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1. Introduction

Let K « R? be a convex body (a convex compact set with nonempty interior) and
choose points x,,...,x,eK randomly, independently and according to the uniform
distribution on K. Then K, =conv {x,,...,x,} is a random polytope. It is clear
that, with high probability, K, gets nearer and nearer to K as n tends to infinity.
There has been a lot of research to determine how well K, approximates K in
various measures of approximation. These measures usually are the expectation
of (K) — ¢(K,) where ¢ is some functional defined on the set of convex bodies,
for instance volume, surface area, mean width, etc. Most of the research
concentrated on the case d =2 and on smooth convex bodies and polytopes.
Now let ¢ >0 and define

K[e] = {xeK:vol(K nH) 2 ¢ for every halfspace H with xeH}.

This is a convex body again if ¢ is small enough. The main result of [BL] says
that K, is close to K[1/n] in the following sense:

1

Evol(K\K,) ~ vol (K\K [—]) 1.1
n

where E denotes expectation and the notation f(n)~g(n) means that

lim f(n)/g(n) > 0 and lim g(n)/ f (n) > 0. That is, there are constants ¢, and c, such
that for n large enough

¢y vol(K\K[%:I) < Evol{K\K,) < ¢, vol (K\K[%:I).

This result shows that K, and K[1/n] approximate K in the same order and
suggests that K\K, is close to K\K[1/n] in some strong sense.
The aim of this paper is to further exploit the connection between K\K, and
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K\K[1/n]. The main results are: (1) the expectation of V(K)— V(K,) is about
V(K)— V,(K{1/n]) where ¥, denotes the s-th intrinsic volume, s=1,2,...,d, (2)
the expectation of the number of s-dimensional faces of K, is about
nvol(K\K[1/n])/volK (s=0,1,...,d— 1), (3) for a smooth convex body K the
expectation of the Haussdorff distance between K and K, is about (log n/n)2/@* 1),

The paper is organized as follows. The second section introduces the necessary
notation and terminology. The third contains the results. The basic auxiliary
lemmata are given in the fourth section. Their proofs are postposed to the last
section. The proofs of the results are in Sects. 5,6,7 and 8.

2. Notation

In this section we introduce some basic notation.

The set of all convex bodies in R? is denoted by A% ¥4 = {KeAH*:vol K =1}.
2°%(r, R) consists of all Kex#™ that contain a ball of radius r and are contained in
a ball of radius R. We write X(r, R) = 2| n o"%(r, R).

For a set X = R? conv X, aff X denotes its convex and affine hull. dist(X, Y)
is the distance between X,Y <R and X +Y is their Minkowski sum. The
Euclidean distance of two points x, ye R? is denoted by | x — y|, their scalar product
by x-y. B? stands for the Euclidean unit ball of R%, $9~! is its boundary. We write
w,=vol B,

For a set Ke X"“bd K and int K denotes its boundary and interior, h(a) = hy(a)
is its support function, ie., h(a)=sup {a-x:xeK}. For aeS°"', H(a,1) is the
halfspace {xeR*:a-x = h(a)—t}. So H(a,t)= Hg(a,t) depends on the underlying
convex body K e but we will usually suppress this dependence. The bounding
hyperplane of H(a, t) is denoted by H(a =1t).

For KeX™, K[e] was defined in the previous section. We let K(¢) to be the
closure of K\K[e]:

K(g) = {xeK:vol (K nH) < ¢ for some halfspace H with xeH}

K(g) is a kind of “inner parallel layer” to K.

When P is a polytope f(P) will denote the number of s-dimensional faces of
P,5s=0,1,.... For KeX? V(K) is the s-th intrinsic volume of K(s=1,2,...,d).
For the definition see Sect. 3 or (6.2). We write E(K,s,n) as a shorthand for
E(V{(K)—V,(K,)) when KeX".

In what follows c;,c;,...c,(d),...,c,(K),...,const (d,r, R) will denote various
constants. The reader is warned that the constants c¢,(d) appearing in different
sections do not coincide.

3. Results

We first give the results concerning the expected number of s-faces of the polytope
K,. As a non-degenerate affine transformation does not influence f(K,) we may
consider Ke#'d. An identity due to Efron [Ef] says that for KeJ"$

Efo(K,) = nEvol (K\K,_,). G.1)
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Thus by (1.1) we have

Efy(K,)~nvol (K\Kl:;ll-:]) =nvol K(%)

We extend this to every f,, s=0,1,...,d— 1

Theorem 1. Assume KeX™{ and se{0,1,...,d —1}. Then
1
Ef(K,)~nvolK (—) (3.2
n
The implied constants depend only on d.

