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1. Introduction 

Let K c R d be a convex body (a convex compact set with noncmpty interior) and 
choose points xl ..... x.~K randomly, independently and according to the uniform 
distribution on K. Then K. =conv{xt,...,x.} is a random polytope. It is clear 
that, with high probability, K ,  gets nearer and nearer to K as n tends to infinity. 
There has been a lot of research to determine how well K.  approximates K in 
various measures of approximation. These measures usually are the expectation 
of 9(K) - tp(K.) where tp is some functional defined on the set of convex bodies, 
for instance volume, surface area, mean width, etc. Most of the research 
concentrated on the case d = 2 and on smooth convex bodies and polytopes. 

Now let e > 0 and define 

K [e] = {x ~K: vol (K ta/4) _>_ ~ for every halfspace H with x ell}. 

This is a convex body again if e is small enough. The main result of [BL] says 
that K.  is close to K[1/n] in the following sense: 

EvoI(K\K,),- ,vol(K\KI~]) (1.1) 

where E denotes expectation and the notation f(n),,,g(n) means that 
f(n)/o(n) > 0 and lirn o(n)/f(n) > 0. That is. there are constants ci and c2 such 

that for n large enough 

c lvo l (K\KI~])<Evol (K\K. )<c2vol (K\K[~]) .  

This result shows that K.  and K [  1/n] approximate K in the same order and 
suggests that K\K. is close to K\K[1/n] in some strong sense. 

The aim of this paper is to further exploit the connection between K\K, and 
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K\K[1/n].  The main results are: (1) the expectation of V~(K)- V~(K,) is about 
V~(K)- V~(K [ l /n])  where V~ denotes the s-th intrinsic volume, s = 1, 2 . . . . .  d, (2) 
the expectation of the number of s-dimensional faces of K,  is about 
nvol(K\K[1/n]) /volK ( s=0 ,  1 . . . .  , d - 1 ) ,  (3) for a smooth convex body K the 
expectation of the Haussdorff distance between K and K,  is about (log n/n) 2roe+ ~) 

The paper is organized as follows. The second section introduces the necessary 
notation and terminology. The third contains the results. The basic auxiliary 
lemmata are given in the fourth section. Their proofs are postposed to the last 
section. The proofs of the results are in Sects. 5, 6, 7 and 8. 

2. Notat ion 

In this section we introduce some basic notation. 
The set of all convex bodies in R d is denoted by 3( ~. YF~ = {K e YFa: vol K = 1 }. 

:yfa(r, R) consists of all Keo~ff J that contain a ball of radius r and are contained in 
a ball of radius R. We write 3ff~(r, R )=  o~ff~ n Yld(r, R). 

For a set X c R a cony X, aff X denotes its convex and affine hull. dist (X, Y) 
is the distance between X, Y c R d, and X + Y is their Minkowski sum. The 
Euclidean distance of two points x, yeR a is denoted by I x - y[, their scalar product 
by x'y.  B a stands for the Euclidean unit ball of R d, S d- 1 is its boundary. We write 
~od = vol B a. 

For  a set K e AtrJ bd K and int K denotes its boundary and interior, h(a) = hr(a ) 
is its support function, i.e., h(a)=sup{a.x:xeK}.  For aeS J-l ,  H(a,t) is the 
halfspacc {xERd:a'x >= h(a) - t}. So H(a, t) = HK(a, t) depends on the underlying 
convex body KEA e'd but we will usually suppress this dependence. The bounding 
hyperplanc of H(a, t) is denoted by H(a = t). 

For Ke3F d, K[e] was defined in the previous section. We let K(~) to be the 
closure of K\K[~]:  

K(e) = {x~K:voI(Kc~H) < ~ for some halfspace n with xeH}  

K(~) is a kind of "inner parallel layer" to K. 
When P is a polytope f,(P) will denote the number of s-dimensional faces of 

P,s = 0, 1 . . . . .  For K~:,~ rd Vs(K) is the s-th intrinsic volume of K(s = 1,2 . . . . .  d). 
For the definition see Sect. 3 or (6.2). We write E(K, s, n) as a shorthand for 
E(Vs(K ) - Vs(K,)) when K~o~ rd. 

In what follows c~, c2 . . . .  cl(d),..., ct(K) . . . . .  const (d,r, R) will denote various 
constants. The reader is warned that the constants ci(d) appearing in different 
sections do not coincide. 

3. Results 

We first give the results concerning the expected number of s-faces of the polytope 
K.. As a non-degenerate affine transformation does not influence f~(K.) we may 
consider K r  An identity due to Efron [Ef] says that for K r  d 

E fotr~) = nE vol (K\Kn_ 1). (3.1) 
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Thus  by (1.1) we have 

) 
We extend this to every f~, s = 0, 1,. . .  , d -  1: 

Theorem 1. Assume K t . , ~  and s t{0 ,1  . . . . .  d - 1}. Then 

E f ,(K.) ,,, n vol K ( ! ) .  (3.2) 

The implied constants depend only on d. 

This theorem says that  Efs(K.) is essentially the same for all s = 0, 1 . . . . .  d - 1. 
This  is not  so much  surprising when one thinks of  the bounda ry  of K .  as locally 
R d- 1 and the faces of  K .  as a " r a n d o m  tr iangulat ion" on a piece of  R d- 1. In a 
r a n d o m  tr iangulat ion of  R d- 1 one would expect the average degree bounded  by 
a constant  depending only on d, and so the average number  of  s-faces equal  to 
the average number  of  vertices (up to a constant  multiplier). 

As vol K(1/n) is known for smooth  convex bodies and polytopes  (see [BL]  and 
also [L ] )  Theo rem 1 has the following immedia te  consequences. 

Corollary 1. For a polytope P t ~  d and s~{O, 1 . . . . .  d -  1} 

Ef+(P,) --. (log n) a -  1. (3.3) 

Corollary 2. For a c~2 convex body K~:r J and s t{0 ,  1 . . . . .  d -  1} 

Ef~(K.) ,,~ n ca- 1~/Cd+ 1~. (3.4) 

The case s = d - I of Corollary 2 was proved by Wieacker [W] in asymptotic 
form, i.e., 

E f~(K,) ~. c(K)n (d- l )/(d + 1) 

with explicitly given constant  c(K) where the nota t ion  f ( n ) ~  o(n) means  that  
lira f(n)/g(n) = 1. The  case s = d - 1 of  Corol la ry  1 was proved  by Dwyer  [ D w ]  
and  by van Wel (see IS 2]) independently,  when the poly tope  is simple. 

The  next corol lary follows f rom Theorem 1 via Theorem 5 of [BL]:  

Corollary 3. l f K t o f ' ~ ,  then for all st{O, 1 . . . . .  d - l} 

cx (d)0og n) a-  1 < Ef,(K,)  < c2(d)n to- x)/cn + 1). (3.5) 

Moreover, for any functions s and co(n)~O and for most (in the Baire 
cateoory sense)convex bodies K t:,~r~ 

D(n)(log n) d-1 > EL(K. )  (3.6) 

for infinitely many n and 
co(n)ntd- l)/(d + 1) < Ef~(K.) (3.7) 

for infinitely many n. 
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In other words inequality (3.5) in best possible apart from the constants cl(d) 
and %(d). 

