compute a message may require the sender to use some randomizing
device and the set of information he has obtained so far. At each step of the protocol
there is only one message and both the sender and the receiver are determined
uniquely. When the protocol is over player P, has a set of information I, known to
him. I, consists of the set of messages M, he sent or received during the protocol
and the set of random choices ¢, he made. M, is a random variable determined by
the random choices of all players: M, = M, (&¢,,...,£,). So P, is informed on the
other players’ random choices through the messages only. As a matter of fact, each I,
is a random variable and each message is of the form “I{” € B,” where B is some
event and I{" is the information obtained by the sender P, during the first r steps of
the protocol. We mention that this kind of exchanging messages is similar to the
situation when the players are pairwise connected by phone and can exchange
information by phone only.

A distribution protocol or DP, for short, that replaces fortune should satisfy the
following properties. For each k =1,...,n, I, determines the letter a, € A,
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uniquely, i.e., there is a map f, (known to P,) with f,(I,) = a, such that

(1) Prob(f(1)) = ay,..., f(I,) =a,) =pla,...a,) fora,...a, €A,

(2 Prob(f(I)=ay,...,.fI)=a,1L)=pla,...a,la) for k=1,...,n,
a,...a, €A with p(a;) > 0 and f (I,) = a,.

The meaning of the second condition is that I, does not give more information to
P, than the knowledge of a,.

These conditions are satisfactory only in the case of players with “good intentions,”
that is, when the players do not cheat although they want to get as much information
from the protocol as possible. In this case afterward checking can take place: when
the protocol is over, each player can prove by revealing his random choices that he
sent his messages according to the rules of the protocol and computed f,(I;) = a,
properly.

We are going to consider cases when the players are ready to cheat, i.c., they are
inclined to deviate from the rules of the protocol in order to get more information
even if conditions (1) and (2) must fail to hold with this deviation. This case occurs in
correlated equilibrium situations in noncooperative n-person games (see [1], [2]).

In a noncooperative n-person game each player P, has a payoff function H,:
A — R! representing the amount H,(a) of money he gets if the players have chosen
their strategies to be a =a,...a, €A. In a correlated equilibrium situation a
probability space (S, u) is given together with measurable functions c;: § — A4,
(k =1,...,n). The game proceeds as follows. Fortune chooses w € S and suggests
the strategy c,(w) = a, to player P, (k =1,...,n). The functions ¢, have the
property that the expected payoff of P, is maximal if he plays his suggested strategy,
i.e., if for any k and any a, € 4,

Exp(Hi(cy(@),...,ce(®),...,c(@)) | ci(w) = ay)

> Bxp(Hi(cy(@),..., a5, ..., (@) | cr(w) = ay).

In a correlated equilibrium no player is inclined to unilaterally deviate from his
suggested strategy if he knows his suggested strategy only.
A correlated equilibrium gives rise to a probability distribution p on A:

p(a) = p({o € S: ¢ (w) =a, fork =1,...,n}).

(Actually, S can be identified with A4 and the function (c,, ..., c,) can be taken to be
the identity 4 — A4 but we will not need this in the sequel.) To replace fortune the
players want to choose an a € A4 according to p in such a way that P, knows a, only
(k =1,...,n). If they are going to use a DP for this end, some of the players may
indeed want to deviate from the rules of the protocol if through this deviation he can
get more information on the other players’ strategies and possibly more expected
payoff. In order to avoid this, afterward checking is not satisfactory, and built-in
checking is needed. Built-in checking is a very natural thing: as we observed earlier
the information 7, obtained by P, is an event in the o-algebra which is the product of
the n o-algebras underlying the random choices of the players. Now P, concludes
that cheating has occurred if his set of information is contradictory, i.e., I, is empty
or, but this will be the same in our understanding, I, has probability zero.

There are two possible kinds of deviation. The first is when a player does not
compute his message properly, i.e., instead of the message “I{”’ € B” he transmits
the message “I{” € B”” with B # B'. This kind of deviation which we call deviation
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FAIR DISTRIBUTION PROTOCOLS 329

from the rules can possibly be detected by built-in checking. The second kind of
deviation is deviation in probability: player P, has a given probability space to choose
¢, from but he may use another, not the prescribed distribution, to choose £,. This
kind of deviation cannot be detected. (In game theory literature, deviation from the
rules and deviation in probability, respectively, are sometimes called detectable and
undetectable deviation.) We are going to present protocols with properties

(3) any unilateral deviation in probability does not influence conditions (1) and (2),

(4) any unilateral deviation from the rules is detected with probability one.

