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A Combinatorial Property of Points and Ellipsoids 

I. B~ir~iny* and D. G. Larman 

Department of Mathematics, University College London, 
Gower Street, London WC1E 6BT, England 

Abstract. For each d --- 1 there is a constant Ca > 0 such that any finite set X c R a 
contains a subset Y c X ,  IYI<-[~d(d+3)J +1 having the following property: if 
E = Y is an ellipsoid, then IE nXt-> c~JXl. 

1. Introduction and Results 

A nice and recent result of  Neumann-Lara and Urrutia [4] states that any finite 
point-set X in the plane contains two points such that every circle containing 
these two contains 1.5% of the points of X. This result has been extended to the 
d-dimensional Euclidean space R d in [1] in the following form: any finite set 
X c  R d contains a subset Y c  X, JYI -  < [½(d+3)J such that if B c  R d is a ball 
with y c  B, then IBnxI-calxJ, where ca is a constant depending on d only. 
It is also shown in [1] that the bound L½(d+3)J on the size of Y cannot be 
decreased. 

The aim of  this paper is to extend the above results to ellipsoids and, more 
generally, to quadrics in R d. We also hope that our proofs will give insight as to 
why these properties of  points and balls or points and ellipsoids hold. 

Before stating our theorems we fix the necessary notation and terminology. 
We assume that a coordinate system is given in R d so a point x c R  d can be 
written as x = ( x l ,  x 2 , . . . ,  Xd). Let P be a d x d symmetric matrix, p ~ R d and 
poe R. Then the quadric Q = Q ( P ,  p, po) is the set of  points x e R d satisfying 

x r P x  + p rx  + po <O. 
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An ellipsoid is a quadric with P positive definite. 
A key step in our proofs is another interpretation of quadrics. To define this 

consider first the map v: R a ~ R  " with m = ( d + l ) ( d + 2 ) / 2  that maps x =  
( x l , . . . ,  xa) to 

v(x)  = (1, x , , . . . ,  2 x~). (1) X d ,  X l  ~ X l X 2 ,  • • . , ) ¢ l X d ~  X 2 ~  X 2 X 3 s  • . . 

Then a quadric Q in R a can be written as 

Q =  {x e Rd: qrv(x)<- C}, (2) 

where q = (qo, q , , . . . ,  qa, q~l, q12, . . . ,  qld, q22, q23 . . . .  , qdd)E. R "  is suitably 
chosen. Clearly, q determines P, p, and Po and vice versa (up to a positive 
multiplier). 

Theorem 1. For d = l , 2 , . . ,  there is a constant Cd>O such that any finite set 
X c R d contains a subset y c  X, [YI < - [¼d(d+3)J + 1 having the property that i f  
a quadric Q contains Y, then [QnXl>-ca lXI .  

Theorem 2. There is an infinite set X c R  d such that for any Y c X ,  [Y[= 
[¼d(d+3)j  there is a quadric Q with Q n X = Y. 

This shows that in Theorem 1 the bound [~d(d+3)J  +1 on the size of Y is 
best possible. Let us have a more general look at the problem. Let f f  be a family 
of  sets in d-space and define t = t (~ )  as the smallest integer for which there 
exists a positive number c such that every finite set X c R d contains a subset 
y c  X, IY]- t, with the property that F e  ~ and y c  F imply IFnXl -< clX[. (If  
no such integer exists, then define t = oo.) Theorems 1 and 2 show that t ( ~ ) =  
[¼d(d + 3)J + 1 when ~: is the family of quadrics in R d. For the class of ellipsoids 
we have a weaker result: define k (2 )=  2, k (3 )=  4, and k ( d ) =  [~d(d + 1)+½j for 
d - 4 .  

Theorem 3. There is an infinite set X D R a such that for any y c X,  I YI = k( d) 
there is an ellipsoid E with E n X = Y. 

Denote the family of  all ellipsoids in R a by ~a. Then Theorems 1 and 3 show 
that t (~2 )=3 ,  t (~3 )=5 ,  and [~d(d+l )+½J < t ( ~ a )  < - [¼d(d+3)J +1.  The two 
authors disagree about which bound is nearer to t(~d).  

2. Proof of  Theorem 1 

We start with a lemma similar to the one in [4] and [1]. 

