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AFFINELY EMBEDDABLE SETS IN THE 
PROJECTIVE PLANE 

I. B.g,R,~NY (Budapest) 

In this note we prove a conjecture of  Bisztriczky and Schaer [1] about  convex 
sets in the real projective plane pz. It will be simpler to formulate the result for convex 
cones in R 3 and then show that it implies the conjecture. A cone C c R  z is called point- 
ed if  it contains no line, i.e., when x~C and - x C C  imply x = 0 .  Here is the result: 

THEOREM 1. Assume n>=3 and Ct . . . . .  C, c R  ~ are closed, pointed, convex cones 
with common apex the origin O. Assume that for i r  ( i , j '= l ,  2 . . . .  , n) there is an 
e( i, j )E { - 1 ,  +1} such that for all 1r . . . . .  n, k r i, j and for both e = l ,  - 1  

( i , j ;  k, e) (eCk)~(Cl+e( i , j )Cj )  = {O}. 

Then there is a plane P through 0 such that for all i= 1 . . . . .  n, P A C i =  {O}. 

We will now translate this theorem from R 3 to P~. For  a convex pointed cone 
C c R 3 set S ( C ) =  S ~ N C where S 2 is the unit sphere of  R z. p2 is obtained from S 2 by 
identifying antipodal points. With this identification the points of  S(C)  and - S(C)  = 
= S ( - C )  give rise to a set P ( C ) c P  2. Clearly, P ( C ) = P ( - C ) .  

A set A c P  2 is called convex if  there exists a line L in p2 disjoint from A and A 
is convex in the affine plane P Z \ L  (cf. [2] or [1]). A convex set A in p2 gives rise to 
two connected subsets S+(A) and S - ( A ) = - - S + ( A )  of  S 2, whose cone hulls are 
C +(A) and C - (A) ,  respectively. Evidently, C + ( A ) = - C - ( A ) .  In this way one can 
see that A c P  z is convex if and only if A = P ( C )  for some pointed convex cone 
C c R  8. 

Now let At,  A 2 c P  2 be convex. We want to define the convex hull of  their union. 
Then Aj=P(Cj )  for some pointed convex cone C j c R  3 and also A j = P ( - C j )  
( j =  1, 2). So the union of  At and As will have, in general, two convex hulls: 
Hi(At ,  A2)=P(conv(C~,C2))  and H2(A~, A2)=P(conv(C~,  -C2)).  Of  course, 
//1 and H~ will be convex only if  C~-C~ =conv  (C1, -C2)  and C1 +Ce=conv(C1,  C2) 
are pointed cones. 

We can now formulate Theorem 1 in P~. 

THEOREM 2. Let As . . . . .  A,, be closed convex sets in p2 (n=>3). Assume that for 
i ~ j  ( i , j = l  . . . . .  n) either AJqHI(Ai ,  Aj)=0  for all k r  or AkNH2(A ~, Aj)=0  
for all k C-i,.L Then there is a line L c  P 2 disjoint from each A i. 

In [1], the collection of  the sets As . . . . .  A, is called affinely embeddable when 
the conclusion of  Theorem 2 holds. 

In the proof  of  Theorem 1 we will use standard techniques from the theory of  
convex cones in finite dimensional spaces (cf. [3], [4] or [5]). 
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When proving Theorem 1 we will obtain its dual form which seems to be worth 
mentioning: 

THEOREM 3. Assume D1 . . . . .  D, c R  3 (n=>3) are closed, pointed, convex cones 
with common apex the origin. Suppose that for i r  (i, j =  1 . . . . .  n) there is an 
e ( i , j ) ~ { - 1 ,  +1} such that for all k = l  . . . . .  n, k r  andJor both e = l  and - 1  
(eDk)ODif)(e(i,j)Dj)~{O}. Then there are signs el . . . . .  e, (ei= +1 or - 1 )  and 
a vector pERz\{O} such that pEe~Di for all i= 1 . . . .  , n. 

PROOF OF Tr~EOREM 1. Assume the theorem is false and take a counterexample 
Ct . . . . .  C, cRa of  closed, convex, pointed cones satisfying condition (i,j; k, e) such 
that for atl planes P through the origin there is an iE{1 . . . . .  n} with PFqC,~{O}. 

We will modify this counterexample. We claim first that for i r  both C~+C i 
and C~-Cj are pointed and closed convex cones. We prove this for C,+Cj, the 
proof  for C i - C j  is identical. By condition (i, k ; j , - 1 )  

(-Cj)fqC, c (-Ci)fq(Cg+e(i, k)Ck) = {O}, 

so Ci and ( - C j )  can be separated (strictly, because they are closed), i.e,. there exists 
vCR ~ such that v .x<O for all xEC~\{O} and v.y>O for all yE( -C j ) \ {O} .  
(Here v. x denotes the scalar product of  v, xER3.) Then v. z < 0  for all zE(CI+Cj) \  
\ { O }  proving that (Ci+Cj) is pointed. 