Now we consider the intrinsic volume, V,(K), of a convex body KeY~ "d which is 
defined (see l-Me; BF]) for s=O, 1 . . . . .  d as 

/ . J \  

~) 

where V(K . . . . .  K, B a . . . . .  J~) is the mixed volume of K taken s times and B a taken 
d - s  times. It is well-known [Mc; BF] that Va(K)=volK,  Va_t(K) equals the 
surface area of K and VI(K) is a constant multiple of the mean width of K. It 
turns out that the intrinsic volume of K,  is close to that of K[1/n]. More precisely 
we have 

T l ~ r e m  Z Assume K~YFd(r,R) and sr . . . . .  d}. Then 

E(V , (K) -V , (K , ) )  ~ V,(K)- V , ( K [ ~ ] ) .  (3.8) 

with the implied constants dependino only on d, r, R. 

We will use the notation E(K, s, n) = E(V,(K) - V,(K,~) and V~(K(1]n)) = V,(K) - 
V,(K[1/n]). Using Theorem 2 one can compute E(K, s,n) for different classes of 
convex bodies, namely, for smooth convex bodies and for polytopes. 

Tlumrem 3. I f  K~OF a is a ~r convex body with positive Gaussian curvature, then 
for s = 1,2 . . . .  d 

E(K, s, n) ~ n-  21(d + 1).. (3.9) 

Theorem 4. I f  P~oF d is a polytope, then for s = 1, 2 . . . .  , d -  1, 

E(P, s, n) ~- n -  lt(~-~+ z) (3.10) 

In the last two theorems the implied constants depend on the convex body 
(K and P) itself. 

In the case when s = d (i.e, when V, is the usual volume) E(P, d, n) .-. n - 1 (log n) a- 1 

according to Theorems 2 and 3 of [BL], 
In some special cases Theorems 3 and 4 have been proved earlier and in 

stronger form. For instance, R6nyi and Sulanke [RS] show that for a smooth 
enough convex body K e 3 f  "2 

E(K, 1,n) ~ c(K)n -2/3 

with explicitly given c(K). This was later extended to d > 2 by Schneider and 
Wicaeker [SW]: 

E(K, 1, n) ~. c(K)n- z/l,+ 1) 

with explicitly given c(K), again. For polytopes Buchta [Bu 1] (d = 2) and Schneider 
IS'l]  (d > 2) proved 

E(P, 1, n) ~ c(e)n-".  
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Schneider IS 1] showed further that for all KE3f "d 

c i (K)n- :~to + 1~ < E(K, 1, n) < cz(K )n- lid (3.11) 

and that (3.11) is best possible apart from the constants cl(K) and c:(K). It would 
be interesting to have the analogous result for E(K, s, n). One would expect the 
extreme classes to be the polytopes and smooth convex bodies. Thus the obvious 

d + l  
guess would be this: for 1 < s < - -  and K63r ~d 

2 

cl (IOn-2/~d + 1) < E(K, s, n) < c2(K)n-1/(~-, + 1), 

d + l  
and for 

2 
< s < d - l a n d K e ~  a 

cl (K)n- 1/td-~+ 1~ < E(K, s, n) < c2(K)n- 2/td+ 1). 

If true this would imply, for instance, that for all K e ~  3 E(K,2,n), the surface 
area of K minus the expectation of the surface area of K,  is about n-  1/2. I find 
this quite remarkable. Of course this is equivalent to 

V2(K ) --  v 2 ( g [ e ] ) ' "  e 1t2 for all g e ~ l  "3. 

For other results and questions on random polytopes see the excellent survey 
papers by Schneider [S 2] and Buchta CBu 2]. 

The proof of Theorem 4 is not quite simple and we will need a strengthening 
of Theorem 3 of [BL] which we no describe. Let P60f "a be a polytope and define 
re(P) as the minimal number of simplices needed to triangulate P. 

d-d 
Theorem 5. I f  P~a~i ~d is a polytope and 0 < ~ < vol P, then 

4 

vol K(e) < c(d)m(P)e log 

where the constant c(cO depends only on d. 

(3.12) 

Our next result is about the Haussdorff distance of K and K.. This is defined 
for K, L e X  a as 

6(K, L) = inf {h:K c L + h/P, L c K + hBd}. 

It is almost trivial that EJ(P, P , ) ~  n-lid for a polytope P~3f  "d. 

Theorem 6. Assume K~og rd is a c~z convex body with positive Gaussian curvature. 
Then 

E~(K,K,)..~ (17---~n) 2/~d+ I' (3.1.3) 

with the implied constants depending on K. 
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It  is easy to see that 6(K, K I ~ [ )  ~ e TM + 1~ for smooth enough convex bodies. So 
the similarity between K ,  and K[1/n] seems to break down here. This can be 
explained in the following way. K ,  is close to K[1/n], but K,  is random while 
K[1/n] is n o t - - K ,  is a "random perturbation" of K[l/n].  This occurs at the 
boundary of K[1/n] which is at distance n-2/r 1) from that of K. The random 
fluctuation of the boundary of K ,  around bd K[1/n] is what makes this distance 
larger by a factor of (log n) 2/td+ 1). 

4. Definitions and auxiliary lemmata 

Let Ke~[  '~d. A cap C of K is a set C = K n H  where H is a closed halfspace with 
K n H + ~ .  Then H =  {xeRd:a .x>~}  for some aeS a-1 and ~eR 1. Here a'x 
denotes the scalar product of a and x. It  will be convenient to write H = H(a, t) 
with t = h(a) - ~ where 

h(a) = max {a. x : x e K }  

is the support function of K (see [BF]). With this notation t is the width of the 
cap C in direction a which we call the depth of the cap. We will also write H(a = t) 
for the bounding hyperplane of H(a, t). 

For  a cap C = K n H ( a ,  t) a point t eC  is called the centre of C if a.z = h(a). A 
cap may have several centres but  we think of a cap as having a fixed centre, say 
the centre of gravity ofaU centres. For  a cap C with centre z define (when 2 > 0) 

C a = z + 2(C - z). (4.1) 

Obviously C = C ~. It  is dea r  that for 2 > 1 

C a D K n H(a, 20. (4.2) 

Now we define a function v : K ~ R  1 by 

v(x) = inf {vol (K n H): xeH,  H is a halfspace}. 

Clearly, the set K(v >-~)={xeK:v(x)>~}  coincides with K[e].  Also, K(~)= 
/ q v  __< ~) = {xe/~: v(x) __< ~}. 

When x e K ,  a minimal cap of K at x is defined as a cap C(x) with xeC(x)  and 
vol C(x) = v(x). It is evident that for each x e K  a minimal cap exists. The minimal 
cap C(x) is, in general, not unique. See for instance when K is a triangle. A standard 
variational argument shows that for a minimal cap C(x) = K n H(a, t) the point x 
is the centre of gravity of  the section Kc~H(a = t). 

For  x e K  and 2 > 0 we call the set 

M{x, 2) = Mrs(x, 2) = x + 2{(K - x)c~(x - K)} {4.3) 

a Macbeath region. Such region were studied by Macbeath [Ma]  and by Ewald 
et al. [ELR].  A Macbeath region is obviously convex and centrally symmetric 
with centre x. We defme another map u:K ~ R  ~ by 

u(x) = vol M(x,  1). (4.4) 

Macbeath [Ma]  proved that the set K(u ~_ ~)= {xeK:u(x)>_ e} is convex. It  is 
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proved and extensively used in [BL] that u and v are very close to each other 
near the boundary K. This fact will be crucial for this paper as well. 

It follows form the existence of the L6wner John ellipsoid I-DGK] that 

max v(x) > = ~ vol K, 
xe/C 

z a -  

and 
1 

max u(x) > ~ vol K. (45) 
x~K 

a -  

Now we list some of the facts needed later. Most of them are proved in [ELR] 
or in [BL]. From now on we assume that KE:,~da(r, R) and that the centre of the 
concentric inscribed and circumscribed balls (of radius r and R, respectively) is 
the origin. Define 

4'Id \ R ]  ra 

Lemma A. I fM(x ,  l/2)c~M(y, 1/2) ~: ~ ,  then 

M(y, 1) c M(x, 5). 