A sure protocol or SP, for short, is a protocol satisfying conditions (1), (2), (3) and
(4).

The main result of this paper is that there is an SP for four and more players (if the
probability distribution p is rational valued). This result has the following application
in game theory. Let G, be an n-person game and let x be a correlated equilibrium
payoff of G, (with finite and rational valued underlying probability distribution).
Then there exists a direct communication game G extending G, (i.e., one where plain
conversation is allowed before moving) such that x is a Nash equilibrium payoff of G.

Throughout the paper we use the following two assumptions. The first is that the
players are not allowed to form coalitions. The second is a technical one: we assume
that the probability distribution p on A is rational valued. This may be justified by
the fact that the players’ underlying probability space (to choose &, from) is finite and
rational valued in every physically realizable model. Furthermore, every nonrational
distribution can be approximated with arbitrary precision by rational ones.

We also assume that the players have perfect recall, meaning that they remember
all the messages they sent or received and all the random choices they made.

A different approach to protocols has recently been considered in [9], [5] and [8].
Their assumption is that the thinking time of each player is limited (to ten minutes,
say) and that some problems are indeed computationally intractable, for instance, the
factors of a 200-digit number cannot be found in a lifetime if this number is the
product of two 100-digit “random” primes. The question is then to find a DP with
afterward checking for the problems “coin flipping on phone” and “dealing cards on
phone to two players” [9], [8]. These problems can be described in our model as well
though the type of checking may be different. For coin flipping there are two players
with A, = A, = {heads, tails} and the distribution is

heads tails
heads 1/2 0
tails 0 1/2

For dealing cards the alphabets A, = A, are the set of all possible hands and
pla,a,) = 0 if the two hands have a card in common, otherwise p(a,a,) is a constant.
A protocol for dealing cards on phone to three or more players without any
assumption on intractability is given in [4].

2. The theorems. First we give the formal description of a protocol. A protocol
is a set of rules (known to each player) specifying the actions of the players. These
rules describe which player P, is to be active in the rth step and what exactly his
action should be. This action can be any one of the following three:

(i) to make a random choice {{” from a given probability space with a given
probability distribution, then compute a message m{’ from the information I{”
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known to P, in the rth step (this includes £{™), and to transmit it to another player P,
who is specified by the rules,

(i) to compute his letter as a, = f,(I{"),

(iii) if I{"” is contradictory,' then P, sends the message “deviation has occurred” to
every other player.

The protocol terminates if either case (jii) comes up or if every player has
computed his letter.

A distribution protocol (or DP) is a protocol satisfying conditions (1) and (2). In a
DP case (iii) never comes up by definition.

The information I{” known to P, in the rth step consists of two parts: The set of
messages M{" sent or received by P, so far and the set of random choices ¢{” made
by P, so far. Let T, be the set of indices of steps when P, is active, i.e., when P,
sends or receives a message. Then £ = {{{?: g € T, and q < r}.

Now we give the definition of unilateral deviation from the rules. Clearly, m{’ =
g(I{") = g(M{D, &M for r € T, where the function g is given by the protocol.
Assume all other players act according to the rules of the protocol. Then P, deviates
from the rules if there is no random choice sequence {flﬁr): r € T,} such that
m{? = g(M{", £) for each r € T,. This definition is explained by the fact that if
such a sequence existed, then P, could claim that his random choices were just this
sequence and then he acted according to the rules of the protocol. Of course, if P,
deviates from the rules, then m{? # g(M", £) for some r € T,.

When would now a player, P, say, claim that his information is contradictory?
Assume that P; has not deviated from the rules. Then his I\ is contradictory if, the
set of information I{” being kept fixed, there are no random choices of all the other
players {{” (k = 1,...,n, k # i, r € T}) that would produce this set of information.

A protocol with sure checking (SP for short) is a protocol satisfying conditions (1),
(2), (3) and (4). Here (4) means that any unilateral deviation from the rules leads to
case (iii).

If case (iii) occurs, the players can find the deviating player in the following way.
Note that the unilaterally deviating player may also claim that his set of information
is contradictory.