Now we prove that C,+Cj is closed. Assume it is not, then there are elements 
xmEC~ and ymECj with Xm, ymES ~ and positive numbers a,,, tim such that z , ,= 
=~Xm+fimYm is in (C,+Cj)f~S ~ but z = l i m  z,, is not. By the compactness of  S ~ 
we may assume that x = l i m  Xm and y = l i m  y,, exists. Then c~,, and tim must tend to 
infinity and so z,,ES 2 is possible only if  x + y = 0 .  This implies that C,+C s con- 
rains the line through x and - x = y  which is impossible because it is a pointed cone. 

We define, for a closed pointed cone C c R  3 and for ~ > 0  the set 

C ~ = {xER~: there is yCC with <~xOy<- ~}, 

where <~ xOy denotes the angle of  the triangle xOy at vertex O. C ~" is clearly a con- 
vex, pointed cone with nonempty interior provided ~ is small enough. 

Condition (i,j; k, e) says that the two closed and pointed cones Ci+e(i , j )C~ 
and e Q  are disjoint (except for the common apex). Then there is ~(i,j; Ir e ) > 0  such 
that for O<~<~(i , j ;k ,e)  

(eC ) n + e(i, j )  = { o } ;  

and CI, CT, C~, C~+e(i,j)C7 are all pointed, convex, closed cones. Set f l= 
=rain  ~(i,j; k, e) and take a closed polyhedral cone B~ with nonempty interior satis- 
fying 

C i c B ~ C ~  for i =  l , . . . , n .  

We may choose the finitely many halflines generating the cones B~ to be in general 
position. We will clarify later what is meant by general position here. 

This is what we have now: The cones Bi are convex, closed, pointed and poly- 
hedral with nonempty interior, and they satisfy condition (i,j; k, e). Moreover, for 
each plane P through the origin P ('lint Bi ~ {O} for some i =  1 . . . .  , n. 
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Consider now the polars D,=B* of Bi defined as 

Di = {xER3: x . y  <- 0 for yEBi}. 

The Dis are convex, dosed,  pointed, polyhedral cones in R a with nonempty 
interior. We claim now that condition (i,j; k, e) implies the following condition: 

(i,j; k, e)* (-eDk)AD, N(e(i,j)Dj) # {0}, 

and the last condition in the theorem implies this one: For  each pER3\{O} there is an 
iE{1 . . . .  , n} such that 

(*) pr and p r  i. 

We prove this claim using standard techniques from the theory of  convex poly- 
hedral cones (cf. [4] or [5]). Condition (i,j; k, e) for the cones Bi is of  the form 
Bk A (Bi+ Bj)= {O} (here we dropped the signs) that has polar form D k + (D~ 0 D j)= 
= R  3. Assume now that (-Dk)r)(D,Y)Dj)={O}, then the cones - D  k and (DiNDj) 
can be separated, i.e., there is vER3\{O} such that v.x-<_-O for all xC--Dk and 
v . y ~ 0  for all yED~ADj. But then v.z>=O for all zEDk+(D, ADj), a contra- 
diction. Let us see now the last condition : 

P la in t  B / #  {0}, 

and consider q E P ~ i n t  B~ with q # O. Write p for a normal of  the plane P. Then 
q.p=O and q.x<O for all xEBT\{O}=Di\{O}, so indeed, • 

(As a matter of  fact, from now on we will give the proof  of  Theorem 3 in the case 
when the sets D, are polyhedral cones in R 3 with nonempty interior. The general case 
follows by a standard continuity argument.) 

Choose a point diEintD ~ now for i=1  . . . .  , n and shrink each set Di to the 
point d~ linearly and simultaneously with a parameter tE[0, 1], so that the shrinking 
set D/t)  equals Di when t =  1 and di when t=0 .  Write I for the set of  indices 
i, j, k, ei, e~, e k and set 

Dr(t) ---- (e~D,(t)) (-I(ejDj(t)) 0 (egDk(t)) 

when tE[0, 1]. We assume that the cones Bi and the points di are in general position 
to ensure that D1 (1)#  {O} implies that int DI(1) is nonempty. Moreover, as the cones 
Di(t) shrink, the cones Dx(t) shrink as well and Dl(t)={O} for t<to(1 ) where 
to(1 ) is the smallest t for which Dr(t) is different from {O}. (If, for some, / ) i ( i ) =  
= {O} already, then to(1 ) is not defined.) We assume that the cones Bi and the points 
di are in general position to ensure that Di(t ) is a hairline when t=to(I ) and that 
J n t D i ( t ) # 0  for t>to(I ). 