Lemma B. u(x) < 2v(x) for all xEK. 

Lemma C. l f  x e K  and v(x) < e o, then 

C(x) ~_ M(x, 3d) 

for every minimal cap C(x). 

Lemma D. I f  x e K  and v(x) < %, then v(x) < (3d)du(x). 

Lemma E. I f  x e K  and u(x) < (3d)-% o then v(x) < (3d)du(x). 

[,emma F. K[e] contains no line segment on its boundary provided e > O. 

Lemma G. Assume C is a cap such the C n K [ e ] =  {x}, a sinole point. I r e < % ,  
then C c M(x,3d). I f  int K[e] ~= ~ ,  then v o l C <  de. 

Lemma H. (Economic cap covering) Assume e < Co. Then there are caps K1, . . . ,  K m 
and pairwise disjoint sets K'I , . . . ,  K'~ with K'~ c K~ (i = 1 . . . .  , m) such that 

(i) U K'~c K(~)c  U K,, 
i=1 i = l  

(ii) vol K'i _-> (6d)-de, volKl _-< 6%. 

Lemma I. I f  O < e < ~o and ;~ >= I, then 

vol K(v < ~) > c(d)2 -~ vol K(v < 28) 

where the constant c(d) depends only on d. 
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Lemma J. Let K ~ a l  and xEK. Then 

(i) (1 - v(x))" < Prob(xCr~) 

77' (ii) Prob(xCK.J < 2 ~ 1 - 
= ~ = o \ i / \  2 J \ 

5. Proof of Theorem 1 

As Ef~(Kn) is affinely invs we may assume that K6:Yf d (r, R) with dr > R Define 

t 0 ( d  ) : ( 2 d ) -  2d 

as in [BL]. We will need a strengthening of the economic cap covering theorem 
(Lemma H): 

Theorem 7. Assume K~.,~fal(r, R) with dr >= R. Let 0 < e <= to(d). Then there are caps 
K l . . . . .  K,, and pairwise disjoint subsets K ' I , . . . ,K '  ~ with K~ c Ki i= 1 . . . . .  m such 
that 

(i) ~) K'~ c K(~)~ ~) Ks ' 
1 1 

(ii) volKi<-(15d+l)ae,_ vol K'~ > i =  ~(6d) -d e. 

(iii) for every cap C with vol C <= ~ there exists an i~{1 . . . . .  m} with C c Ki. 

Proof. (Using the proof of the economic cap covering theorem from [BL]). Choose 
a maximal system of points xt . . . . .  x ,  from bd K[gl  subject to the condition that 
for i # j 

M(x,, �89 M(x l, �89 = 0 .  

This system is finite because the sets M(xi, 1/2) are pairwise disjoint, all of them 
lie in K and volM(xi, 1/2)=2-au(xi)>(6d)-%(xz)=(6d)-% according to 
Lemma D. 

Claim 1. For a cap C with vol C _-< n there is an i t { l , . . . ,  m} with C c M(x u 15d). 

Proof. Set C = K c-~ H(a, to) and define 

q - sup {t > ~. H(ab t )nKEQ = ~ }  

Then q >-to and Ct=KtaH(a ,q )=  Co. Clearly Cx nK[~] # ~ but (int COc~K[e] = 
IZI. By Lemma F C~nK[e]  = {x}, a single point. Then, by Lemma G 

C 1 c M ( x ,  3d). (5.1) 

On the other hand the system xx . . . . .  x., is maximal so 

M(x, gc~U(xl,~) # ~ 

for some iE{1 . . . . .  m}. Then by Lomma A 

M(x, 1) c M(x,, 5). 
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We show now that  

M(x, 3d) c M(xi, 15d). 

This will follow from a more  general statement:  

(5.2) 

Fact. Assume A and B are centrally symmetr ic  convex bodies with centre a and 
b respectively. Assume B c A. Then, for 2 > 1, 

b + 2(B - b) = a + 2(A - a). 

Proof. We may  assume a = 0. Let ceB, we have to prove  b + 2 ( c -  b)e2A. B is 
symmetr ic  so 2b - c~B c A, and A is symmetr ic  so c - 2beA. But A is convex and 
ceB c A so (1/2)(c + (c - 2b)) = c - bsA.  Then c~A and c - beA so 2c~2A and 
2(c - b)eAA. But b + 2(c - b) lies on the line segment  connecting 2c and  2(c - b): 

b + ~(c - b) = ~ (~c) + ( 1 -  ~ ) ).(c - b)e A, 

proving the fact. [ ]  

(5.2) follows f rom this by choosing A = M(xi, 5), B = M(x, 1) and 2 = 3d. 
N o w  we have by  (5.1) and  (5.2) 

C c C1 c M(x,3d) c M(x,, 15d). 

Next  we define the caps K1 . . . . .  K,, and  the sets K'a . . . . .  K~,. Let 
C(xi) = K n H(a~, ti) be a minimal  cap at  xl. Then  vol C(xi) = e. Define 

K i = K n H(aj, (15d + 1)ti), 

K'~ = M (x i, �89 n H(a,, tt). 

It  is clear that  K'~cH(a~,t~)nKcK(v<_e).  We have seen already that  
vol M(xi, 1/2)>  (6d)-%, vol K '  i = 1/2 vol M(xi, 1/2). The other  par t  of  condi t ion (ii) 
follows f rom (4.2). Condi t ion (iii) follows f rom Cla im 1 and the obvious  fact that  

M(xi, 15d) c Ki. Finally condit ion (iii) clearly implies K(v < e) c 0 Ki. [] 
1 

N o w  let x~ , . . . , x seK,  se{1 . . . . .  d}. Define A = a f f { x l  . . . . .  x~} and v (A)=  
max  {v(x): xeA}.  This m a x i m u m  at tained for v is continuous.  We write K ~ for the 
space of  all ordered s-tuples (x~ . . . . .  x~) with x 1 . . . .  ,x~eK. The direct p roduc t  of  
the Lebesgue measure  on K defines a probabi l i ty  measure  v on K ~. We need one 
m o r e  theorem before we get to the p roof  of  Theorem 1. 

Theorem 8. I f  0 < ~ < co(d), then 

v( { (xl . . . . .  x~)eKS: v(A) < e}) ~ e~- l vol K(v < ~). (5.3) 

Proof. We only prove  tha t  v({(xl  . . . . .  xs): v(A < ~)}) < c(d)g -1 vo lK(v  __< e). The  
other  inequality is also true, its p roof  is more  or  less s traightforward,  but  we will 
not  need it in the sequel. 
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A simple separation argument shows that if v(A) < e then there is a cap C with 
A c~ K c C and vol  C < 8. Thus  

{(x~ . . . . .  x~): v (A)  < ~} = 

C 

u {(C,...,  C): C is a cap with vol C < a} 

(Ki . . . . .  Ki), 
i=1  

where K1 . . . . .  Km come from the previous cap covering theorem. Then 

v({(xl . . . . .  xs):v(A)<e})< v (  U=l(K .. . . .  K,)) 

m 

<---- Z v(Ki . . . . .  Ki) <= m(15d + 1)dse ~ 
1 

r t l  

< (15d + 1)d~2(6d)d~ ~- 1 ~, vol K' i 
1 

__< (15d + 1) d~ 2(6d)ae ~- 1 vol K(v < ~). [] 

Now we prove Theorem 1. K.  is a simplicial polytope with probability 1. 
Double counting the pairs (F~, FI) where Fi and F~ are faces of dimension i and j 
of Ks with F i c F f(and i < j )  we get 

f , ( K ~ ) = ~ l <  ~ 1<('{.'+11) _ _ ( j + l ~  r, - (r,.rj) \ i  + ~ 1 \ i + l ]  fj(K,,). 