One can think of a protocol as a set of rules that builds up a matrix whose rows are
indexed by 1, ..., n and the columns by the steps. If in the rth step P, has to send a
message m{’ to P, (case (i) above), then the (k, r) entry of the matrix is P,’s random
choice £{” and the message m{”, and its (j, r) entry is m{”’. Now we assume that the
following condition holds:

(5) the message m{ is the same in both entries (k, r) and (j, ), even if P, or P,
deviates from the rules.

All other entries of the rth column are blank. As long as case (iii) does not come
up every player knows “his own row” only which coincides with his set of information.
But when case (iii) occurs, everybody reveals his row and the players collectively
check every action of every player. By condition (5) everybody learns every message
properly and the player P, who deviated unilaterally from the rules is identified as
the sender of a message m{” # g(I{"”) for some r € T,. Condition (5) is needed here
because otherwise, when the faulty message is identified, the sender can claim that he
sent the proper message g(I{"”), and the receiver can claim that he got the faulty
message m{” and there is no way to decide who is lying.

In this matrix model unilateral deviation from the rules by P, means that the kth
row is not consistent with itself. And “I{” is contradictory” means that, the kth row

'We will soon define when an information set is contradictory.
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being kept fixed, the matrix cannot be filled in such a way that each row be consistent
with itself.

Now we present the results. We remind the reader that the distribution p is
supposed to be rational valued.

THeoReM 1. There exists an SP for four or more players.
We give an example showing that there is no SP for three players in general.
THEOREM 2. There is a DP for three players.

It is perhaps possible to characterize the distributions with three players for which
there exists an SP. The characterization of distributions with two players for which a
DP exists can be found. Some definitions are needed.

A probability distribution p on A, X A, is said to be reducible in a,,a; € A, if
there is a constant ¢ such that p(a,a,) = cp(a\a,) for all a, € A,. In this case let us
replace a, and a) by a new letter b. More precisely, define A’ as (A4,\{a,, a}}) U {b}
and p'(a) as p(a,a,) + p(a\a,) if a = ba, € A’ X A, and p'(a) = p(a) otherwise.
Observe that if there is a DP for p', A" X A,, then this DP will work for p, 4, X 4,
as well. The only thing we have to add is that if f,(I;) = b is the outcome, then P,
chooses a, with probability p(a,a,)/p'(ba,) and chooses a} with probability
p(dya,)/p'(ba,). (These ratios are independent of a,.) This implies that one has to
look for DPs only if the distribution is irreducible.

TueoreMm 3. There is a DP for two players if and only if the distribution is reducible
to a diagonal one.

A distribution p on A4, X A, is said to be diagonal if for each a, € A, there is
only one a, € A, with p(a,a,) > 0 and for each a, € A4, there is only one a, € A,
with p(a,a,) > 0. (One can clearly assume that for each a, € A4, there is at least one
a, € A, with p(a,a,) > 0 as otherwise the letter a, is never used. The same
assumption can be made about each letter in A,.) So if the distribution is diagonal,
then the knowledge of a, (or a,) completely determines the outcome a = (a,a,).

The proof of Theorem 3 is based on

LemMA 4. Given a DP for an irreducible distribution with two players, a, is uniquely
determined by M,, the set of messages obtained or given by P, (k = 1,2).

In the definition of a DP we require only that I, = {M,, £,} determine a, uniquely
by f.(I,) =a,. Lemma 4 shows that this is done by M, alone already (if the
distribution is irreducible). Lemma 4 can be extended, and the proof is identical with
the one given below, to the case of n players. From this extension it follows that when
the protocol is over, P,,..., P,_,, P.,(,-.., P, can prove or disprove P,’s claim that
“fill,) = a,” by simply putting together M, from their M,.

3. An application. As a consequence of Theorem 1 we have the following result
about correlated equilibria of noncooperative n-person games.

Tueorem 6. Let G, be an n-person game and let x be a correlated equilibrium
payoff of G, with rational valued underlying probability distribution. Then there exists a
direct communication game G extending G, (i.e., one where plain conversation is
allowed before moving) such that x is a Nash equilibrium payoff of G.

This theorem shows that no mediator is needed for the actual realization of a
correlated equilibrium (when # > 4 and the distribution is rational). A recent result
of Aumann says that a correlated equilibrium can be viewed as a result of Bayesian
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rationality (see [2] for a precise statement). On the other hand, our result shows that
a correlated equilibrium is a Nash equilibrium (when n > 4).

