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ON AFFINELY EMBEDDABLE SETS IN THE
PROJECTIVE PLANE

I. BARANY (Budapest)

In this note we prove a conjecture of Bisztriczky and Schaer [1] about convex
sets in the real projective plane P2. It will be simpler to formulate the result for convex
cones in R® and then show that it implies the conjecture. A cone C < R?is called point-
ed if it contains no line, i.e., when x€C and —x€C imply x=0. Here is the result:

THEOREM 1. Assume n=3 and Cy, ..., C,CR® are closed, pointed, convex cones
with common apex the origin O. Assume that for i=j (i,j=1,2,...,n) there is an
e(i,j)e{—1, +1} such that for all k=1, ...,n, k=i,j and for both e=1, —1

(t.js k, e) (eCk)m(C1+e(ia .i)Cj) = {0}
Then there is a plane P through O such that for all i=1, ..., n, PNC;={0}.

We will now translate this theorem from R3 to P2, For a convex pointed cone
CcC R3set S(C)=S2%NC where §2is the unit sphere of R%. P?is obtained from S2 by
identifying antipodal points. With this identification the points of S(C)and —S(C)=
=S(—C) giverise to aset P(C)c P2 Clearly, P(C)=P(—-C).

A set AC P? is called convex if there exists a line Lin P2 disjoint from 4 and A
is convex in the affine plane P2\ L (cf. [2] or [1]). A convex set 4 in P2 gives rise to
two connected subsets S*(4) and S~ (A)=-S1(4) of S2 whose cone hulls are
C *(4) and C ~(A), respectively. Evidently, C*(4)=—C ~(A4). In this way one can
see that A P? is convex if and only if 4=P(C) for some pointed convex cone
CCRa.

Now let 4;, A, P?be convex. We want to define the convex hull of their union.
Then A4;=P(C;) for some pointed convex cone C;CR® and also 4;=P(—C))
(j=1,2). So the union of 4; and A4, will have, in general, two convex hulls:
H,(4;, A)=P(conv (Cy, Cy)) and H,(A,, A;)=P(conv (Cy, —Cy)). Of course,
H, and H, will be convex only if C,—Cy=conv (C;, —C,) and C,+C,=conv(Cy, C,)
are pointed cones.

We can now formulate Theorem 1 in P2,

THEOREM 2. Let A, ..., A, be closed convex sets in P? (n=3). Assume that for
i#j (i,j=1, ..., n) either ANH(A;, A)=0 forall k#i,j or A,\H,(4;, A)=0
Jor all k##i,j. Then there is a line Lc P? disjoint from each A,.

In [}, the collection of the sets A, ..., 4, is called affinely embeddable when
the conclusion of Theorem 2 holds.

In the proof of Theorem 1 we will use standard techniques from the theory of
convex cones in finite dimensional spaces (cf. [3], [4] or [5]).
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When proving Theorem 1 we will obtain its dual form which seems to be worth
mentioning :

THEOREM 3. Assume D,, ..., D,CR® (n=3) are closed, pointed, convex cones
with common apex the origin. Suppose that for i#j (i,j=1,...,n) there is an
e(i,jYe{—1, +1} such that for all k=1, ..., n, k=i,j and for both e=1 and —1
(eDY)ND;N(e(i, 7 )D;)={0}. Then there are signs ey, ..., e, (e;=+1 or —1) and
a vector pe R®\{O} such that pceD; forall i=1, ...,n.

Proor oF THEOREM 1. Assume the theorem is false and take a counterexample
Ci, ..., C,cR? of closed, convex, pointed cones satisfying condition (7, j; k, €) such
that for all planes P through the origin there is an i€{1, ..., n} with PNC;={0}.

We will modify this counterexample. We claim first that for i/ both C;+C;
and C;—C; are pointed and closed convex cones. We prove this for C;+C;, the
proof for C;—C; is identical. By condition (i, k;/, —1)

(~CHNC;  (=CHN(Ci+el, K)Cy) = {0},

so C; and (—Cj) can be separated (strictly, because they are closed), i.e,. there exists
vER® such that v-x<O0 for all x¢CN\{0O} and v-y=0 for all ye(—C;\{0O}.
(Here v - x denotes the scalar product of v, x€R3) Then v-z<0 forall z€(C;+C;)\
\{0} proving that (C;+C;) is pointed.