So we see that we have to prove the inequalities 

Efo(K. )>-c lnvolK(~) ,"  (5.4) 

The first inequality follows from (3.1) and (1.1). Yet for further reference we give 
its simple proof here: 

E fo(K~) = nE vol (K\K._ 1) 

= n S Prob(xCK,_t)dx 
x~K 

___ n j" (1 - v(x))" ax 
xEK 

~_n J O -v(x))'ax 
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if n __> 4, say. (We used Lemma J (i) here.) 
The proof of the second inequality is more involved. It follows that of Theorem 1 

in [BE]. Some notation is needed. Write A =aft{x1 ..... x~}, u(A)= max {u(x): 
xeA}. Then u(z) = u(A) for some z~A which we denote by z A. Clearly 

Ef'~-'(K")=(nd)'""{loif otherwise conv {x, . . . .  xa}isafaceofKn}dx~...dx ~ 

where Prob is meant with A fixed and x~+ 1,. . . ,  x,  chosen randomly, independently, 
and uniformly from K. Now by Lemma J 

S"" 5 Prob (An conv {xd+l . . . . .  x,} = ~ )  dxl .-. dxa 
< S.-. ~ Prob (zA r conv {xd + 1,. �9 x,}) dxl.., dxa 

~... ~ 2 ~. 1 - dxl ""dxa 
i=o i 

E S (u(A)y n - d - J  

< 2 ~ 1 -- Prob u(A) < . (5.7) 
- ~ = 1  ~ = o  i 2n ,} = 

Here Prob (u(A)<= 2/n) denotes the probability content (in our case, volume,) of 

the set of those d-tuples xl . . . . .  xaEK d for which u(A)< 2_. Then 
n 

<"~1 2"- '  f 12 -  1)(d + i) + ~  
= i= o ~ exp ). - exp 2n 

< d2d- 1 e-;,t2 e a + 1/2. (5.8) 

Define now no = [(3d)-a(2d)-2~n]. Then for ;L < no 

Prob(u(A) < ! )=  Prob( Ac~K(u >= ! )  = f~) 

= <Prob(Ac~K(v~-(3d)d~) = ~ )  
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for K(u >__ 2/n) ~ K(v >= (3d)a2/n) if _2_ = (3d)_ae ~ = (3d)_a(2d)_2a according to 
t /  - 

I~mma E (or Lemma 2 of [BL]). Then, for 2 __< no, Theorem 8 implies 

Prob(u(A) ~ : )  ~_ Prob(v(A) < (3d)d!) 

/ 2"xd-tvolK(v<=(3d)a 

<c2(d)((3d)':)a-l((3d)a2)avolK(v<:) 

22a-1 / 
<=c3(d) n--Tsv_l volK~v< ~), 

where the last inequality is justified by Lemma I. Then by (5.8) 

2 ~ 1 Prob u(A) < 
a=l~=o ]\2n] \ - 2n = 

<2 ~ ca(d) n--TST_l e-~/2volK v< 

<c.(d)nal-~lvolK(v<:). (5.9) 

When n > no we use the trivial inequalities Prob (u(A) < 2In) < 1 and vol K iv < 1/n) > 
1/n. Then for large enough n 

nd_ lvo lK v_--< _--> =>exp{-�88 

By (5.8) 
2 ~ a~l(n--d~(g~')i(1-2-1)"-d-lProb(u(A)<=!) 

~ = ~ o + 1 1 = o \  i ,#\2n,/ \ 2n 
2 

< 2 ~,, de a + 1/22a- t e- a/4e-'~ 
2 = n o +  I 

Now by (5.6), (5.7), (5.9) and (5.10) 

< n n -  \ Ef,-dK.)=(d)max(e,(d) ,es(d))~volK(v~:)  

(5.10) 
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6. Proof of Theorem 

Let K~Jtrd(r, R) as in the theorem and consider F, an s-dimensional subspace of 
R d. Let pr = prF:R d, F denote the orthogonal projection into F. We will drop the 
subscript F if is there is no ambiguity. Define L = pr K and L~ = pr K[e]. We need 
a cap covering theorem for L \ L  8 (of. Lemma H). 

Theorem 9. There are caps L I . . . . .  Lm of L and pairwise disjoint subsets L' 1 . . . .  , L'~ 
with L'~ ~ Li (i = 1,.. . ,  m) such that 

.m 

(i) v ',', v ' , ,  
1 1 

(ii) vol L'~ > c(d) vol L~ (i = 1, . . . ,  m) 

where the constant c(d) depends only on d. 

Proof. First we replace K by its symmetral K* with respect to F. That  is, for each 
x~L  we compute the (d-s)-dimensional  volume of K c ~ ( x + F  • and put a 
(d - s)-dimensional ball of this same volume and having centre x into the affine 
subspace x + F  • The union of all such balls is K*. It is known [BF] that 
K* S~i"d(r, R) and vol K* = vol K. Obviously pr K = pr K* = L. 

Now we prove 

prK[~]  c p r K [ ( 3 d ) - 2 a e ]  if c ~ % ,  (6.1) 

p r K * [ d e ] c p r K [ e ]  if intK[e]:~JZ/. (6.2) 

Let us see (6.1) first. Assume zebdprK[e] .  Then there is y t p r -  tz with v(y) = e 
and then u(y)> (3d)-% by Lemma D. As it is well-known, M(y,  1) contains an 
ellipsoid with volume at least 

d-d/2u(y) >_ ( 3d)-a d-d/2 e. 

The symmetral of this ellipsoid is contained in K* so 

v*(y):= Yr.(y) _>- �89 >= (3d)- 2%. 

Now both sets pr K[e] and pr K*[(3d)-2%] are convex and the latter contains all 
boundary points of the first. This proves (6.1). 

To see (6.2) assume z~F but z~prK[Q. Then there is a halfspace H with 
HnK[e] = ~ whose bounding hyl~rplane contains z + F -~. Let H' be the parallel 
translate of H such that H'nK[e] is a single point. (H' exists by I.amma F.) 
Applying Lemma G to the cap C = H' n K we get 

vol (H c~ K) < vol (H' c~ K) < de 

which means that every point in pr- t (z)c~K can be cut off by the cap C that has 
volume de at most. As the symmetral of C has the same volume we conclude that 
zC~pr K* [de], proving (6.2). 

Set now t/ (3d)-2% and * - = Ln - p r  K*[r/]. It follows form the definition that 

L~* = F c~ K* It/] 
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and 
ML(x, 2) = MprK(X , •) = Mr,~(x ,  ~.) = F n MK,(X , 2) 

for all x~F and 2 > 0. 
Choose now a maximal system of points x~ . . . .  , x ,  from bd L* (with bd meant 

in F) subject to the condition 

1 1 _ _  Mr.(xi,-~) C~ Mx.(xj, ~) - O- 

The argument from the proof of Theorem 7 shows that this system is finite. Then, 
in the same way as in [BL], Claim 1 we see that 

ra 

L\L*  c U M~,(x,, 5), 
1 

and so 
ra  

L\L*  c ~J ML(xi, 5.) 
1 

Now let as be an outer unit normal to L* at x~ with ai~F (i = i ..... m). Set 
D~ = LnHi where Hi is the halfspacc in R d whose bounding hyperplane contains 
x~ and has normal ai. Let Ci be the "lifting" of Di into K*, i.e., Ci = K* nHi. Clearly 
pr Ci = Di. Then, by Lemma G 

and consequently 

Di c Mr.(x~, 3d), 

D, c ML(Xi, 3d). 