This theorem says that E f(K,) is essentially the same for alls =0,1,...,d — 1.
This is not so much surprising when one thinks of the boundary of K, as locally
R*~1 and the faces of K, as a “random triangulation” on a piece of R®"!. In a
random triangulation of R~ one would expect the average degree bounded by
a constant depending only on 4, and so the average number of s-faces equal to
the average number of vertices (up to a constant multiplier).

As vol K(1/n) is known for smooth convex bodies and polytopes (see [BL] and
also [L]) Theorem 1 has the following immediate consequences.

Corollary 1. For a polytope PeX™ and se{0,1,...,d — 1}

Ef(P,)~(logn)'~ 1. (3.3)

Corollary 2. For a %* convex body Ke X and se{0,1,...,d— 1}
Ef(K,)~n@- D@+, (3.4)

The case s =d — 1 of Corollary 2 was proved by Wieacker [W] in asymptotic
form, ie.,

Efy(K,)~ c(K)n~ e+
with explicitly given constant ¢(K) where the notation f(n)~ g(n) means that
lim f(n)/g(n) = 1. The case s=d — 1 of Corollary 1 was proved by Dwyer [Dw]
and by van Wel (see [S 2]) independently, when the polytope is simple.
The next corollary follows from Theorem 1 via Theorem 5 of [BL]:
Corollary 3. If KeX'4, then for all s€{0,1,...,d—1}
c;(d)ogn)? ™! < Ef(K,) < cy(d)n -+, (3.5)

Moreover, for any functions 2(n)— oo and w(n)—0 and for most (in the Baire
category sense) convex bodies Ke X

Q(n)(logny~* > Ef(K,) 3.6
Jor infinitely many n and
omné~ VD < Ef(K,) G

Jor infinitely many n.
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In other words inequality (3.5) in best possible apart from the constants c,(d)

and c,(d).
Now we consider the intrinsic volume, V,(K), of a convex body K e ¥"? which is

defined (see [Mc; BF]) for s=0,1,...,d as
v,(K)=m;_1,(d) VK,...,K,B",..., BY)
N

where V(K,...,K, B,..., BY) is the mixed volume of K taken s times and B¢ taken
d —s times. It is well-known [Mc; BF] that V,(K)=volK, V,_,(K) equals the
surface area of K and V,(K) is a constant multiple of the mean width of K. It
turns out that the intrinsic volume of K, is close to that of K[1/n]. More precisely
we have

Theorem 2. Assume KeX(r,R) and se€{l,...,d}. Then
E(VAK) — V,(K,) ~ Vi{K) — V(KH) (8)
n
with the implied constants depending only on d, r, R.

We will use the notation E(K, s,n) = E(V(K) — V(K,)) and V(K{1/n)) = V(K) ~
V. (K[1/n]). Using Theorem 2 one can compute E(K,s,n) for different classes of
convex bodies, namely, for smooth convex bodies and for polytopes.

Theorem 3. If Ke X is a €% convex body with positive Gaussian curvature, then
Jors=1,2,..,d

E(K,s,n)~n~2/@+0 (39

Theorem 4. If PeX™ is a polytope, then for s=1,2,...,d—1,
E(P,s,n) ~ n~ V-5t 1), (3.10)
In the last two theorems the implied constants depend on the convex body

(K and P) itself.

In the case when s = d (i.c., when V, is the usual volume) E(P,d,n) ~ n~*(logn)* ™!
according to Theorems 2 and 3 of [BL].

In some special cases Theorems 3 and 4 have been proved earlier and in
stronger form. For instance, Rényi and Sulanke [RS] show that for a smooth
enough convex body KeX2

EK,1,n) = c(K)n~23
with explicitly given c(K). This was later extended to d >2 by Schneider and
Wieacker [SW]:
EK,1,n)~ c(K)n~ 2+ 1)
with explicitly given c(K), again. For polytopes Buchta [Bu 1] (d = 2) and Schneider
{§1] (d > 2) proved
E(P,1,n)x c(P)n~ 4,
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Schneider [S 1] showed further that for all Kex¥™
¢ (Kn~26+D < E(K, 1,m) < c,(K)n~ 1" (3.11)

and that (3.11) is best possible apart from the constants ¢,(K) and c,(K). It would
be interesting to have the analogous result for E(K,s,n). One would expect the
extreme classes to be the polytopes and smooth convex bodies. Thus the obvious

guess would be this: for 1 <5< d+1 and Ke ¥

¢, (K)n= 24+ D < E(K, 5,n) < c(K)n~HE4=s* D),

d+1
2

and for <s<d—1and Kex*

¢ (K)n~1@=3*1D « E(K,s,n) < c,(K)n~ 2@+ D),

If true this would imply, for instance, that for all Kex® E(K,2,n), the surface
area of K minus the expectation of the surface area of K, is about n~/2. 1 find
this quite remarkable. Of course this is equivalent to

VAK)— Vo(K[e]) ~ /% forall Kex>.

