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Abstract. For each n >- 1 there is c,, > 0 such that for any finite set X c_ R" there is 
At_X,  ]Al<_½(n+3), having the following property: if B ~ A  is an n-ball, then 
I B n x l - >  c, IXl. This generalizes a theorem of Neumann-Lara and Urrutia which 
states that c2 -> ~. 

A theorem of  Neumann-Lara  and Urrutia [3] is generalized from the plane to 
arbitrary n-dimensional  Euclidean space R", solving Problem 2 of  [3]. By an 
n-ball we mean a set o f  the form 

{(x~, x 2 , . . . ,  x , ) ~ N ~ :  ( x ~ - a l ) 2 + ( x 2 - a 2 ) 2 + . . . + ( x , , - a , , )  2<- r}, 

where (a l ,  a 2 , . . . , a ~ ) ~ R "  and r > 0 .  

Theorem 1. For each n >- 1 there is c. > 0 such that for  any finite set X c R" there 
is A c_ X,  ]A I <~ [~(n + 3) ], having the following property: i f  B D A is an n-ball, then 
t  xl>-c.txl. 

The bound  [~(n + 3 ) ]  in the theorem will be shown in Theorem 6 to be optimal 
in quite a strong way. For  now, let X be any finite set o f  points on the moment 
curve a ( t )  = (t, t 2, t 3 , . . . ,  tn), IX I = m -> n +  1. Then X is the set o f  vertices o f  a 
convex po lyhedron  (known as the cyclic n-polytope with m vertices) and every 
[n /2 ] -e lement  subset A c_ X is the set of  vertices of  one of  its faces. (See Sections 
4.7 and 7.4 of  [2].) Clearly then, for each such A there is an n-ball B such that 
B c ~ X = A .  

The following notat ion will be used. For a set S, ~ , ( S )  is the set o f  n-element 
subsets of  S. If  A c_ W', then cony A is the convex hull o f  A. 
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L e m m a  2. Let Y e ~,+3(~") .  Then there is A ~_ Y, I AI = [½(n + 3)], such that for 
any n-ball B ~_ A, ( Y \  A ) c~ B ~ O. 

Proof There exist disjoint A~, A2--. Y such that IA,I = IA2I = [~(n + 3 ) ]  and conv 
A~ n conv A 2 ~  Q. The argument  for obtaining A~ and A2 is essentially in [1] 
and [4]. Let Y = {y~, Y 2 , . . . ,  Y.+3}, and then let 17 = {fit, )72 . . . .  , .9,+3} c R 2 be its 
Gale transform. (Here we are assuming, without loss of  generality, that R" is the 
affine span of  Y.) For some y , e  Y the line I in R 2 through 9, and the origin 
divides IR 2 into two open half-planes P~, P2 such that IP, n 71, IP2 n ? 1 ~  [~(n + 3)]. 
Let C~, Cz, Z_c y be such that C ~ = P ~ n Y ,  C 2 = ~ ' ,  and Z = l c ~ Y .  By 
Lemma 1 o f  [4], cony (C~ w Z~) n conv(C2 w Z2) ~ Q whenever Z~ w Z_, = Z. But 
this implies conv C~ c~ conv C2 ~ Q. So just let A~, A2~_ Y be disjoint sets such 
that C~_A~,  C:c_A2, and Ia,l=lA2l=[½(n+3)]. 

We now claim that either A = A~ works or  A = A2 works. 
In order  to derive a contradict ion,  let a e conv A~ ~ conv A2, and let B~, B~ 

be n-balls for which A ~ c  B~, A2_c B2, and B ~ n A 2 = ~ =  B2c~A~, Clearly, B~c~ 
B2 ¢ ~ since a e B~ c~ B2, and also B~\B~ ~ (~ ~ B2\B~. Therefore,  there is a unique 
hyperplane h such that h c~aB~= h nOBz=OB~c~OB2 (where OB, denotes the 
boundary  o f  B~). Let H~, /-/2 be the closed half-spaces such that H~ n H2 = h, 
B~\B2~_ H~, and B~\B~ ~_ H~. Then a e H~ n Hz = h, so there must be some b 
A~ c~ h. But then b e Bz, which is a contradict ion.  []  

A simple count ing argument  allows us to deduce Theorem 1 from Lemma 2. 
This is abstracted in the next iemma. 

