In this note we prove a conjecture of Bisztriczky and Schaer [1] about convex sets in the real projective plane \mathbb{P}^2. It will be simpler to formulate the result for convex cones in \mathbb{R}^3 and then show that it implies the conjecture. A cone $C \subset \mathbb{R}^3$ is called point-
ed if it contains no line, i.e., when $x \in C$ and $-x \in C$ imply $x=0$. Here is the result:

Theorem 1. Assume $n \geq 3$ and $C_1, \ldots, C_n \subset \mathbb{R}^3$ are closed, pointed, convex cones with common apex the origin O. Assume that for $i \neq j$ ($i,j=1,2,\ldots,n$) there is an $e(i,j) \in \{ -1, +1 \}$ such that for all $k=1,\ldots,n$, $k \neq i,j$ and for both $e=1,-1$

$$(i,j;k,e) \quad (eC_k) \cap (C_1+e(i,j)C_j) = \{ O \}.$$

Then there is a plane P through O such that for all $i=1,\ldots,n$, $P \cap C_i = \{ O \}$.

We will now translate this theorem from \mathbb{R}^3 to \mathbb{P}^2. For a convex pointed cone $C \subset \mathbb{R}^3$ set $S(C) = S^2 \cap C$ where S^2 is the unit sphere of \mathbb{R}^3. \mathbb{P}^2 is obtained from S^2 by identifying antipodal points. With this identification the points of $S(C)$ and $-S(C)$ give rise to a set $P(C) \subset \mathbb{P}^2$. Clearly, $P(C) = P(-C)$.

A set $A \subset \mathbb{P}^2$ is called convex if there exists a line L in \mathbb{P}^2 disjoint from A and A is convex in the affine plane $\mathbb{P}^2 \setminus L$ (cf. [2] or [1]). A convex set A in \mathbb{P}^2 gives rise to two connected subsets $S^+(A)$ and $S^-(A) = -S^+(A)$ of S^2, whose cone hulls are $C^+(A)$ and $C^-(A)$, respectively. Evidently, $C^+(A) = -C^-(A)$. In this way one can see that $A \subset \mathbb{P}^2$ is convex if and only if $A = P(C)$ for some pointed convex cone $C \subset \mathbb{R}^3$.

Now let $A_1, A_2 \subset \mathbb{P}^2$ be convex. We want to define the convex hull of their union. Then $A_j = P(C_j)$ for some pointed convex cone $C_j \subset \mathbb{R}^3$ and also $A_j = P(-C_j)$ ($j=1,2$). So the union of A_1 and A_2 will have, in general, two convex hulls: $H_1(A_1,A_2) = P(\text{conv}(C_1,C_2))$ and $H_2(A_1,A_2) = P(\text{conv}(C_1,-C_2))$. Of course, H_1 and H_2 will be convex only if $C_1-C_2 = \text{conv}(C_1,-C_2)$ and $C_1+C_2 = \text{conv}(C_1,C_2)$ are pointed cones.

We can now formulate Theorem 1 in \mathbb{P}^2.

Theorem 2. Let A_1, \ldots, A_n be closed convex sets in \mathbb{P}^2 ($n \geq 3$). Assume that for $i \neq j$ ($i,j=1,\ldots,n$) either $A_k \cap H_1(A_i,A_j) = \emptyset$ for all $k \neq i,j$ or $A_k \cap H_2(A_i,A_j) = \emptyset$ for all $k \neq i,j$. Then there is a line $L \subset \mathbb{P}^2$ disjoint from each A_i.

In [1], the collection of the sets A_1, \ldots, A_n is called affinely embeddable when the conclusion of Theorem 2 holds.

In the proof of Theorem 1 we will use standard techniques from the theory of convex cones in finite dimensional spaces (cf. [3], [4] or [5]).
When proving Theorem 1 we will obtain its dual form which seems to be worth mentioning:

THEOREM 3. Assume $D_1, \ldots, D_n \subseteq \mathbb{R}^3$ $(n \geq 3)$ are closed, pointed, convex cones with common apex the origin. Suppose that for $i \neq j$ $(i, j = 1, \ldots, n)$ there is an \(e(i, j) \in \{-1, +1\} \) such that for all $k = 1, \ldots, n$, $k \neq i, j$ and for both $e = 1$ and -1 $(eD_i) \cap D_j \cap (e(i, j)D_j) \neq \{O\}$. Then there are signs e_1, \ldots, e_n $(e_i = +1$ or $-1)$ and a vector $p \in \mathbb{R}^n \setminus \{O\}$ such that $p \in e_iD_i$ for all $i = 1, \ldots, n$.