We will see from the protocol to be given that the extended game has some
additional properties: Any unilateral deviation from the rules is detected with
probability one. Furthermore, no unilateral division in probability influences the
expected payoff.

We mention one more point here. We will see from the proof of Theorem 1 that
each message of the protocol is sent by two players to a third one. Thus the receiver
can check if the two messages coincide or not and if they do not he announces that
cheating has occurred. In this case all messages are traced back and the cheating
player is identified (when condition (5) holds) and is punished at his minmax level:
the noncheating players choose the corresponding action when they have to move. It
is important to remark that if a receiver claims that cheating has occurred while it has
not, he himself is punished by his opponents.

A nice application of the results presented here can be found in [6). Another
relevant result is in [7].

We do not give the proof of Theorem 6 because it follows from Theorem 1
immediately.

4. Proof of Theorem 1. We give the proof for four players first. The extension
for the case of more players will be given at the end of this section. The proof is split
into several parts.

The (X, E) model. When giving a protocol we shall invariably work in the
so-called (X, E) model. This is constructed from the set 4 using the distribution p
and its rationality in the following way. Each point a € 4 is replaced by a set of
points X, with X, N X, = & if a # b and a,b € 4 such that |X,| = L for every
a € A. Further, for k£ =1,...,n, let the projection pr,: A — A, be defined by
pri(a) =a, ifa=a,...a;...a, Set X = U{X,: a € A} and extend each pr, to X
as follows:

pr(x) =a,if x € X, and pr(a) = a,.
Finally we fix a set E C X in such a way that
|ENX,|/L =p(a) forallaeA.

This is possible if L is chosen suitably because p(a) is rational for each a € A. Now
in the (X, E) model a DP or SP works like this: the players choose a point ¢ € E
with uniform distribution on E in such a way that each player P, gets the information
pr,(e) only. If this can be done, then the protocol works on the original 4 with
distribution p as well.

We assume, when it is convenient, that X = {1,...,]X}and E ={1,...,|E]}.

We assume, further, that in the protocol to be given below the players agree on an
(X, E) model which is known to every player and is kept fixed throughout the
protocol.

The random choices. Having fixed the (X, E) model the players make their
random choices. P, and P, jointly choose a random permutation a: X — X.
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Similarly, P, and P; choose B: X — X, P; and P, choose y: X — X, and P, and P,
choose 8: X — X. Players {P,, P,, P;, P}\{P,} choose an ordering o, of X for
k =1,2,3,4. (This is the same as a permutation yet we prefer the name ordering
here.) Moreover, P, and P, jointly pick a permutation o: E - E and P, and P,
jointly pick a number s € {1,..., m} where m = |E|. The chosen element of E will be
e, = 0~ '(s). Bvery choice is made according to the uniform distribution of the
underlying finite probability space and every choice is made independently of all
other random choices. We will explain later what is meant by “picking a random
permutation jointly”.

Sketch of the protocol. Think of « as a “language” known to P, and P, but
unknown to P; and P,. So a(x) is the a-name of a point x € X. Similarly, 8, vy, 6 are
languages. In the first step of the protocol P, gets a B — y “dictionary” of the points
of X, i.e., alist of the pairs (B(x), y(x)) (x € X) from the other three players. (o, is
a technical device to make the handover of the dictionary safe.) Now P, can, using
this dictionary, tell whether the words a(x) and B(y) mean the same point of X or
not without having any idea about what that point is. In the following steps
P,, P;, P,, respectively, get a y — 8, 6 — @, and a — B dictionary. In the next step P,
and P; give P, (and P,) the list of the pairs (y(e), 8(e)) (and (a(e), B(e)) for e € E
shuffled according to ¢). Then P, and P, pick the sth element of the corresponding
lists which we denote by (y*, 8*) (and (a*, 8*)). Actually, y* = y(o~!(s)), but we
choose this simpler notation. Then P, and P, tell y* and B* to P, and 6* and o*
to Ps.

Now, how will P, learn his letter a; = pry(e,)? This is quite simple: P, and P, tell
P, the map pr, y~': X - A, who computes now a, as

pr; v '(v*) = pr; v ' (v(o7'(s))) = pry(e,).

The protocol.

Step 1. P sends the pairs (8o (i), yoy '(i)) to P, for i = 1,2,...,|X]|. Instead
of this we will say that P, sends the pairs (8(x), y(x)) to P, in the ordering o,.