Lemma 4. I f  Z c R  d and [zl--m+l, then there is Y c Z ,  [Yl<_½(m+l) such 
that, for  any quadric Q with y c Q, the set Q n ( z \  Y)  is nonempty. 
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Proof. As Z contains m + 1 points, the vectors v(x)~ R m (x ~ Z) are linearly 
dependent. This can be written (by separating the positive and negative 
coet~cients) as 

Z a(x)v(x)= Z /3(x)v(x), 
x ~  Y x ~ Z \  Y 

a(x)>_O, /3(x)>_O, a ¢ O  or /3¢0.  
(3) 

We may and do name Y so as to satisfy t YI-< I z \  Y[. We now claim that Y has 
the property stated in the lemma. Clearly, ] YI <- ½(m + 1). Assume Q is a quadric 
containing Y, i.e., 

qrv(x)<-O for x e  Y 

with q coming from (2). Multiply the last inequality by a(x) and sum for x s  Y, 
then we get, using (3), 

0 > - ~, a (x)qrv(x)=q r Y. c~(x)v(x)=q r Y. /3(x)v(x) 
xr~ y x ~  Y x ~ Z \  Y 

= ~, ~(x)qrv(x). 
x~Z\ Y 

Assume now that Q n ( Z \ Y )  is empty, i.e., qrv(x)<-o for all x ~ Z \ Y .  Then 
/3(x) = 0  must hold for all x s  Z \Y.  The first component of v(x) is always 1 and 
comparing the first components in (3) we get that a ( x ) = 0  for all x~  Y, a 
contradiction. [] 

Now we turn to the proof  of  Theorem 1. We use the same counting argument 
as in [4] and [1]. Call a pair (Z, Y) good if it satisfies Lemma 4, that is, y c  Z c X, 
]Y]-< ~(m + 1), ]Z I = m + 1 and for any quadric Q with Y =  Q, the set Q n ( Z \  Y) 
is nonempty. Write Ixl--n and assume that n-> 2m. We count the number of  
good pairs in two ways: 

number of  good pairs = ~ 1 = ~ 
(Z, Y) good Z c X  ( Z ,  Y )  good 

]Zl=rn+l Y ~ Z  

(") 1 -> (4)  
m + l  

according to Lemma 4. 
Now for y c  X, ]Yl---½(m + 1) write t (Y )=min{ tQnXl :  Q is a quadric with 

Y c Q} and T(Y)  = Q n X with the quadric Q for which the minimum is attained. 
We have to prove that t( Y) >- CdlX[ for some Y so we define, further, t =  
max{t( Y): Y c X, ] Y] < ½(m + 1)}: 

(re+l)/2 

number of good pairs = Y, 1= ~ ~ 
(Z,Y) i=0 Y~XZ~Y,]Z]=m+I 
good IYl=i (Z,Y) good 
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In the last sum Z must contain a point from T( Y) \  Y for otherwise Q c~ ( Z \  Y) 
would be empty for the quadric Q with T(Y)  = Q c~ X. So we can extend Y to 
Z in at most 

( t ( y ) _ l y l ) ( n - I Y [ - 1 )  - i - 1  
m _ l y  I < - t ( n m _ i  ) 

ways. Then 

number  of  good pairs-< E t - m2 m+~ (5) 
i=o \ i /  \ m - i  - n  m + l  

Comparing (4) and (5) we get t >-m-12-tm+l)n. [] 

We can see that this proof  works in a more general setting. Instead of the 
quadrics, we take a family ~ of  sets in R d generated by a finite set o f  functions 
f t , . . .  ,fro : R d --> R with f ~ ( x ) -  1 (m need not be equal to ½(d + 2)(d + 1) here) 
in the following sense: any set F e ~: can be written as 

F = {  x~Ra:i=l~ aifi(x)<-O} 

for suitable reals o r1 , . . . ,  am. In this setting the following theorem holds. Any 
finite set X c  R d contains a subset y c  X, IYl---½(m+l)  such that F e  ~ and 
y c  F imply IX n CI---c(m)lX[ where c ( m ) =  m-~2 -c"+"  is a constant. In par- 
ticular, we can get the results of  [4] and [1] because Euclidean balls in R d can 
be generated by the functions f l (x)  = 1, f2(x)  = x l ,  f 3 ( x )=  x2, . . . , fd÷l(X) = Xd, 
fa+2(X) = X~ +" " " + X 2 . 

We mention here that for d = 2 Lemma 4 says that from seven points in the 
plane we can choose three such that any quadric containing these three contains 
a fourth. This can be strengthened for ellipsoids (we are not going to give the 
proof). 

Lemma 4'.  From six points in the plane we can always choose three so that any 
ellipsoid containing these three contains a fourth. 

3. The Example Proving Theorem 2 

We start with a lemma that follows from the well-known "Descartes '  Rule of  
Signs." Here we give a simple proof. 

