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Abstract. For each n=1 there is ¢, > 0 such that for any finite set X cR" there is
Ac X, |A|=1(n+3), having the following property: if B2 A is an n-ball, then
|BA X|=c,|X|. This generalizes a theorem of Neumann-Lara and Urrutia which
states that ¢, = .

A theorem of Neumann-Lara and Urrutia [3] is generalized from the plane to
arbitrary n-dimensional Euclidean space R", solving Problem 2 of [3]. By an
n-ball we mean a set of the form

{(xl’ X25eevs x")ER": (xl_al)2+(x2~az)2+' . .+(X,, —an)zs r},
where (ay, d5,...,a,)eR” and r>0.

Theorem 1. For each n =1 there is ¢, > 0 such that for any finite set X < R" there
is A< X, |A|=[¥(n+3)], having the following property: if B2 A is an n-ball, then
[BAX|=zc,lX]

The bound [$(n+3)] in the theorem will be shown in Theorem 6 to be optimal
in quite a strong way. For now, let X be any finite set of points on the moment
curve a(t)=(t, ¢, 1*,..., "), | X|=m=n+1. Then X is the set of vertices of a
convex polyhedron (known as the cyclic n-polytope with m vertices) and every
[n/2]-element subset A < X is the set of vertices of one of its faces. (See Sections
4.7 and 7.4 of [2].) Clearly then, for each such A there is an n-ball B such that
BrnX =A.

The following notation will be used. For a set S, 2,(S) is the set of n-element
subsets of S. If AcR", then conv A is the convex hulil of A,
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Lemma 2. Let Ye P, 4(R"). Then there is Ac Y, |A|=[3(n+3)], such that for
any n-ball B2 A, (Y\AYn B# 2.

Proof. There exist disjoint A,, A,< Y such that |A,|=]|A,|=[}(n+3)] and conv
A;nconv A, # (J. The argument for obtaining A, and A, is essentially in [1]
and [4]. Let Y ={y,, ¥2, ..., Vuss}, and then let Y={F5,, #», ..., Pz} = R? be its
Gale transform. (Here we are assuming, without loss of generality, that R" is the
affine span of Y.) For some y,€ Y the line I in R® through y, and the origin
divides R’ into two open half-planes Py, =[3(n+3)].
Let C,, C,, Z< Y be such that C,=P,nY, C,= PamY, and Z=1nY. By
Lemma 1 of [4], conv (C,u Z,)nconv(C,u Z,) # J whenever Z,u Z,=Z. But
this implies conv C,nconv C,# (J. So just let A;, A,< Y be disjoint sets such
that C,c A,, C,< A,, and |A,|=|A,|=[3(n+3)].

We now claim that either A= A, works or A= A, works.

In order to derive a contradiction, let a e conv A;nconv A,, and let B, B,
be n-balls for which A, < B,, A,< B,, and Bin A, =0 = B,n A,. Clearly, B,
B, # Jsince a € B, n B,,and also B,\ B, # & # B,\ B, . Therefore, there is a unique
hyperplane h such that hnaB,=hn9B,=0B, 3B, (where 9B, denotes the
boundary of B;). Let H,, H, be the closed half-spaces such that H,~ H,=h,
B\B,< H,, and B,\B,c H,. Then ac H,~ H,=h, so there must be some be
A, h. But then be B,, which is a contradiction. a

A simple counting argument allows us to deduce Theorem 1 from Lemma 2.
This is abstracted in the next lemma.

Lemma 3. Let S be a set, B a collection of subsets of S, and r > m positive integers.
Suppose that for each Y € P.(S) there is Ae P, (Y) such that whenever A< Be %,
then (YNA)n B# . Let c=(m!(r—m-—1)")/rl. Then for any finite X < S with
|X|=r there is Ae P,,(X) such that whenever A< B e 9, it follows that |B n X|>
clx).

Proof. let X e P(S) where t=r There are sets Ae?,(X) and R< P,(X)
t t
such that |%|= (r)/(m) and for each Ye %, A is as in the hypothesis of the

lemma. We claim that this is the desired A.
Suppose that A< Be B and |B X|= k. The number of sets Y e P,(X) for
t—m-—1
which Ac Y and (Y\A)n B# & is clearly at most (k—m)(rm:wl), so this
is an upper bound for |R|. Therefore, (k~m)= c(1—m), so k> ct. [

Lemmas 2 and 3 show that ¢, =35, improving the constant in [3]. Refinements
of this proof show that ¢,> 5.

The proof of Lemma 3 shows that its conclusion is true on the average, in the
sense that as A ranges over #,(X), the average value of f(A)=
min {|B~ X|: A< Be B} is greater than c|X]|.

Theorem 1 has several generalizations. We mention just one of them.
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Theoremd. Foreachm=[3(n+3)] thereisc,_,, > 0 such that for any finite X < R",
|X|=m, there is Ae P,(X) having the following property: if B is an n-ball and
|An Bl=[3(n+3)], then |Bn X|zc, .| X|

This theorem is a consequence of Lemma 5 below (which is the analogue of
Lemma 2} and a version of Lemma 3 whose statement and proof can easily be
supplied.

Let R, (1) be the Ramsey number defined as follows: R,{t) is the least r such
that whenever |Y|=r and @,(Y)= P, u P,, then there is We ?,(Y) such that
either P(W)c P, or P(W)c P,.

Lemma 5. Let m=s=[¥n+3)], let t>m/c, be an integer (c, is from Theorem
1), and let r = R,(t). Suppose Y € ,(R"). Then there is Ac P,,(Y) such that if B
is an n-ball and |B~ A|=s, then (Y\A)n B # .

Proof. Let
P={ZecP,(Y): for each n-ball B2 Z, [Bn Y|=c,t}.

By Ramsey’s theorem thereis We 2,(Y)suchthat A (W)c Por P(W)nP=(.
By Theorem 1, 2 (W) P (J; hence, #,(W)< P. Any Ae 2,,(W) will do, for
|Bn A|=s implies |[B Y|z c,t>m=|A| O

The next theorem shows that the bound on the dimension in Theorem 1 (as
well as Lemma 2 and Theorem 4) is sharp.

Theorem 6. There is an infinite subser X <R” such that whenever A< X and
|[Al <[Yn+3)], then there is some n-ball B for which A= B~ X.

Proof. Clearly we can assume that n=3 and n is odd, so let n =2k —1 where
k=2, Consider the moment curve a(t)=(f, >, £*,..., t"). We will obtain X as
{a(1):0< 1< e} for some appropriately small &> 0.

Suppose e>t == -=1>0. We can find parameters a,,, d,_;,
Q3,_3,...,4a;, a such that

(t—a)+(Ff—a)+...+("—a,) =a,+[(t—1)(t—0).. (1 — 1) p(1),

where p(t) = .1+ @uial + @pist’+- - -+ ar,t? 2. These parameters are uniquely
determined, and can be found in the order listed, a; being determined by the
coefficients of ¢/ in the above equation. It is easy to see that:

a,=1+0(¢) if j=2k and j is even;

a;=0+0(¢) if j is odd;

=3+ 0(e) if 1=j=2k-1andj is even;
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and, finally,

k-1
a0=—T+ Ofe).

Now just pick £ >0 small enough so that a,> 0 and p(t) >0 whenever 0<t<e.
Thenife>t, == -=1,>0, let B be the n-ball with center (a,,a,, -, a,)
and radius va,. Clearly, X n B={a(t,), a(ty), ..., a(t)}. O
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Note added in proof. Ryan Hayward has shown that C,= 2.