P, sends B(x) to P, in the ordering o,.

P, sends y(x) to P, in the ordering o,.

P, checks if the messages are O.K,, i.e., if the first (second) component of Py’s ith
pair coincides with P,’s (P,’s) ith message or not.
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Comment. At the end of Step 1, P, knows the pairs (8(x), y(x)) (for x € X), i.e,,
the B — v dictionary. This is actually the same as the permutation 8~ 'y: X — X.

Py B, 70)
P, B

P4/7(X)/

In Steps 2, 3 and 4 (which are similar to Step 1) P,, P; and P, learn and check the
pairs (y(x), 8(x)), (8(x), a(x)) and (a(x), B(x)) for all x € X.

Step 5. P, sends &(e) to P, in the ordering o, i.e., P; sends 8(c~'(i)) to P, for
i=12,...,m.

P, sends afe) to P, in the ordering o.

P, sends y(e) to P, in the ordering o.

P, sends B(e) to P, in the ordering o.

P, checks the pairs (y(e), 8(e)) in his “dictionary.”

P, checks the pairs (a(e), B(e)) in his “dictionary.”

Step 6. (Recall that e, = 07 (s).) P, sends a* = a(e,) to P; and B* = B(e,) to
P,. P, sends y* = y(e,) to P, and 8* = d(e,) to P;.

P, checks the pair (8%, y*) in his dictionary.

P, checks the pair (8%, @*) in his dictionary.

P,

5(e) 7"
P1 2 PZ Pl
(e)
6 * ﬂt
(e)
P3 _—__.>P4 P4 - P3
B(e) a*

Step 7. P, sends the map pr; vy ': X - A, to P,.

P, sends the map pr,y~ " X > A  to P,.

P, checks if the messages are identical. Then he computes his letter as a; =
pr; ¥~ '(y*) = pry(e,).

In Steps 8,.9 and 10 (which are similar to Step 7) P,, P, and P,, respectively,
obtain pr, 8~ ! (from P, and P,), prya~! (from P, and P,) and pr, B~! (from P,
and P;). Then they check if the messages are identical and finally compute their
letter as

a, = p1, 3_1(5*) = pry(e,),
ay = prya”'(a*) = prs(e,),
a, = pr, .B_I(B*) = pry(e;).

In this protocol deviation from the rules is checked after each step and any such
deviation is detected surely.

Now we describe a subprotocol for “picking a random permutation jointly.”
Assume P, and P; are to choose a random element g from a group G with uniform
distribution. In our case G will be either the permutation group of X (or E) or the
additive group mod m. We mention that the subprotocol that follows is similar to a
jointly controlled lottery without simultaneous moves (see [3]).
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The group-protocol.

Step (). P, picks g, € G, uniformly and independently of everything else (k =
1,2,3,4).

Step (ii). P, sends g, to P,, P, sends g, to P,,

Step (iii). P, sends g, to P, and to P;, P, sends g, to P, and to P;, P, and P,
check (between themselves) if the messages are identical or not.

P, P, P,
g3 153 & f/
g3
P, P, P{<——>P, ) I ——
81
™ P P
P, P, P,

Step (iv). P, and P, send g, to P;, P, and P; send g; to P, P, (and P,) check if
the messages are the same.

Step (v). P, (and P;) computes g as g = g,£,8:8,-

It may happen that P,, say, chooses, g, only after having received g5 and then he
chooses g, neither uniformly nor independently of g,. Still, g, will be independent
of g, and g,, and so g will have uniform distribution and will be independent of g
&, and g;. Even more generally, the following lemma is true.

LemmAa 5. Assume s, (i =1,2,3,4) are random variables taking values in
{1,2,...,m}, o, (i = 1,2,3,4} are random permutations of {1,2,..., m} and o€
are random variables. Assume that s, is of uniform distribution and is independent of
the joint distribution of s, 55, $3, 01, ..., 04, &y, ..., &,. Let ¢ = 0,0,030, and s = s+
S, + 83+, modm. Then the random variable o(s) is uniformly distributed on
{1,..., m} and is independent of the joint distribution of 1,57, 83, 015,04, €1, ..., &,

Proor. First we show that o(s) is uniformly distributed. Let a € {1,..., m} and
set a' = o~ (a).