As t decreases, condition ( . )  remains true because the cones D, get smaller and 
smaller. But conditions ( i , j ;  k, e)* will fail for each ( i , j ;  k, e) for some t because 
Dx(0)={O} for all L The condition (i,j; k, e)* holds for all t>t(i,j; k, e) and fails 
for all t~=t(i,j; k, e) where t(i,j; k, e) is uniquely determined. Write to for the 
largest t(i,j; k, e), then to=t(i,j; k, e) for some ( i , j ;  k, e). We may assume with- 
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out loss of  generality that i=1 ,  j = 2 ,  k = 3  and e(1, 2)=1 and e = - l .  So con- 
dition (i,  2; 3, - 1 )*  fails, i.e., 

D~(to) NDs(to) :lDz(to) = K 

where Kis  a hairline of  the form {ev: c~->0} with vCRz\{O}. We know that D~(t)O 
ADs(t)OD3(t) is {O} for t<to and has nonempty interior for t>to. We claim 
now that for each j = l , 2  . . . . .  n, vCDj(to) or v~-Dj(to). This will contradict 
condition ( . )  and so prove the theorem. 

The claim is evident when j =  I, 2 and 3. We are going to prove it with notation 
j = 4 .  There are two cases to consider. 

1st case. When the intersection of  two of  the cones Dj(to) ( ] =  1, 2, 3) is equal 
to K, Dx(to)(3Ds(to)=K, say. From condition (2, 4; 1, e =  - 1) we get for t= t  o that 

D~(to)NDs(to)A(e(2, 4)D4(to)) r {0}. 

But K=Dl(to)~D2(to) and so vEK=e(2, 4)D4(t0) indeed. 

2nd case. When the intersection of  any two cones Dj(to) have nonempty interior 
( j =  1, 2, 3). Then, by a wellknown theorem (see [3], for instance), there are vectors 
ajaR 3 such that aj. x<=O for all xEDj(to) ( j =  1, 2, 3) and O is in the convex hull 
of  a~, a~ and a 3. The case when some aj is parallel with some other ai has been dealt 
with in the first case. So we assume that every aj is nonzero and O=~aal+eo.ae+c~3a 3 
and every czj>0. Then ai.x<=O ( j = 1 , 2 , 3 )  implies that x=[lv for some real 
number ft. Moreover, a i �9 v= 0 for j =  1, 2, 3. 

Assume now that +_vf~D4(to). Then L, the line through v and - v  can be sepa- 
rated from D~(to), i.e., there exists a nonzero a4CR 3 such that a4.x<O when 
xCD4(to)\{O } and a~. x = 0  when xCL. This shows that the vectors al ( i=  1, 2, 3, 4) 
are all orthogonal to v and so a4=fi~a~+fisa2 for some real numbers fl~ and flz. 
We show now that fll and fi2 are both different from zero. Assume that f12=0, say. 
Then a~ and a4 are parallel and, then D~(to) is separated either from D4(to) or from 
-D4(to), contradicting condition (1,j ;  4, _+1)*. 

Consider now condition (1, 2; 4, e)*: there exists an x C R 3 \ L  such that 

xC ( - eD , (  to) ) OD~ ( to) f~D~( to). 

Then --ea~. x < 0 ,  al .  x=<0 and a~. x = 0 .  This implies that fll and fls cannot be o f  
the same sign. We may assume that fla > 0  and fl2<0. 

Suppose now that e(3, 4) = 1 and consider condition (3, 4; 2, - 1)*. In the same 
way as above this implies the existence of  an xCR~,.,L with az. x<=O, a4. x < 0  and 
a.,. x_-<0. Now al is a positive linear combination of  as and a4, so a l - x < 0 .  But 
a l .  x < 0 ,  a2. x-<0, aa. x=<0 is impossible. Assume now that e(3, 4 ) = - - 1  and con- 
sider condition (3,4;  1 , - 1 ) * .  Again, this implies the existence of  an x C R 3 \ L  
with a~. x-<_0, a4. x > 0  and al-x-<_0. Now as is a positive linear combination of  a~ 
and - a 4 ,  so as. x < 0 .  But a~. x<=0, as. x < 0 ,  a3. x<-0 is impossible. 

We mention finally that it is possible to extend these results to higher dimensional 
spaces but, unfortunately, the conditions in the theorems become rather unintelligible. 
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