On the other hand Hi = H(ai, t~) with a suitable ti. Here H(ai, tt) can be regarded 
as defined through K, K* or L. Set now 

L' i = ML(xi, �89 
and 

L' i = L c~ n(ai, 6ti). 

Then we see in the same way as in [BL] that the L':s are pairwise disjoint, L'~ c L' i' 
and ML(xi, 5) c LT. So 

0L' , cL \L:  " " c U L i ,  
1 1 

vol L~ _< 6 s vol Di, 

and 

vol L; = �89 vol Mz(x,, �89 = �89 -s vol ML(X ,, 3d) 

-> �89 -~ vol D,. 

So we have an economic cap covering for L\L*.  But we need one for L\L~. 
Even more generally, we are going to produce an economic cap covering for 

L\La,  with 2 > 1. Set # = d2(3d)2d2 and 

Li=Lc'~H(at,#tl) i=  1 . . . . .  m. 
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m 

C l a i m  2. L \ L ~  c U L~/f int  K[2e]  ~ ~ .  
1 

685 

Proof. (Which will be similar to that  of  Theorem 7 f rom [BL].) Take  a point  
xeL \L~ .  We are going to show that  xi~L~ for some i~ { 1 . . . . .  m}, so we m a y  assume 

tha t  xCL\L* as L\L* c 0 L, clearly. 
1 

Set v* = oK, and  v*(x) = v. Let aeF be the outer  normal  to K*[v ]  at  x. Then 
the cap C(x)=K*nH(a , t )  with x e H ( a = t )  has centre z~F, say, and  the line 
segment  through x and  z intersects b d L *  at  the point  y. Let  t' be defined by 
y~H(a = t3. As v*(y) = q we have 

q = v*(y) < vol K* n H(a, t) 
t '  

= S vo ld -  1 [ K *  n n(a = 3)]  dr 
0 

-_< t' max  {vold_ 1 [K*  n H(a = 3)]: 0 < z < t'} 

< t' m a x  {void_ 1 [K*  n H(a = 3)]: 0 < �9 < t}. 

On  the other  hand  x~L\La,  and (6.2) implies vol C(x) < d2e = dA(3d)2dt/. Thus 

d2(3d)Zdq > vol C(x) = vol K* ni l (a ,  t) 
! 

= S VOld- x [K*  n H(a = z)]dz 
o 

t 
> - max  {void_ 1 [K*  n H(a = z)]: 0 < z < t}. 
- d  

So we have 

t I z - X l < d 2 ( 3 d ) 2 d  2 = # .  
t' Iz yl 

Consider  now the cap L~ from the cap  covering of  L\L* containing y. Let z~ be 
the centre of  L~' and  write y~ for the intersection of H(a~ = 6t~) with the line segment 
connect ing x and  z~. The line through z and x intersects the hyperplanes  H(ai = O) 
and H(a~ = 6q) in the points z' and y', respectively. I t  is easy to see that  the points  
z', z, y, y', x are collinear and come in this order  on their line. Then  

I x - j _  I x -  z'l < l x -  z'l _ l x -  zl + l z -  z'l < l x -  zl < l z 

lY i -  Zi[ l y ' -  z'l = l y -  z'l l y -  zl + l z -  z'l = l y -  z[ = " 

So xeL~ and the Cla im is proved. [ ]  

N o w  in the case 2 = 1 we have 

vol Li = vol L n  H(ai, #ti) < #s vol  L n  H(af, q) = #" vol Di _~ const  (d) vol L'  t. 

;l'he proof  of Theorem 9 is complete.  [ ]  
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When ,[ > 1 and int KI-2~] ~: O we have, similarly, 

vol Li =< cl (d)M vol L'~ and so 

vol U L, < ca(d)M ~ vol L', __< c, (d)2' vol (L\L*) 
i = 1  1 

__< c 1 (d);P vol (L\L~). (6.3) 

But (6.3) remains true (with another constant cl(d,r,R) instead of ca(d) even if 
i n t K [ ; t ~ ] = ~ .  To see this observe first that in this case JL~>I/2cOd rd and 
vol (L\L,) <= vol L _< co~R ~. Consider a cap C whose bounding hypcrplane touches 
K[e]. Then vol C _-> e and 

t < v o l C =  f vola_~(pr-t(x)c~K)dx 
xcpfC 

__< cod_,R d-~ vol~ pr C, 
and so 

vol, pr C _-> ~(Rd-~coa_ ~)- 1 

So the left hand side of (6.3) is at most vol L __< o~sR ~ and the right hand side is at least 

Then (6.3) holds for all 2 => 1 and e -< e 0 if the corresponding constant ct(d, r, R) is 
chosen large enough. We proved 

T h e o r e m  10. l fO < e <= e o and st{0,  1 . . . . .  d - 1}, then 

vol, (L\L~) > const (d, r, R)2- '  vol e (L\La~). [] 

This result is analogous to Lemma I. 
Now we start with the proof of Theorem 2. We assume, without loss of 

generality, that Kear~(r,R). We need the following fact (see [HI or [BF])  that 
can be taken for the definition of intrinsic volume: 

V~(K)=A f vol,(prrK)doJ(F) (6.4) 
Feff 

where f~ = ~a,, is the Grassmannian of the s-dimensional subspaces of R d, Fr 
co(.) is the Haar measure on f# normalized by co((#)= 1, and A is a constant 
depending on d and s. Thus 

E(K, s, n) = AE ~ vole (PrF (K)\prr  (K.))do~(F) 

= A ~[E vol,(prF(K)\prr(K,))] do~(F) (6.5) 

where the application of Fubini's theorem is easily justified. 
We will drop the subscript F from pr r while the subspace F is being kept fixed. 

As symmetrisation does not change the value of E vol, (pr K,) we have 



Intrinsic volumes and f-vectors of random polytopes 687 

E vole (pr(K)\pr(K.)) = E(vol.(pr(K)) - vol,(pr (K.))) 

= E(vol~(K*)) - vol~(pr (K~*}) 

= J Prob(x~prK*)dx 
ptK* 

= ~ Prob(x~K*)dx, (6.6) 
prK* 

where Prob(x~prK*) is the probability that x~prK* for a fixed x~prK*. We 
write again v* and u* instead of %. and ur.. Let x c F with v(x) = ~1 and consider 
the minimal cap D(x} of prK*. Then its lifting, C(x)=pr-X(D(x))c~K * 
is a cap touching K*(~), Then by Lemma G its volume is at most dr/and 

I Prob(xCK*)dx 
prK* 

> ~ (l-volC(x))"ax>= J (1-volC(x))"dx 
prK* prK*\prK*fdfn] 

/ k \ L n J / /  

=>c2(d)vol,(pr(K)\pr(K[~])). (6.7) 

This shows, using (6~4), (6.5) and (6.6) that 

E(K,s,n)>=comt(d,s) ~ vol,( prF(K)\prr(K[1]) ~dco(F) 
\ k LnJl l  

~const(d,s)(V~(K)-V,(K[!])) 

which is the first inequality to be proved in Theorem 2. 
For the other inequality we observe that by Lemma J 