Prob(o(s) = a) = Prob(s, =a' — s, — 5, — 5;)

m
Y Prob(s,=x,a — s, — 5, — 55 = x)
x=1

Y Prob(s, =x) Prob(a’ —s, — s, — 55 = x)
X
= Y. (1/m)Prob(a’ =5, — s, — s, =x) = 1/m.
X
We denote the random variable {s,, s,, 53, 0,...,0,,&,,...,£,) by 1. Let us see

now that o(s) is independent of n:

Prob(o(s) =a,n =7') = Prob(s, =a' — s, — s, — 553,m = 7')
= Prob(s, =a' — 5, — 5, — 5;) Prob(n = 7’)
= (1/m) Prob(n = 7')
= Prob(o(s) =a)Prob(n =7'). DO

We will need this lemma with the roles of s, and o, interchanged, too. The proof
is almost identical.
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P, P, P,
/ ‘\03 a?\ o2
Py P; Py Py Py P,
/‘/ a\ al a_.l,,
P, P, P,
for s for o for @ and o5
P, P, P,
% ;3\0% 5! /a3
P, P, P, P, P, P,
/93/3 7:\0? %
P, P, P,
for g and 0,4 for v and o, for § and o,

FiGURe 2. The upper index in o* shows that this is P,’s choice for ¢ and o = ¢'¢%¢ %0 *,

There are altogether 10 random choices s, o, a, B8, v, 8, 01, 05, 03, 0, In the original
protocol, each of them being a function of four other random choices. We organize
the group-protocols for the determination of these 10 random choices as follows.
First, Step (i) of the 10 group-protocols is carried out; Figure 2 shows how this
happens.

Then Step (ii) is carried out in each of the ten group-protocols, then Step (iii), etc.
(An obvious sixth step is needed to inform P, on o3, P, on o,, P, on o; and P; on
a,.)

The advantage of the above scheme is that even if P, deviates in probability when
choosing s*, o¥, o, B¥, v¥, 8%, af, of, of, o, there is a player P, all of whose
random choices will be independent of all the random choices of P,. For k =1, 2,3
and 4, respectively, j will be 3, 4, 1 and 2.

Verification of condition (3). Now we are in a position to prove (3); i.e., that

conditions (1) and (2) hold for the proposed protocol even if a player deviates in
probability. Let us see first (1):

Prob(f,(1,) = a,,i =1,...,4) = Prob(pr,(¢,) = a,i=1,...,4)
= (1/1E))|{e € E: pr,(e) = a,,i = 1,...,4}]|
= (l/m)lXa]aza3a4 N El = p(a1a2a3a4)’

because, according to Lemma 5, e, = o~ '(s) is of uniform distribution.
Let us see now why (2) holds even if P, unilaterally deviates from the rules. We
will compute Prob(f(1,) = a,,i = 1,...,4|I,) for k = 1 only, for the other cases are
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very similar. Clearly,
I={o!,02,0% 0% s, 52 o', a?, a3, at, B!, B2, 4, v4, 81, 82, 8%, 8%,
Olla 0'141 0'21’ 022’ 023’ 0'24’ 031’ 0-32’ 0'33’ U;’ 041’ 0427 043’ 044’ B_ly: ﬁ*’ ’)’*, pry 7—1’ prl(es)}'
(Actually P, does not know o and ;2 and knows o, but this does not matter.) Now

either P, or P, does not deviate in probability. Consequently, e, is uniformly
distributed and is independent of

I = L\{B*,v*,pry(e,)}
where, as we know, B* = B(e,) and y* = y(e,). Then
Prob(f,() =a,,i=1,...,4|1)
= Prob(f,(1,) =a,, i=1,...,4,1,)/Prob(I,)
= Prob(pr,(e,) = a,,i=1,...,4,1}) /Prob(pr,(e,) = a, I})
= Prob(pr,(e,) = a,,i = 1,...,4) /Prob(pr(e,) = a,)
=|[{e€E:pr(e) =a, i=1,...,4)|/|{e € E: pry(e) = a,}|
=p(a,aya5a,| a,).
In the last steps we made use of the (X, E) model and of Lemma 5.
More than four players. Now let P, be a player with k > 4. After Step 6 P, and
P, send him y* and P, checks if the messages coincide or not. Then P, and P, send

him the map pr, y~': X — A,. P, checks, again, if the messages coincide or not and
if they do, he computes his letter as

a, =pr,y (v) =pr,y (v(ey)). o

S. The example. This example shows a three-person game with no SP.

Let 4, = {0}, 4, = {T, B} and A4, = {L, R} be the alphabets of players P,, P, and
P, respectively. The distribution p is defined on 4 as p(OTR) = 0 and p(OTL) =
p(OBL) = p(OBR) = 1/3.