Lemma 3. Let S be a set, ~ a collection of  subsets of S, and r > m positive integers. 
Suppose that for each Y e °~?r( S) there is A e ~, , (  Y)  such that whenever A c_ B c ~, 
then ( Y \ A ) n  B # (~. Let c = ( m ! ( r -  m -  l )!)/ r!. Then for any finite X c_ S with 
Ix[ >- r there is A c ~m( X ) such that whenever A c B c ~,  it follows that IB n X I > 
clXl ,  

Proof Let X e ~ , ( S )  where t>-r. There are sets A e ~ m ( X )  and ~ c _ ~ ( X )  

( t ) / ( t )  and for each Y E ~ ,  A is as in the hypothesis  o f  the such that t~1-> r m 

lemma. We claim that this is the desired A. 
Suppose that A c  B e  ~ and InnxI = k. The number  o f  sets Y~  3~r(X) for 

( Y \A)c~  B C fD is clearly at most (k m ) (  t - m -  l ) which A_c Y and - , so this 
\ r - m -  1]  

is an upper  bound  for I 1, Therefore,  (k - rn) >- c(t - m), so k > ct. [] 

Lemmas 2 and 3 show that c2-> ~ ,  improving the constant  in [3]. Refinements 
o f  this p roof  show that  c2 > ~. 

The p roo f  o f  Lemma 3 shows that its conclusion is true on the average, in the 
sense that as A ranges over ~m(X) ,  the average value o f  f ( A ) =  
min {[B ~ X[: A _c B e ~}  is greater than c[X I. 

Theorem 1 has several generalizations. We mention just one o f  them. 
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Theorem 4. For each m >- [1(n + 3)] there is c,. ,, > 0 such that for  anyfini te  X c R", 
IX1 > - m, there is A ~ ~ , , ( X )  having the following property: i f  B is an n-ball and 
la c~, BI >- [½( n + 3 ) ], then I B c~ X j  -> c, . , , tX t. 

This theorem is a consequence  o f  Lemma 5 below (which is the analogue of  
Lemma 2) and a version o f  Lemma 3 whose statement and p roo f  can easily be 
supplied. 

Let R~(t) be the Ramsey number  defined as follows: R~(t) is the least r such 
that whenever  I Y t _  > r and ~P,(Y) = P~ w P:, then there is W~ ~ , ( Y )  such that 
either ~ ( W ) c _  ,ol or ~ ( W ) ~  P~. 

Lemma 5. Let m --- s = [½(n + 3)], let t > m / cn be an integer ( c, is f rom Theorem 
1), and let r= R~( t). Suppose Y c ?P~(~"). Then there is A ~ ~m( Y )  such that i f  B 
is an n-ball and IB ~ AI >- s, then ( Y \ A )  ~ B ~ Q. 

Proof. Let 

P = { Z c ~ (  Y):  for each n-ball BD_Z, IBc~ YJ>-c,t}. 

By Ramsey's  theorem there is W c ??, (Y)  such that ~ ,  (W)  _ P or ~s (W)  c~ P = O. 
By Theorem 1, ~ , ( W )  n P # Q;  hence, g?~(W) _ 19 Any A c Y'm(W) will do, for 
IB c~ al  >- s implies [ B ~  YJ >- c,,t > m = lAJ. [] 

The next theorem shows that the bound  on the dimension in Theorem 1 (as 
well as Lemma 2 and Theorem 4) is sharp. 

Theorem 6. There is an infinite subset X ~ I~" such that whenever A c X and 
1,41 < [~(n +3)], then there is some n-ball B for  which A = B c~ X. 

Proof Clearly we can assume that n -> 3 and n is odd,  so let n = 2 k -  ! where 
k->2. Cons ider  the moment  curve a ( t ) =  (t, t 2, t ~ . . . . .  t"). We will obtain X as 
{a(t) :  0 < t < e} for some appropria te ly  small e > 0. 

Suppose e > t ~ - > - t 2 - > . . - _ > t k > 0 .  We can find parameters  a2,, a2,-~, 
a2, , -2 , . . . ,  a~, ao such that 

( t -  a , )2+( t  2 -  a 2 ) 2 + . . . +  (t" - a , )  2= a o + [ ( t -  t , ) ( t -  t 2 ) . . . ( t -  tk)]2p(t), 

where p(  t ) = a,+ l + a.+ 2t + an+3 t2 +" " " +  azn t2k ' 2. These parameters  are uniquely 
determined, and can be found  in the order  listed, a i being determined by the 
coefficients o f  t j in the above equation, It is easy to see that: 

a j = l + O ( e )  if j - > 2 k a n d j i s e v e n ;  

a j = O + O ( e )  i f j  is odd;  

a s = ½ + O ( e )  if l < - j < - 2 k - 1  and j is even; 
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a n d ,  f ina l ly ,  

k - 1  
ao= +O(e). 

4 

N o w  j u s t  p i c k  e > 0 s m a l l  e n o u g h  so  t h a t  a o >  0 a n d  p ( t )  > 0 w h e n e v e r  0 < t < e. 

T h e n  i f  e > t~ >- t 2 -  > .  • • -> tk > 0, let  B b e  t h e  n - b a l l  w i t h  c e n t e r  (a~,  a2,  • • • ,  an)  

a n d  r a d i u s  V~o.  C l e a r l y ,  X c~ B = { a ( t t ) ,  c t ( t 2 ) , . . . ,  a ( / k )  }, D 
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C > ~  s Note  added in proof. R y a n  H a y w a r d  h a s  s h o w n  t h a t  2 -  84" 