PROOF OF THEOREM 1. Assume the theorem is false and take a counterexample $C_1, \ldots, C_n \subseteq \mathbb{R}^3$ of closed, convex, pointed cones satisfying condition $(i, j; k, e)$ such that for all planes P through the origin there is an $i \in \{1, \ldots, n\}$ with $P \cap C_i \neq \{O\}$.

We will modify this counterexample. We **claim** first that for $i \neq j$ both $C_i + C_j$ and $C_i - C_j$ are pointed and closed convex cones. We prove this for $C_i + C_j$, the proof for $C_i - C_j$ is identical. By condition $(i, k; j, -1)$

\[
(C_i + C_j) \cap C_l \subseteq \{C_l + e(i, k)C_k\} = \{O\},
\]

so C_l and $(-C_j)$ can be separated (strictly, because they are closed), i.e., there exists $v \in \mathbb{R}^3$ such that $v \cdot y < 0$ for all $y \in C_l \setminus \{O\}$ and $v \cdot y > 0$ for all $y \in (-C_j) \setminus \{O\}$. (Here $v \cdot x$ denotes the scalar product of $v, x \in \mathbb{R}^3$.) Then $v \cdot z < 0$ for all $z \in (C_i + C_j) \setminus \{O\}$ proving that $(C_i + C_j)$ is pointed.

Now we prove that $C_i + C_j$ is closed. Assume it is not, then there are elements $x_m \in C_i$ and $y_m \in C_j$ with $x_m, y_m \in S^2$ and positive numbers α_m, β_m such that $z_m = -x_m x_m + \beta_m y_m$ is in $(C_i + C_j) \cap S^2$ but $z - \lim z_m$ is not. By the compactness of S^2 we may assume that $x = \lim x_m$ and $y = \lim y_m$ exists. Then α_m and β_m must tend to infinity and so $z_m \in S^2$ is possible only if $x + y = 0$. This implies that $C_i + C_j$ contains the line through x and $-x = y$ which is impossible because it is a pointed cone.

We define, for a closed pointed cone $C \subseteq \mathbb{R}^3$ and for $\alpha > 0$ the set

\[
C^\alpha = \{x \in \mathbb{R}^3 : \text{there is } y \in C \text{ with } \langle x, Oy \rangle = \alpha\},
\]

where $\langle x, Oy \rangle$ denotes the angle of the triangle xOy at vertex O. C^α is clearly a convex, pointed cone with nonempty interior provided α is small enough.

Condition $(i, j; k, e)$ says that the two closed and pointed cones $C_i + e(i, j)C_j$ and eC_k are disjoint (except for the common apex). Then there is $\alpha(i, j; k, e) > 0$ such that for $0 < \alpha < \alpha(i, j; k, e)$

\[
(eC_k^\alpha) \cap (C_i^\alpha + e(i, j)C_j^\alpha) = \{O\};
\]

and $C_i^\alpha, C_j^\alpha, C_k^\alpha, C_i^\alpha + e(i, j)C_j^\alpha$ are all pointed, convex, closed cones. Set $\beta = \min \alpha(i, j; k, e)$ and take a closed polyhedral cone B_i with nonempty interior satisfying

\[
C_i \subseteq B_i \subseteq C_i^\beta \quad \text{for } i = 1, \ldots, n.
\]

We may choose the finitely many halflines generating the cones B_i to be in general position. We will clarify later what is meant by general position here.

This is what we have now: The cones B_i are convex, closed, pointed and polyhedral with nonempty interior, and they satisfy condition $(i, j; k, e)$. Moreover, for each plane P through the origin $P \cap \text{int } B_i \neq \{O\}$ for some $i = 1, \ldots, n$.