T 1/3 0
B 1/3 1/3
L R

Denote the set of messages between P, and P, by M,; (= M,,). Assume there is a sure
protocol. Then there is a legal run with outcome OBL and messages M,,, M,, and
M;,. We claim that M, does not determine the third letter of the outcome L by
itself. For if it did, then P, would know the outcome OBL completely from his set of
information. This means that M,, is consistent with a random choice &, and
messages M3 such that f5(¢3, My;, M{;) = f5(1}) = R. Similarly, M, does not deter-
mine the second letter of the outcome, B. Thus there exist a random choice &5 and
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messages M?, with f,(&3, My, M{y) = f(I;) = T. Both I; and I3 occur with posi-
tive probability. Now P, can deviate from the rules: he tries to exchange messages
M), with P, and Mj, with P,. There is a positive probability that this goes
undetected because both &, and & occur with positive probability. But in this case
the outcome is OTR and p(OTR) = 0, a contradiction. O

So this example shows that in case of three players, there cannot be an SP in
general. We mention that the example is essentially the same as the “game of the
chicken” (see [1]).

6. Proof of Theorem 2. Assume the (X, E) model is fixed. The protocol starts
with the random choices of the players. Each random choice is made independently
of all the other random choices and according to the uniform distribution of the
underlying probability space which will always be finite.

For i = 1,2, P, chooses a permutation ,: X — X and another permutation u,:
A, - A,. There are eventually encodings of the names of the elements of X and 4,,
respectnvely Then P, and P, choose jointly an ordering (ey, €,5,...,€,) of the
elements of E. Fmally P, chooses a permutation us;: A; = A; and an integer
se{l,...,m}

Define x, = p, pr;: X » A, fori = 1,2,3.

The steps of a DP for three players follow:

P, sends k77! to P,.

P, sends x,m;' to P,.

P; sends «; to P,.

P, sends kym; ' to Py

sends m(e)), m(e,), ..., m(e,) to P; in this order.
P, sends m(e,), my(e,), ..., my(e,) to P, in this order.
P, sends m,(e,) to P,.

P, sends m(e,) to P,.

. P, sends xy(e,) = k,m; (wz(e ) to P,.

10, Pl sends k4(e,) = kym; (my(e))) to P,

11. P, sends «(e,) = kymy '(mw(e)) to P,.

12. P, computes his letter as a, = . '(x, (e ) fori=1,273

Now we have to prove that thlS protocol satlsﬁes conditions (1) and (2). This is
quite easy compared to the proof of Theorem 1 and it is, therefore, left to the reader.
(The protocol satisfies condition (3) as well but we do not need this.)

OO N W
~

7. Proof of Theorem 3. We prove Lemma 4 first. We consider the case i = 1
only. Arguing by contradiction, let M, be the set of messages sent or received by P,
during the protocol and assume that both a, and 4} are consistent with M;. This
means that there are random choices, ¢, and &, of P, such that f(¢,, M}) = a, and
f(&, M) = a,. Then, for all a,, the outcome a,a, or 4\a, depends only on P’s
choice between ¢, and &;. This means that the event f,(I,) = a, is independent of £,
conditional to M,. Then

PrOb(fl(Il) =ay, [o() = a,l¢, Ml)
= Prob(f,(1,) = a,,¢, | M;)/Prob(¢, | M,)
= Prob(f,(1,) = a,| M;) Prob(&, | M,)/Prob(&, | M)

= Prob(fo(I,) = a, | M),
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and similarly

Prob(fi(I}) = ay, f,(I,) = ay | £, M) = Prob(f,(1,) = ay| M).

By condition (2)
Pmb(f1(11) =ay, f,(1,) = azl‘fl:Ml) =P(alaz|a1) =p(a,a,)/p(a,),
PrOb(fl(I{) =a), f,(1,) = a2|§'1,M1) =p(a’1a2|al) = p(dya,)/p(a))

where p(a,) = E{p(a): a € A and pr(a) = a}}.
Hence p(a,a,)/p(a,) = p(aa,)/p(a}), the distribution is reducible in a,, a). This
contradiction proves the lemma.