Vrob(xCK*) < 2 Z 
i=o k i J k - f - / k  

Continuing (6.6) and this we get 

E vol~ (pr (K*)\pr (K*)) %., 
-p,~, l = o \ i J \  2 / k 

= E  E 2 I 

- -'-fn--n) vol,~prK'\prK'~u*>= . 
~=t~=o \ i / \ 2 n /  \ 
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el 
y, 

2=elo + 1 

Similarly as in (5.8) we have 

)( , 1 ,  
i=o2~ ni 2n2 i 1 -  2n ) _<-e2,~d-ie -z/2. (6.8) 

By Lemma E 

provided 2In ~_ (3d)-ae o. According to (6.2) 

prK*(v* >(3d)':)D-prK(v>(3d)a':)= 
provided (3t0dVn < eo. Then for 2 < no = [(3d-alto n] 

* * i t* >--~ 

~vol,(prK\prK(v>(3d)3a:)) 

= <Cl(d,s,r,R)((3d)3a2)'vol,(prK\prg[!l) (6.9) 

where the last inequality follows from Theorem 10. Then splitting the last sum 
in (6.7) into two parts we get 

~...<_~e2A'-'e-'/2c1(d,s,r,R)Mvol,(prK\prK[~l) 
2= I  2 = I  

<__c2(d,s,r,R)vol,(prK\prK[~]). (6.10) 

It is not difficult to see that 

vol,( pr K\pr K [ ~ ] ) >=exp {-�88 
if n is large enough. (We omit the details.) Then 

..._< ~ e2A a-te-~/2 
g=no+  1 

I t  

6 c3(d,s,e) ~, 
,1.=no + 1 

<-_cs(d,s,R) 
A=no+ 1 

~d- 1 e -  ~'14 e-~14 

ga-te-X/4vol,(prK\prK[~]) 

~-e,(d,s,R)vol,(prK\prK[~l). (6.11) 
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Then (6.6), (6.7), (6.10) and (6.11) imply 

E(K,s,  n)<= const(d,s ,r ,R) ~ v o l , ( p r ( K ) \ p r  K~ 1- l l  dw(F ) 
\ L n J /  

7. Proof of Theorems 3 and 4 

We want to compute Vs(K) - V~(K[~]) when K is smooth and when K is a polytope. 
According to (6.4) 

V,(K) - Vs(K [e] ) = A S vols (prF(K)\prF(K [el)) dco(F). (7.1) 
f~ 

The integrand here is the s-volume of the union of all preC where C is a cap of 
K with C n K [ e ] : f - ~  but i n t C n K [ e ] = ~  and such that the normal of its 
bounding hyperplane lies in F. 

Proof. (of Theorem 3 which is much simpler.) Let Ke:,~rd(r, R) be a c~2 convex 
body with positive Gaussian curvature. As the curvature of K is bounded away 
from zero and infinity, C is very close to a cap of an ellipsoid if e > 0 is small 
enough. One can estimate VoI, prFC easily: 

c l(K)ets + l)/(d + 1) < VOI~ prrC < c2 (K)e (~ + u/(a + 1). 

Moreover, prrK satisfies the conditions of Theorem 4 in [BL]. So applying that 
theorem, Theorem 1 of [BL] and a result of Groemer [Gro] we get 

vol~(prr(K)\prrK [ e l ) -  vol~ prr(K)(vp~(K) < c(K)e (~+ x)/(d + 1)),,, /32/( d+ 1) 

with the implied constants depending on K (and independent of F and e). This 
proves Theorem 3. [] 

Proof of Theorem 4. Let PE•d(r, R) be a polytope. We. prove first that 

vs(e) - V~(P[e]) > const (P)e l/(a-'+ 1). 

Let Q(a, a) denote the circular cone with apex O and half-angle a (0 < a < lt/2), its 
axis having direction aeS a-l .  Clearly, for almost every Fefr there is an 
(s - 1)-dimensional face, L, of P and a circular cone Q(a, a) such that P c L + Q(a, ~) 
and there is a hyperplane H with normal a e F  supporting P with H c ~ P = L .  
(According to our notation convention H = H( - a, 0).) Moreover, L (and then H) 
can be chosen so that 

vols- 1 L _-< Cl(P) vols_ 1 prvL 

holds. This can be seen in the following way. prFP is an s-dimensional polytope 
with surface area larger then that of rB" and number of facets less than f ,_  ~(P). 
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Further vol,_ 1L <r 1 R*- t for all (s - 1)-faces of P. Then 

max {vols_ t (pr~L): preL is a facet of pry P} 

> surface area o fp r rP  ~ (s - 1)o~,_ t f -  1 

f s -  1 (P) f ,  - l (P) 

So for almost every Fef~ there is an (s - 1)-face, L, of P such that 

(i) p r rL  is a facet of PrFP, 

7~ 
(ii) P c L +  Q(a, oO for some a e F  and a < ~ ,  

s--l_ I(P) ( R )  ' - '  v~  t L" (iii) vol,_ 1 prrL>=f~ 

Then there exists an angle ,t o < ~/2 and a set #- c f# with ~o(~-) > 1/2 such that 
there exists an (s - 1)-face L of P satisfying (i), (ii) and (iii) with ~ = % in (ii). Here 
% depends only on P. It is easy to see that for the cap C(a, t) = P n H( - a, t) we have 

vol C(a, t) ~ t d-'+ 1 vol, _ t L 

when t ~ to is small enough (where to and the constants implied by ~ depend 
only on P). Moreover 

vol, prF C(a, t) ~ t vols_ t L. 

Let us fix t so that vol C(a , t )=  s. Then prvC(a, t ) c  prrP\prvP[e]  and 

vol, pr~C(a, t) ~ ~t/(d-~+ x). 

with the implied constants depending only on P. Then we get 

vols(prr P\prFP [e] ) ~_ C2 (P)e 11(J- ~ + 1) 

for all Fe~q r. So by (7.1) 

V, tP) -- V,(P [el) = A S vol, (pr F P \pr r  P [~]) dto(F) 

>_ A ~ c2(P~ a/{d-,+ 1)dco(F) 

> c3(P)dtc~-' + t~. 

Quite similar arguments show that for all Fef# and for alI caps C = P c~ H(a, t) 
with a e F  and hat C n P [ e ]  = 0 one has 

vol, pr~C ~ c, (P) t  It(d-'+ 1) 

Then by (1.1), Theorem 3 of [BL'I and (7.1) 

V,(P) - V,(PEs])~_e , (P)~t"- '+ ' ) ( log~)  "- ~ 

I. Bfin~ny 
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which is only slightly weaker than the inequality we have to prove, namely: 

~ ( p )  _ Vs(p[e]) < const(P)el/td-s+ 1) (7.2) 

for small enough g. Set p = d - s + 1. We will prove this by showing that for all F c f9 

vol, (p reP \p reP[n ] )  < const (P)e 1Iv. (7.3) 

We drop the subscript F. By (6.2) 

pr PEe] = pr P* [de] 

and by Lemma B 

P* [de] = P*(v* >- d~) = P*(u* >- 2de). 

Clearly p r P = p r P *  = P * n F  is a polytope Q in F ~ R  s and QE.YI~(r,R). Define 
K = conv(Q urBa). Then K~gfa(r,R), p r K  = K n F  = Q and K = K* ~ P*. Then 
uK(x) < u*(x):= uw(x). Consequently 

e*(u* > 2de) = K(u~c > 2de), 

and we have pr P ie ]  ~ pr K(u t c -  2de) and so 

pr P \ p r  P ie ]  c pr K \ p r  K(ux > 2de) 

c F n K ( u r  < 2de). 