Acta Mathematica Hungarica 56, 1990
Consider now the polars $D_i = B_i^*$ of B_i defined as

$$D_i = \{ x \in \mathbb{R}^3 : x \cdot y \leq 0 \text{ for } y \in B_i \}.$$

The D_i's are convex, closed, pointed, polyhedral cones in \mathbb{R}^3 with nonempty interior. We claim now that condition $(i, j; k, e)$ implies the following condition:

$$(i, j; k, e)^* \quad (-eD_k) \cap D_i \cap (e(i, j)D_j) \neq \{0\},$$

and the last condition in the theorem implies this one: For each $p \in \mathbb{R}^3 \setminus \{0\}$ there is an $i \in \{1, \ldots, n\}$ such that

$$(*) \quad p \notin D_i \quad \text{and} \quad p \notin -D_i.$$

We prove this claim using standard techniques from the theory of convex polyhedral cones (cf. [4] or [5]). Condition $(i, j; k, e)$ for the cones B_i is of the form $B_k \cap (B_i + B_j) = \{0\}$ (here we dropped the signs) that has polar form $D_k + (D_i \cap D_j) = \mathbb{R}^3$. Assume now that $(-D_k) \cap (D_i \cap D_j) = \{0\}$, then the cones $-D_k$ and $(D_i \cap D_j)$ can be separated, i.e., there is $v \in \mathbb{R}^3 \setminus \{0\}$ such that $v \cdot x \leq 0$ for all $x \in -D_k$ and $v \cdot y > 0$ for all $y \in D_i \cap D_j$. But then $v \cdot z > 0$ for all $z \in D_k + (D_i \cap D_j)$, a contradiction. Let us see now the last condition:

$$P \cap \text{int } B_i \neq \{0\},$$

and consider $q \in P \cap \text{int } B_i$ with $q \neq 0$. Write p for a normal of the plane P. Then $q \cdot p = 0$ and $q \cdot x < 0$ for all $x \in B_i \setminus \{0\} = D_i \setminus \{0\}$, so indeed, $\pm p \notin D_i$.

(As a matter of fact, from now on we will give the proof of Theorem 3 in the case when the sets D_i are polyhedral cones in \mathbb{R}^3 with nonempty interior. The general case follows by a standard continuity argument.)

Choose a point $d_i \in \text{int } D_i$ now for $i = 1, \ldots, n$ and shrink each set D_i to the point d_i linearly and simultaneously with a parameter $t \in [0, 1]$, so that the shrinking set $D_i(t)$ equals D_i when $t = 1$ and d_i when $t = 0$. Write I for the set of indices i, j, k, e_i, e_j, e_k and set

$$D_i(t) = (e_iD_i(t)) \cap (e_jD_j(t)) \cap (e_kD_k(t))$$

when $t \in [0, 1]$. We assume that the cones B_i and the points d_i are in general position to ensure that $D_i(1) \neq \{0\}$ implies that int $D_i(1)$ is nonempty. Moreover, as the cones $D_i(t)$ shrink, the cones $D_i(t)$ shrink as well and $D_i(t) = \{0\}$ for $t < t_0(I)$ where $t_0(I)$ is the smallest t for which $D_i(t)$ is different from $\{0\}$. (If, for some, $D_i(1) = \{0\}$ already, then $t_0(I)$ is not defined.) We assume that the cones B_i and the points d_i are in general position to ensure that $D_i(t)$ is a halfline when $t = t_0(I)$ and that int $D_i(t) \neq \emptyset$ for $t > t_0(I)$.

As t decreases, condition $(*)$ remains true because the cones D_i get smaller and smaller. But conditions $(i, j; k, e)^*$ will fail for each $(i, j; k, e)$ for some t because $D_i(t) = \{0\}$ for all I. The condition $(i, j; k, e)^*$ holds for all $t > t(i, j; k, e)$ and fails for all $t \leq t(i, j; k, e)$ where $t(i, j; k, e)$ is uniquely determined. Write t_0 for the largest $t(i, j; k, e)$, then $t_0 = t(i, j; k, e)$ for some $(i, j; k, e)$. We may assume with-
out loss of generality that \(i=1, j=2, k=3\) and \(e(1, 2)=1\) and \(e=-1\). So condition \((1, 2; 3, -1)^*\) fails, i.e.,

\[
D_1(t_0) \cap D_2(t_0) \cap D_3(t_0) = K
\]

where \(K\) is a halfline of the form \(\{xv : a \geq 0\}\) with \(v \in \mathbb{R}^8 \setminus \{O\}\). We know that \(D_1(t) \cap D_2(t) \cap D_3(t) = \{O\}\) for \(t < t_0\) and has nonempty interior for \(t > t_0\). We claim now that for each \(j=1, 2, \ldots, n\), \(v \in D_j(t_0) \) or \(v \in -D_j(t_0)\). This will contradict condition \((\ast)\) and so prove the theorem.

The claim is evident when \(j=1, 2, 3\). We are going to prove it with notation \(j=4\). There are two cases to consider.