For other results and questions on random polytopes see the excellent survey
papers by Schneider [S2] and Buchta [Bu2].

The proof of Theorem 4 is not quite simple and we will need a strengthening
of Theorem 3 of [BL] which we no describe. Let PeX™ be a polytope and define
m(P) as the minimal number of simplices needed to triangulate P.

-d

d
Theorem 5. If PeX "¢ is a polytope and 0 <e < T vol P, then

d—1
volP) ’ (3.12)

vol K(e) £ c(d)m(P)s(log———
£
where the constant c(d) depends only on d.

Our next result is about the Haussdorff distance of K and K,,. This is defined
for K,LeX as

8(K,L)=inf{h:K = L + hB%, L < K + hBY,
It is almost trivial that ES6(P, P,) ~n~ '/ for a polytope PeX .

Theorem 6. Assume KeX'® is a € convex body with positive Gaussian curvature.
Then

2/d+1)
ES(K,K,) ~ (1—°—gf) (.13)
n

with the implied constants depending on K.
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It is easy to see that 8(K, K |¢}) ~ £2/“* 1) for smooth enough convex bodies. So
the similarity between K, and K[1/n] seems to break down here. This can be
explained in the following way. K, is close to K[1/n], but K, is random while
K[1/n] is not—K, is a “random perturbation” of K[1/n]. This occurs at the
boundary of K[1/n] which is at distance n~2/“*!} from that of K. The random
fluctuation of the boundary of K, around bd K[1/n] is what makes this distance
larger by a factor of (logn)#* 1),

4. Definitions and auxiliary lemmata

Let KeX™ A cap C of K is a set C =K H where H is a closed halfspace with
KnH+ . Then H={xeR%a-x2a} for some aeS?"' and axeR'. Here a-x
denotes the scalar product of a and x. It will be convenient to write H = H(a, )
with ¢t = h(a) — a where

h(a) = max {a-x:xeK}

is the support function of K (see [BF]). With this notation ¢t is the width of the
cap C in direction a which we call the depth of the cap. We will also write H(a =1t)
for the bounding hyperplane of H(a,t).

For a cap C =K~ H(a,t) a point teC is called the centre of C if a-z=h(a). A
cap may have several centres but we think of a cap as having a fixed centre, say
the centre of gravity of ali centres. For a cap C with centre z define (when 1 > 0)

Cr =2+ HC - 2). @.1)
Obviously C = C!. It is clear that for 1 > 1
C*>KnH(a i) 4.2)

Now we define a function v:K — R* by
v(x) = inf {vol (K nH): xeH, H is a halfspace}.

Clearly, the set K(v=¢)={xeK:v(x)=¢} coincides with K[c]. Also, K(g) =
K@w=e)={xeK:v(x) < ¢}.

When xeK, a minimal cap of K at x is defined as a cap C(x) with xeC(x) and
vol C(x) = v(x). It is evident that for each xeK a minimal cap exists. The minimal
cap C(x) is, in general, not unique. See for instance when K is a triangle. A standard
variational argument shows that for a minimal cap C(x) = K n H(a,t) the point x
is the centre of gravity of the section K nH(a =t).

For xeK and A >0 we call the set

M(x, ) = Mg(x,A) = x + A{(K — x)n(x — K)} 4.3)

a Macbeath region. Such region were studied by Macbeath [Ma] and by Ewald
et al. [ELR]. A Macbeath region is obviously convex and centrally symmetric
with centre x. We define another map u:K — R! by

u(x) =vol M(x,1). 4.4
Macbeath [Ma] proved that the set K(u 2¢) = {xeK:u(x) = ¢} is convex. It is
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proved and extensively used in [BL] that u and v are very close to each other
near the boundary K. This fact will be crucial for this paper as well.
It follows form the existence of the Lowner John ellipsoid [DGK] that

1
max v(x) 2 —vol K,
nax () 2 g
and

max u(x) = % vol K. 45)

xeK

Now we list some of the facts needed later. Most of them are proved in [ELR]
or in [BL]. From now on we assume that Ke ) %(r, R) and that the centre of the
concentric inscribed and circumscribed balls (of radius r and R, respectively) is

the origin. Define
g1 (T
g0 = &old, 1, R) = 4 (E) r
Lemma A. If M(x,1/2)nM(y,1/2) + &, then
M@y,1) = M(x, 5).

Lemma B. u(x) < 2v(x) for all xeK.

Lemma C. If xeK and v(x) £ g, then
C(x) = M(x,3d)
Jor every minimal cap C(x).