Now we prove that C;+C; is closed. Assume it is not, then there are elements
*n€C; and y,€C; with x,, y,,€5% and positive numbers o, f, such that z,=
= U X+ PV 18 in (C;+C)(NS? but z=lim z,, is not. By the compactness of S
we may assume that x=Nm x,, and y=lim y,, exists. Then o, and §,, must tend to
infinity and so z,€S% is possible only if x+y=0. This implies that C;+C; con-
tains the line through x and —x=y which is impossible because it is a pointed cone.

We define, for a closed pointed cone CCR? and for «=0 the set

C* = {x¢R®: thereis yeC with <xOy = a},

where <4 x0y denotes the angle of the triangle xOy at vertex 0. C” is clearly a con-
vex, pointed cone with nonempty interior provided o is small enough.

Condition (i, j; k, ) says that the two closed and pointed cones C;+e(i,j)C;
and eC,, are disjoint (except for the common apex). Then there is «(i, j; k, €)=0 such
that for O<a<a(l,j; k,e)

(eCHN(Ci+e(, )CF) = {0};

and C%, C5 C;, Ci+e(i,j)Ci are all pointed, convex, closed cones. Set f=
=min «(i, j; k, €) and take a closed polyhedral cone B; with nonempty interior satis-
fying

C,cB,cCfF for i=1,..,n

We may choose the finitely many halflines generating the cones B; to be in general
position. We will clarify later what is meant by general position here.

This is what we have now: The cones B; are convex, closed, pointed and poly-
hedral with nonempty interior, and they satisfy condition (7, f; k, ). Moreover, for
each plane P through the origin P(int B;»{0} forsome i=1, ..., n.
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Consider now the polars D;=B} of B; defined as
D; = {x€R®: x.-y =0 for yeB}.

The D;’s are convex, closed, pointed, polyhedral cones in R?® with nonempty
interior. We claim now that condition (7, ; k, e} implies the following condition:

(i,j; k, e (—eD)ND;N(e(i, /) D) = {0},

and the last condition in the theorem implies this one: For each p€ R®\ {0} thereis an
i€{l, ..., n} such that

(%) p¢D; and p¢-—D;.

We prove this claim uvsing standard techniques from the theory of convex poly-
hedral cones (cf. [4] or [5]). Condition (i,Jf; k, €) for the cones B; is of the form
BN (B;+B;)={0} (here we dropped the signs) that has polar form D,+(D;N\D;)=
= R®. Assume now that (—~D)N(D;1D;)={0}, then the cones —D,and (D;(D;)
can be separated, i.e., there is v€ R®\\ {0} such that v-x=0 for all x¢—D, and
v-y=0 for all yeD;(\D;. But then v-z=0 for all z€D,+(D;\D,), a contra-
diction. Let us see now the last condition:

PNint B; = {0},

and consider g€ PMNint B; with ¢>#0. Write p for a normal of the plane P. Then
g-p=0 and g-x<0 for all x¢ BIN{O}=D\J{0}, so indeed, +péD;.

(As a matter of fact, from now on we will give the proof of Theorem 3 in the case
when the sets D, are polyhedral cones in R® with nonempty interior. The general case
follows by a standard continuity argument.)

Choose a point d€int D; now for i=1,...,n and shrink each set D; to the
point d; linearly and simultancously with a parameter #¢[0, 1], so that the shrinking
set D;(t) equals D; when t=1 and d; when ¢=0. Write I for the set of indices
i,7. k, e,e;, e and set

Dy(1) = (e;D:(0)N(e; D;(1) N (e, Dy (1))

when #€[0, 1]. We assume that the cones B; and the points d; are in general position
to ensure that D;(1)7{0} implies that int D, (1) is nonempty. Moreover, as the cones
D;(¢) shrink, the cones D,(t) shrink as well and D,;(t)={0} for t<1,(I) where
t,(I) is the smallest # for which D,(z) is different from {O}. (If, for some, Dy(1)=
={0} already, then 7,(I)is not defined.) We assume that the cones B; and the points
d; are in general position to ensure that D;(¢) is a halfline when #=1#,(I) and that
int D;(¢)#0 for t=1,(I).