1st case. When the intersection of two of the cones \(D_j(t_0)\) \((j=1, 2, 3)\) is equal to \(K\), \(D_1(t_0) \cap D_2(t_0) = K\), say. From condition \((2, 4; 1, e=-1)\) we get for \(t=t_0\) that

\[
D_1(t_0) \cap D_2(t_0) \cap \{e(2, 4)D_4(t_0)\} \neq \{O\}.
\]

But \(K=D_4(t_0)\cap D_2(t_0)\) and so \(v \in K \subset e(2, 4)D_4(t_0)\) indeed.

2nd case. When the intersection of any two cones \(D_j(t_0)\) have nonempty interior \((j=1, 2, 3)\). Then, by a wellknown theorem (see [3], for instance), there are vectors \(a_j \in \mathbb{R}^8\) such that \(a_j \cdot x \leq 0\) for all \(x \in D_j(t_0)\) \((j=1, 2, 3)\) and \(O\) is in the convex hull of \(a_1, a_2\) and \(a_3\). The case when some \(a_j\) is parallel with some other \(a_i\) has been dealt with in the first case. So we assume that every \(a_j\) is nonzero and \(0 = a_1 + a_2 + a_3\) and every \(a_j > 0\). Then \(a_j \cdot x \leq 0 \) \((j=1, 2, 3)\) implies that \(x = \beta v\) for some real number \(\beta\). Moreover, \(a_j \cdot v = 0\) for \(j=1, 2, 3\).

Assume now that \(\pm v \in D_4(t_0)\). Then \(L\), the line through \(v\) and \(-v\) can be separated from \(D_4(t_0)\), i.e., there exists a nonzero \(a_4 \in \mathbb{R}^8\) such that \(a_4 \cdot x < 0\) when \(x \in D_4(t_0) \setminus \{O\}\) and \(a_4 \cdot x = 0\) when \(x \in L\). This shows that the vectors \(a_i\) \((i=1, 2, 3, 4)\) are all orthogonal to \(v\) and so \(a_4 = \beta_1 a_1 + \beta_2 a_2\) for some real numbers \(\beta_1\) and \(\beta_2\). We show now that \(\beta_1\) and \(\beta_2\) are both different from zero. Assume that \(\beta_4 = 0\), say. Then \(a_1\) and \(a_4\) are parallel and, then \(D_1(t_0)\) is separated either from \(D_4(t_0)\) or from \(-D_4(t_0)\), contradicting condition \((1, j; 4, \pm 1)^*\).

Consider now condition \((1, 2; 4, e)^*\): there exists an \(x \in \mathbb{R}^8 \setminus L\) such that

\[
x \in -(eD_4(t_0)) \cap D_1(t_0) \cap D_2(t_0).
\]

Then \(-e a_1 \cdot x < 0\), \(a_1 \cdot x \leq 0\) and \(a_2 \cdot x \leq 0\). This implies that \(\beta_1\) and \(\beta_2\) cannot be of the same sign. We may assume that \(\beta_1 > 0\) and \(\beta_2 < 0\).

Suppose now that \(e(3, 4) = 1\) and consider condition \((3, 4; 2, -1)^*\). In the same way as above this implies the existence of an \(x \in \mathbb{R}^8 \setminus L\) with \(a_3 \cdot x \leq 0\), \(a_4 \cdot x = 0\) and \(a_2 \cdot x \leq 0\). Now \(a_3\) is a positive linear combination of \(a_2\) and \(a_4\), so \(a_3 \cdot x = 0\). But \(a_1 \cdot x = 0\), \(a_2 \cdot x \leq 0\), \(a_3 \cdot x \leq 0\) is impossible. Assume now that \(e(3, 4) = -1\) and consider condition \((3, 4; 1, -1)^*\). Again, this implies the existence of an \(x \in \mathbb{R}^8 \setminus L\) with \(a_3 \cdot x \leq 0\), \(a_4 \cdot x \geq 0\) and \(a_1 \cdot x \leq 0\). Now \(a_2\) is a positive linear combination of \(a_1\) and \(-a_4\), so \(a_2 \cdot x = 0\). But \(a_1 \cdot x \leq 0\), \(a_3 \cdot x > 0\), \(a_2 \cdot x \leq 0\) is impossible.

We mention finally that it is possible to extend these results to higher dimensional spaces but, unfortunately, the conditions in the theorems become rather unintelligible.
References

(Received October 21, 1987; revised August 10, 1988)