The proof of Theorem 3. The basic observation is that M, = M, in case of two
players. Assume, again by way of contradiction, that p(a,a,) > 0 and p(a,a,) > 0.
Then p(a,a,|a,) > 0 and p(aya, | a,) > 0 as well as any M, consistent with a, must
be consistent with both a; and a}. But as M, = M,, this contradicts the lemma. ©

To give a DP for a diagonal distribution with two players consider the correspond-
ing (X, E) model. P, chooses an ordering e,,..., e, of E (with uniform distribution
on the space of all orderings) and P, chooses number s € {1,2, ..., m} with uniform
distribution again. Then P, transmits s to P, who informs P, that the choice is e,. P,
determines his letter as a, = pr(e) € 4 (i = 1,2). ©

This does not seem to be a very fair protocol (having in mind a correlated
equilibrium, say) for P, may choose the ordering of E only after having received s. A
somewhat fairer protocol can be constructed using a single parallel message: P, and
P, agree upon an ordering of E and then P, sends P, s, and P, sends P, s,
simultaneously. Their choice is then e, € E where s =5, + s, is taken mod m.
Observe that this protocol satisfies conditions (3) and (4), so it is an SP (with
simultaneous moves, however).

8. Some open questions. Our results do not cover the case of three players
completely: there is no SP in general but there is a DP always. This does not say
much of a correlated equilibrium, for instance. Yet there is a possibility for the
following. Call 2 DP a positive protocol if it satisfies condition (3) and such that every
unilateral deviation from the rules is detected with positive probability. The first open
question is this: Is there a positive protocol for three players (with rational probability
distribution)? An affirmative answer would imply a weaker version of Theorem 6 in
case of three players.

Another question of interest is whether the technical condition on the rationality of
p can be removed. More precisely, is Theorem 1 true for arbitrary distributions?

The last question is this. Let G, be a noncooperative n-person game, n > 4. Does
there exist a “universal” direct communication game G extending G, and containing
all correlated equilibria of G, as Nash equilibrium of G?

Acknowledgements. My thanks are due to Jean Frangois Mertens and to Frangoise
Forges for raising the problem, for several inspiring discussions and for pointing out
some errors in an earlier version of this paper.

Copyright © 2001 All Rights Reserved



340

(1]
(21
(3]

(4]

[5]
(6]
(71
(8]

(9

IMRE BARANY

References

Aumann, R. J. (1974). Subjectivity and Correlation in Randomized Strategies. J. Math. Economics 1
67-96.

(1987). Correlated Equilibrium as an Expression of Bayesian Rationality. Econometrica 55
1-18.

____, Maschler, M. and Stearns, R. E. (1968). Repeated Games of Incomplete Information: An
Approach to the Non-zero-sum Case. Report to the U.S. Arms Control and Disarmament Agency,
Contract S. T. 143, prepared by Mathematica Inc., Princeton, NJ.

Bérany, . and Fiiredi, Z. (1983). Mental Poker with Three or More Players. Information and Control
59 84-93.

Blum, M. (1983). How to Exchange (Secret) Keys. ACM Trans. Computer Systems 1 175-193.

Forges, F. (1988). Can Sunspots Replace a Mediator? J. Math. Economics 17 347-368.

(1990). Universal Mechanisms. Econometrica.

Goldwasser, S. and Micali, S. (1982). Probabilistic Encryption and How to Play Mental Poker Keeping
all Partial Information Secret. Proc. 14th ACM STOC Meeting, San Francisco, CA, 365-377.

Rivest, R. L., Shamir, A. and Adleman, L. L. (1978). A Method for Obtaining Digital Signatures and
Public Key Cryptosystems. Comm. ACM 21 120-126.

DEPARTMENT OF MATHEMATICS, UNIVERSITY COLLEGE LONDON, GOWER STREET,
LONDON, UNITED KINGDOM

Topynght © 2001 All Rights Reserved



Copyright 1992, by INFORMS, al rights reserved. Copyright of Mathematics of Operations Research isthe
property of INFORMS: Institute for Operations Research and its content may not be copied or emailed to
multiple sites or posted to a listserv without the copyright holder's express written permission. However, users
may print, download, or email articles for individual use.