As t decreases, condition (*) remains true because the cones D; get smaller and
smaller. But conditions (i, j; k, e)* will fail for each (i, ; k, €) for some # because
D (0)={0} for all I. The condition (i, j; k, €)* holds for all ¢=>1(i, j; k, ) and fails
for all t=t(i,j; k,e) where t(i,j; k, e) is uniquely determined. Write f, for the
largest (i, /; k, e), then f#,=1(i, J; k, e) for some (i, j; k, €). We may assume with-

Acta Mathematica Hungarica 56, 1990



140 1. BARANY

out loss of generality that /=1, j=2, k=3 and e(1,2)=1 and e=-—1. Seo con-
dition (1, 2; 3, —1)* fails, i.e.,

D, (fo) ﬂDz (to) nDa(to) =K

where K is a halfline of the form {ov: #=0} with v€ R®\ {0}. We know that D, ()N
ND,(t)NDy(t) is {O} for t<t, and has nonempty interior for t=>t,. We claim
now that for each j=1,2,...,n, vED;(t) or vE—Dy%,). This will contradict
condition ( ) and so prove the theorem.
The claim is evident when j=1, 2 and 3. We are going to prove it with notation
Jj=4. There are two cases to consider.

1st case. When the intersection of two of the cones D;(%,) (j=1, 2, 3) is equal
to K, D;(#,) "\ Dy(#,)=K, say. From condition (2,4; 1, e=—1) we get for =1, that

Dy (1)) Dy (1) N(e(2, 4) Dy (1)) = {O}.

But K=D,({;) "\ D,(t,) and so veKce(2,4)D,(z,) indeed.

2nd case. When the intersection of any two cones D;(Z,) have nonempty interior
(j=1, 2, 3). Then, by a wellknown theorem (see [3], for instance), there are vectors
a;€R® such that a;-x=0 forall x¢D;(4) (j=1,2,3) and O is in the convex hull
of a;, a, and a;. The case when some a; is parallel with some other g; has been dealt
with in the first case. So we assume that every a; is nonzero and 0=oa; -+ 0,, + 30,
and every o;>0. Then a;-x=0 (j=I,2,3) implies that x=fv for some real
number f. Moreover, a;-v=0 for j=1,2,3.

Assume now that +v¢ D,(7,). Then L, the line through v and —v can be sepa-
rated from D,{(7,), i.e., there exists a nonzero @,€R® such that a,-x<0 when
x€ Dy (1,)\{0} and a,- x=0 when x€ L. This shows that the vectors g; (i=1, 2, 3, 4)
are all orthogonal to v and so a,=p.a,+ f.a, for some real numbers f; and f,.
We show now that f§; and f3, are both different from zero. Assume that f,=0, say.
Then ¢, and a, are parallel and, then D,(7,) is separated either from D,(#,) or from
—D,(t,), contradicting condition (1,/;4, £1)*

Consider now condition (1, 2; 4, e)*: there exists an x¢€ R\ L such that

xE(—EDet(to))le(fo)sz(to)'

Then ~—edy-x<0, a,-x=0 and a,-x=0. This implies that §, and B, cannot be of
the same sign. We may assume that §,>0 and f,<0.

Suppose now that e(3, 4)=1 and consider condition (3, 4; 2, —1)*. In the same
way as above this implies the existence of an x€ R\ L with a3+ x=0, a,- x<0 and
a,-x=0. Now 4, is a positive linear combination of a, and a4, so a;-x<0. But
a;-x<0, ay- x=0, a;- x=0 is impossible. Assume now that e¢(3,4)=—1 and con-
sider condition (3,4;1, —1)*. Again, this implies the existence of an x€R*\L
with g, x=0, a,- x>0 and a; - x=0. Now a, is a positive linear combination of g,
and —a,, 50 dy» x<0. But a;-x=0, a,-x<0, a;- x=0 is impossible.

We mention finally that it is possible to extend these resulis to higher dimensional
spaces but, unfortunately, the conditions in the theorems become rather unintelligible.
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