Set ~/= 2de. We will prove (7.3) by showing 

vol~ F n K (ur < ~l) < const (p)~:/v (7.4) 

when t /<  ~o(d,r) = 2-drdcoe. 
Let x e F n i n t K ,  let z e b d K  be such that x is on the line segment connecting 

0 and z. Write z = I z - x l and let L be the facet of Q containing z. Set t = dist (x, aft/_,) 
and choose q > 0 maximal with 

x +QBa c K .  

The facts Ke.Yfa(r, R), Q c ~ ' ( r ,  R) and some standard arguments show that 

t,-~ 1" ,,~ Q 

ux(x) ~ td-"ua(x) (7.5) 
ua(x) ~ t % ~ ( , ) ( x )  

where H(t) is the hyperplane (in F) parallel with L and containing x (so dist (H(t), 
affL) = t). Set 

L ~ = cony (L u {0}) 

Q(t) = Q n H(t), 

and 

.Clearly 

h = dist (0, affL). 

vol, F n K(ux _~ ~/) = ~ vol, [L ~ n K(uK < r/)] (7.6) 
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where the summation is taken for all facets L of Q. We assume s > 2 as case s = 1 
of Theorem 3 is proved in [S1]. Moreover 

h/2 

vol ,[L~ J vol,_l[L~ (7.7) 
! = 0  

where the upper bound h/2 in the integration is explained in the following way: 
If t > h/2 ~ r/2, then 

MK(x) ~ x + r_~, 
2 

consequently ur(x) > 2-4rdcod = ~/o(r, d). We continue (7.7): 

hi2 vol~_ 1 [ L~ n H(t) n K(u~ <- ~)] dt 
t = O  

-< j vol,_ 1 o Q(t u~,) < c6 dt 
t=O 

< t=o ~ v~176 toI v~ dt (7.8) 

where the first inequality and constant c6 = c6(d, r, R) come from (7.5) and t o is 
defined as 

=(c6.4.2~-iddtl~ 1/p 
to \ j 

if this is less than h/2, and t o = hi2 otherwise. We estinaate the first integral in the 
right hand side of (7.8): 

to to 

v~ - t [ L~ n H(t)] dt < S vol~_ 1 L dt = t o vols_ 1L 
0 0 

< (c62'+ ldd)llP~/l/~(vol~ - 1 L) l -  1/p 

=< (c62~ + ldd)l/p~llm(R,- 1 ~ _  1)l - 1/p < cT(p)~ll/p. (7.9) 

Using the definition of to (when to < h/2) we have for t -> to 

t~ vol~_lL <vol~_iQ(t) 
c6 _-<2~_1.4d d=  4d a , 

because vol,_lQ(t)~vol,_tQ(t)c~L~176 So w e  

may apply Theorem 5 to Q(t). 

r/ tP c ~  / 

where C(s -  1) is the constant in Theorem 5 and m(Q(t)) is the minimal number 
of simplices needed to triangulate the polytope Q(t). Clearly m(Q(t) < cs(P) for a 
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suitable constant depending only on P. So the second integral in the right hand 
side of (7.8) can be estimated as follows: 

./2 / t~ ) vol,.1Q(t)tuett, < c ~ dt 

h/2 
< ~ C(s-1)ca(P)c6ff-(logtVV~ 2dt 

Io tP \ C6~ J 

=< C(s-1)ca(P)hi2c6rl ( l~176  t p k C6rl dt. (7.10) 

When s = 2, we can integrate simply, and the definition of t o shows that this 
is less than const (P)~/~/p. When s > 2 we substitute 

rYe~ 1Rs- 1 y-~. 
C6tl 

and 

We continue (7.10): 

___ C(s  - 1 )ca(P)  

tgco~_lR ~-1 T+lddco,_ 1R~-I 
Y 0 -  = _>- 1. 

c6r/ vol L 

1 oo 1 ( r y] ~l/Pyl/p_ 1 (log y) ' - z  
dy 

< C($ - -  1)c8(P) f C6~] ~' / '~( logy)~-2dy 
- - - -  ~ - - s  1"  J 2-1/p = PCOs-lR- \ c o s - I R -  ] l Y 

c9(P, S)rl lip. 

So we get from this and (7.9) that 

vols (L ~ n g(u~ <= rl)) < const (P, s)tf/P. 

The number of terms of the sum in (7.6) is bounded by a constant depending on 
P and independent of F. So we proved (7.4). []  

8. Proof  of Theorem 6 

We may assume KE~r i.e., vol K = 1. First we prove that 

/ l o ~ n \  2/(d+ l) 
EcS(K, Kn) > c o n s t ( K ) t ~  ) �9 

A certain ee(0, 1) will be fixed later. Take a maximal system of pairwise disjoint 
caps C1, . . . ,  C ,  with vol Ci = e. We show that 

Cl(K)e-(a- 1)/(d + 1) < m < c2(K)e -(a- l)/(d + 1) (8.1) 

for small enough e. According to Theorem 8 of [BL] 

vol K(~) ~ ~z/(, + ~) 
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with the implied constants depending on K. As 

0 Ci c K(0 
l 

the right hand side inequality of (8.1) follows. To see the other inequality we claim 
that 

c, 
1 

(For the definition of C~ see (4.1).) Consider y~K(O and a minimal cap C(y) with 
centre z. Let Co be the cap "parallel" with C(y) and such that Co n K[e] = {x}, a 
single point. We will prove the existence of i~{1,. . . ,m) with Co c C~ provided 
is small enough. As K is a convex body with positive Gaussian curvature, K is 
very close to an ellipsoid E in a small neighbournood, N, of z. Let 
C~=KnH~ (i = 0,1, . . ., m). Then the caps Ci that lie in N are very close to the 
caps Dt = E n H~ of E. The maximality of the system C1, . . . ,  Cm implies Co r~ Ci ~ 
for some i6{1 . . . . .  m}. Then D~nDZi =~ 0 can be seen easily. This shows (by a 
routine argument) that D~ c D~ which, in turn, implies Co c C~. So indeed 

~) C~ ~K(e) and (8.1) is proved. 
1 

It is clear that, for small enough 8, the depth of the cap C~, h(C~) satisfies 

ca(K)e.z/(d+ 1) ~ h(Ci) < c4(K)e 2led+ l). (8.2) 

Choose now e6(0, 1) so that 

1 
e-(n- t)/(d + 1)(1 _ ~), = c2(Ki" (8.3) 

This is possible for the function on the left hand side is continuous and decreasing 
in (0,1). It is 0 at e = 1 and tends to infinity as e--.0. It is easily seen that the 
solution to (8.3) satisfies 

d - 2 log n d - 1 log n 
< ~ < - -  - -  (8.4) 

d + l  n d + l  n 

(at least for n large enough). Now 

Prob (6(K, K~,) > c4(K)~, 2/(a+ 1)) 
-> Prob0i~{1, . . . ,m}:  CinK.  = ~)  

= ~ (--1) ~+1 E Prob((C, ,u . . .uC,~)nK.=~)  
k =  1 it .-.ik 

[ = ( l - k ~ ) "  1 - m ' k  1 --k~ " (8.5) 
k=l  k + l  1 
kodd 
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m -  k (1  ~ )"  is decreasing in k and for k = 1 The expression k + 1 \ 1 - ke 

m 7 1 1 -  1--e < 1--e)n<�89 1- 

We continue (8.5): 

(,) [_ ( :).] . . . .  > (l--e)"  1 m - 1  1 -  >=cl(K)e(a-l)l(d+l)(1--Oti---~j2~--2(K). 
= 2 1 e 

Then 

Ef(K, K,) >_ c,(K)e 21(d+ 11Prob (3(K, K,) > c4(K)~ 2/(d+ i)) 

- 2.log n~ 2/,d+ 1) 
> c 4 c t ( ~ + l =  2c2 n / 

>=cs(K)(I_~) 2/(d+l) 
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indeed. 
Next we show 

{logn\Z/(e+ 1) 
E6(K,K.)<=const(K)t~ ) �9 (8.6) 

We write K' for the inner paarallel body of K with distance t. Using the fact that 
K is close to an ellipsoid at any point of its boundary it can be seen that 

vol (C c~ K') > c6(K)t (d+ 1)/2 =:f(t)  

for every cap C of depth 21. This implies 

Prob (6(K, K.) > 2t) < Prob (vol (K'\K.) >_f(t)). 