Lemma 5 (see [3]). Let S c {0, 1 , . . .}  be a finite set and assume that the polynomial 
g( t )  = Y ~ s  gd i is not identically zero. Then g has at most ( IS I -1 )  positive roots, 
counted with multiplicities. 
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PrOOf. We use an induct ion argument  f rom [3]. When ISI = 1, the s ta tement  
is trivial. Assume it has been  proved for IS t<  s (s>-2)  and we are going to 
prove it for  ISI= s. Assume,  on the contrary,  that  g has s posit ive roots. Set 
j = rain{i: i ~ S}. Then the polynomia l  

h(t) = t-Jg(t)= ~ gy-J 
i t S  

has s posit ive roots, too. Now if t~ < t2 are two such roots, then, by Rolle 's  
theorem,  there is a root o f  h'  between t~ and t2. I f  to is a root  o f  h with multiplicity 
/~ (/~ > 1), then to is a root  o f  h '  with mult ipl ic i ty/~ - 1. So the polynomia l  

h ' ( t ) =  ~ ( i - j )g i t  i-j-1 
iES\{j} 

has s - 1  roots,  contradict ing the induction hypothesis .  []  

For  the construct ion we will need a set A c {0, 1, 2 , . . . }  with 0 e A, IAI = d + 1 
such that  for  a~, a2, a3, a4~ A 

al+a2=a3+a4 if and only if {al,a2}={a3, a4}. (6) 

Such a set exists, take A = { 0 ,  1, 3 , 9 , . . . ,  3d-l}, for instance. There are other 
examples  as well, see [2] for  one with A c {0, 1 , . . . ,  d3}. The proper ty  of  A we 
will need is that  the set A + A = {a + b: a ~ A, b ~ A} is o f  size m = ½(d + 1)(d + 2). 

Now let A = { a o = O < a ~ < . .  "<ad} be such a set and define (see [3]) the 
general ized m o m e n t  curve x( t )~  R d for t E R as 

x( t )=(ta ' , ta2, . . . , tau) .  

Let k = [¼d(d + 3)J. The set X = {x(t):  t > 0} will be the example  proving Theorem 
2. This is shown by 

Claim 6. For 0 < t~ < t2 < • • • < tk there is a quadric Q such that 

Q c~ X = {x(h)  . . . .  , X(tk)}. 

Proof. Define 

It is easy to see that  

B = { A + A  i f ( d 2  2)  i sodd ,  

( A + A ) \ { 0 }  otherwise.  

2 k + l = l B  I. (7) 
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Now we construct a polynomial f ( t ) =  ~ 8  f~t ~ with the condition that tj is a 
root of  multiplicity 2 o f f :  

Y. f~tj=0 for j = l , . . . , k ,  
i c B  

/f/tj-I = 0 for j = l  . . . . .  k. 
(8) 

This is a system of  linear homogeneous equations that has a solution because, 
by (7), the number  of  equations, 2k, is just one less than the number  of  unknowns, 
IBI. So l e t s  ( i e  B) be a nontrivial solution to (8). 

Now f ( t )  has at least 2k positive roots and, by Lemma 5, it has at most IBt- 1 
positive roots. So it has exactly k positive roots q , . . . ,  tk each with multiplicity 
2. Then multiplying with - 1  if necessary we assume that f ( t ) > - 0  for t---0. 

We look for the quadric Q in the form (2) 

Q = { x ~  Rd: q r v ( x )  --<0}, 

where q ~ R" .  We determine q by requiring that 

qTV(X(t))  - - f ( t ) .  

This is possible because the components of  v ( x ( t ) )  are of  the form t a with 
a e A + A c  B. The  quadric Q defined in this way has the required properties: 
the curve x ( t )  has a twofold touching with Q at t = ti . . . .  , tk from outside and 
is disjoint from Q for t > 0 ,  t # t ~  ( i = 1  . . . .  ,k ) .  [] 

Combining the proofs of  Theorems I and 2 we can prove the following theorem. 
Let ~d  denote the family of  all sets F c  R d that can be written as 

F = ( x ~  Rd: f(x)<--O}, 

where f is an at most r-degree polynomial of  the variables x~ . . . .  , Xd. 

Theorem. +']. L't r /  

4. The Example Proving Theorem 3 

This is similar to the previous example. We start with the case d > 3 and set 
k = k ( d )  = [~d(d + 1)+½J. Define 

x (  t ) = (t, £ ,  t ~, t~ ,  . . . , t~ - ' ) ,  
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so A = {0, 2 °, 2 t , . . . ,  2 a-~} and  this t ime condi t ion (6) does not hold. Still, A + A = 
{0, 2 °, 2 ~ , . . . ,  2 d , . . . ,  2 ~ + 2 J , . . . }  and only the powers  2 ~ (i = 1, 2 . . . . .  d - 1) have 
double  representa t ion  in A + A :  2 J = 0 + 2 ~ = 2 i - ~ + 2  ~-~. Clearly,  IA+AI = 
½ d ( d + l ) + 2 .  Set, again,  B = A + A  if  ½ d ( d + l )  is odd  and B = ( A + A ) \ { O }  
otherwise.  Then  

2k+l=lBI. 

Claim 7. For 0 < t 1 < t 2 < .  • • < tk there is an ellipsoid E with 

E c~ {x(t) :  t > 0} = {x(t ,)  . . . .  , x(tk)}. 

Proof. Cons t ruc t  a po lynomia l  f ( t ) = Y , ~ B f d  ~ having double  zeros at t =  
t ~ , . . . ,  tk. This can be done  in the same way as before. Moreover ,  again by 
L e m m a  5, f ( t )  has no other  positive root and  we may  assume that  f(t)>-O for  
t - 0. Then the leading coefficient o f f  is positive. By Lemma  5, again, n o r  (i ~ B) 
equals zero, so the leading coefficient of  f is 

f2~ >O. 

This t ime we look for  the el l ipsoid E in the fo rm 

x T p x  w p T X + p o  <--O 

with the requi rement  that  

x r ( t ) P x ( t )  + P rX(t) + Po =-- f ( t ) .  

From here we get all the off-diagonal entries o f  P and  Pdd and p~, P3, P s , . - . ,  
and  Po explicitly, in part icular ,  

Pdd =f2 '~ > 0. (9) 

Further ,  we get d - 1 equat ions for  the remainder  of  the unknowns:  

p, +p,+~ =f2 ' ,  i = 1, 2 . . . .  , d - 1. (10) 

We use the f reedom for the choice  of  P~i to ensure  that  P is posit ive definite. All 
we need is the positivity o f  the de terminants  

iPd_l.d_l Pd_Ld ] Pd-2.d-2 
Pd-l.d-2 

Pdd, [ Pd.d-! Pdd I' Pd.d-2 

Pd-2,d-I Pd--2,d ] 
Pd-l ,d-I  Pd-l,d], . . . .  

Pd, d-I Pdd ] 
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These are the main minors  o f  P starting f rom the lower-right comer .  We proved 
in (9) that  Pda > 0. Then,  by  an easy inductive construction,  we find Pd-Ld-I, 
Pa--2.d-2,'. •, PH SO that  these determinants  are all positive. The values Pi+t can 
be recovered from (10). 

Thus the quadric  x rPx + p rx + P0 -< 0 defines an ellipsoid E and we finish the 
p r o o f  o f  the claim the same way as before. [ ]  

We are left with the cases d = 2, 3. The former is trivial so consider d = 3. The 
set X will be {x(t):  I t -  11 < n} with ~7 > 0 small where 

x ( t ) = ( t  2, t', ts)~ R 3. 

Here  A = {0, 2, 4, 5} and B = A + A  = {0, 2, 4, 5, 6, 7, 8, 9, 10}. First we find a poly- 
nomial  f ( t ) = Y . ~ a  fit i that  has a zero o f  multiplicity 8 at t = 1: 

f ( t )  = (t - 1)S(go+gd + g2t2). 

A suitable solution is go = 1, g~ = 8, g2 = 21. This defines the coefficients f (i ~ B) 
explicitly. We find a quadr ic  Q = Q(P, p, po) through the condi t ion 

x r  ( t)Px( t) + prx(  t) + po=- f (  t). 

This gives 

P = 525 525 - 8 0 / ,  pT = P2 , P0 = 1 

--480 --80 21 J [_ --627.] 

with the condi t ion p i t + P 2  = 210. We choose  Pll = 18 688 (or anything larger), 
then p2 = - 1 8  478, and  P is positive definite because its main minors are all 
positive. Then  the quadric  Q(P,p, po) is an ellipsoid E that has an eightfold 
touching  with the curve x(t)  at t = 1 f rom outside. 

Since the numbers  and results are stable under  a small perturbation,  there 
exists r / > 0  such that  if h ,  12, t3, t4 are chosen within 77 o f  t =  1, then there is 
an  ellipsoid E that  has a twofold touching  with x(t) at t = t ,  i = 1 , 2 , 3 , 4 .  
Moreover ,  it follows that  

E c~ {x(t): I t -  11 < ~7) = {x(ti): i = 1, 2, 3, 4}. []  
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