Then by Markov's inequality (see [R])  

Prob (fi(K, K,) > 20 < 

We choose 

and show that 

E vol (K'\K.) 
fit) 

, = 2 ' " + "  

[ loon\  (d+ 3)/(d+ l) 
E vol (Kt\K,) < t f (t) = c6cT t L2~2 ) . 

This will prove (8.6) because 

Eh(K, K,) <_ diana K- Prob (fi(K, K,) > 20 + 21 Proh (~5(K, K,) <= 20 

[ log n \ 2/(4 + 1) 
<-tdiamK + 2i~_eonst(K)t---7- ) . 

(8.7) 
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To prove (8.7) one checks first that xEK' implies u(x) > 5 d + 3 logn if cT(K) is 
d + l  n 

d + 3  
chosen large enough. Then, setting p = 5 log n 

d + l  

E vol(K'\K,) < ~ Prob(xCK~)dx 
u( x) ~_ ptn 

,,(x) _~ p/,, i = o \ i ] \ - 2 - / \ 1 -  dx 

_< ~ 2 a ~ X ( n ) ( 2 ) ' ( l  2 _ 1 ) . - i  
-~=tpl  ~=o i 2n - 2n 

=< ~ ed+l/2,~d-te -x/2 
g=[p] 

< ea+ l/2e-(S/*)a+ 3/a+ t logn ~ 2d-re -~t/4 
a = [p] 

< const (d)n-(5/*)d+ 3/d+ t 

This proves (3.7) when n is large enough. [] 

9. Proof of  Theorem 5 and the auxiliary lemmata 

Most of these lemmata are proved in [BL]. Lemma A comes from [ELR]. Lemma B 
which is quite easy is proved in [BL]. Lemma C, D and E follow in the same way 
as Lemma 2 in [BL] except that, at the end, r and R must not be eliminated. 

Proof. (of Lemma F). Let x,y~bd K[e] and assume z =�89 as well. 
Then there is a minimal cap C(z) with volume e. C(z) cannot contain x (or y) in 
its interior since otherwise a smaller "parallel" cap would contain x (or y). Then 
C(z) must contain both x and y on its bounding hyperplane H. Then C(z) is a 
minimal cap for both x and y. But the centre of gravity of Kr~H cannot be both 
x and y at the same time unless x = y. [] 

Proof. (of Lemma G.) Denote the set of outer normals to K[e] at z by N(z). If 
int Kle]  ~ ~ ,  then KIwi is a convex body again. It is well-known (see, e.g., fRo]) 
that N(z) is a closed pointed cone and it coincides with the convex hull of its 
extreme rays: 

N(z) = cony ext N(z). 

For bzS d-1 define C ~ as the unique cap C~=KnH(b,t) such that 
C~c~K[~] # ~ but int C%~K[e] = ~ .  

Our first aim is to show that vol C ~ = e if b6S J- 1 is the direction of an extreme 
ray of N(z). To prove this we use a classical result of Alexandrov (see c.f. [$3]) 
stating that at almost every point z on the boundary of a convex body the set of 
outer normals at z is a hallline (which is the same as the supporting hyperplane 
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at z is unique). If the convex body is K[~] and z~bd K[e] is such a point then we 
write b(z) = N(z )nS  d- 1. 

Notice first that N(z) is the polar of the minimal cone whose apex is z and 
which contains K I-s] (see [Ro]). So there is a vector u~S ~- 1 such that u. b = 0 and 
u.x < 0 for all xeN(z) ,x  4: 2b(~. > 0) and such that there are points z(t)ebd K[s]  
(for t > 0 small enough) with 

[ ( z ( t ) - z ) - t u l = o ( t )  as t ~ 0 .  

Choose now a sequence zk~bdK[s ] (using Alexandrov's theorem) very close to 
z(t = 1/k), i.e., 

](zk - z) - ~ u l = o as k---, oo, 

and such that b(zk) exists for all k = 1, 2 . . . . .  We may assume that lim b(zk) = bo 
exists for S ~- 1 is compact. I t  is easy to see and actually well-known that bo~N(z). 
Assume bo # b. Then, as b(zt)rN(z~) 

0 __> b(zk)" (y --  z~) 

for every y~K[s]. In particular, for y = z we get 

O > b ( z ~ ) . ( z - z ~ ) = - ~ b ( z k ) ' u + o ( ~ )  

for k large enough. A contradiction. So bo = b. Then the continuity of the map 
b ~ vol C b implies vol C b = ~. 

Now let a be the outer unit normal of the bounding hyperplane of the cap C 
(from the statement of the lemma). Then ar and so aEconvextN(x). This 
implies by Caratheodory's  theorem the existence of vectors bl . . . . .  bdES ~- 1 such 
that each of them represents and extreme ray of N(x) and such that a is in the 
cone hull of bl . . . . .  bd. Then C a = C is contained in 

d 

U Cb'" 
[=1 

This proves that vol C < d vol C b' = ds. 
This shows finally that every C ~ with vol C ~ = s is a minimal cap. Then we have 

C ~ ~ M(x, 3d) from Lemma C provided s < s o. So C ~ = M(x, 3d) for i = 1 . . . . .  d. 
Consequently 

d 
c =  U c~'=Vt(x,3a~ �9 [] 

i=1 

Lemma H is Theorem 6 and Lemma I is Theorem 7 in [BL]. Finally, Lemma 
J (i) is simple and its p roof  is given in the beginning of the proof  of Theorem 1 
in [BL] and Lemma J (ii) is formula (3.6) from [BL]. 
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Proof of Theorem 5 
When P = S is a simplex with vol S = 1 then a simple checking of the proof of 
Theorem 3 of [BL] shows that 

volP(v N_ eJ < cl(d)~ log~ 

1 
with el(d) = 2 ~ or anything larger, when 0 < ~ < 4-~. When P = S is a simplex with 

arbitrary volume then we use the fact that 

vol K(v < ~ vol K) 

vol K 

does not change when a (non-degenerate) affinity is applied to K. So 

vol S v = vol S / | 
vol S(v < ~) = voW- ,}'vol S 

< cl(d)v--o-i~ vol S 

= cl(d)~ ( log  ~ - ~ )  d-1 

as claimed. Now when P = U St is a triangulation of P with m = re(P), then clearly 
1 

vol e(v < e.) < ~ vol S~(v i ~'e) 
i = l  

1 1 
where vt = Vs,. If e < ~-~ vol St, then we apply the previous step. And if e > ~ vol St, 

t hen  ( vol Sl(vi <= e) <= vol St ~_ 4rids < c2(d)e log 

ff c2(d) is chosen large enough. Then 

vole(n ~ t) =< ~ volS~(v~-< ~) 
i l l  

~ max (c l (d), c2(d) )m(P)8 (log V~ P ) d-1 

volP  a-1 
= c (d )m(P)~( log - -~ )  . I - 1  
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