Lemma D. If xeK and v(x) < &g, then 1(x) < (3d)"u(x).
Lemma E. If xeK and u(x) £ (3d)%e, then v(x) < (3d)'u(x).
Lemma F. K[e] contains no line segment on its boundary provided ¢ > 0.

Lemma G. Assume C is a cap such the CnK[e]={x}, a single point. If ¢ < &,
then C = M(x,3d). If int K[&] & &, then vol C < de.

Lemma H. (Economic cap covering) Assume € < &,. Then there are caps K,...,K,,
and pairwise disjoint sets K',,..., K., with K;c K, (i=1,...,m) such that

0 () Kick@®e () K,
i=1 i=1
(ii) vol K, = (6d) %, vol K, < 6.

Lemmal. If0<e<g,and A= 1, then
vol K(v < &) > c(d)A ™4 vol K(v £ Ae)
where the constant c(d) depends only on d.
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Lemma J. Let KeX' and xeK. Then
(i) (1 - v(x))" < Prob(x¢K,)
(ii) Prob(x¢K,) < 2'?21 (:’)(E‘.@)(l — fﬁz’i))"_i.

p- 2

5. Proof of Theorem 1

As E f (K,)is affinely invdriant we may assume that K e ¢4 (r, R) with dr 2 R. Define
gold) = (2d)~*

as in [BL]. We will need a strengthening of the economic cap covering theorem

(Lemma H):

Theorem 7. Assume KeX4(r, R) withdr 2 R. Let 0 < ¢ < go(d). Then there are caps
K,,...,K,, and pairwise disjoint subsets K,..., K, with K;c K;i=1,...,m such
that

@ O KjcK(E)c O K,

(ii) volK;<(15d + 1)%, volK|21(6d) .
(iii) for every cap C with vol C < ¢ there exists an ie{1,...,m} with C = K,.
Proof . (Using the proof of the economic cap covering theorem from [BL]). Choose

a maximal system of points x,,...,x,, from bd K[¢] subject to the condition that
fori#j

M(xi’%)nM(xja%) =d.

This system is finite because the sets M(x,, 1/2) are pairwise disjoint, all of them
lie in K and vol M{(x; 1/2)=2"%u(x;) = (6d) %v(x;)) =(6d) % according to
Lemma D.

Claim 1. For a cap C with vol C < ¢ there is an ie{l,...,m} with C = M(x,, 15d).

Proof. Set C=KnH(a,t,) and define
ty =sup{t>0:H(a,t)nK[c] = &}

Then t, 2t, and C, =KnH(a,t,)> C,. Clearly C;nK[e]# & but (int C,)nK[e] =
. By Lemma F C,nK[€] = {x}, a single point. Then, by Lemma G

C, < M(x,3d). (.1)
On the other hand the system x,,..., X, is maximal so
MG, DAM(x, ) + @
for some ie{1,...,m}. Then by Lemma A
M(x,1) = M(x,,5).
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We show now that

M(x, 3d) = M(x;, 15d). (5.2)
This will follow from a more general statement:
Fact. Assume A and B are centrally symmetric convex bodies with centre a and
b respectively. Assume B < A. Then, for A2 1,

b+ AMB—b)ca+ A(A—a)

Proof. We may assume a=0. Let ceB, we have to prove b + A(c — b)elA. B is
symmetric s0 2b — ce B = A, and 4 is symmetric so ¢ — 2be A. But 4 is convex and

ceBc Aso (1/2)(c+(c—2b))=c—beA. Then ced and ¢ —beA so iceAd and
Mc —b)edA. But b + A(c — b) lies on the line segment connecting Ac and A(c — b):

b+ Ac—b) =%(Ac)+(l ~%)A(c— b)eA,
proving the fact. []
(5.2) foliows from this by choosing 4 = M(x,,5), B= M(x,1) and A =3d.
Now we have by (5.1) and (5.2)
CcCy = M(x,3d) = M(x,, 15d).
Next we define the caps K,,...,K, and the sets Kj,...,K,. Let
C(x;)= KnH(a,t; be a minimal cap at x;. Then vol C(x;) = &. Define
K;=KnH(a,(15d + 1)t;),
K;=M(x,3)nH(a,t).
It is clear that K< H(a,t)nK < K(v<¢). We have seen already that

vol M(x;,1/2) = (6d) %, vol K} = 1/2 vol M(x;, 1/2). The other part of condition (ii)
follows from (4.2). Condition (iii) follows from Claim 1 and the obvious fact that

M(x,,15d) < K,. Finally condition (iii) clearly implies K(v<¢)< | J K, O
1

Now let x,,...,x,eK, se{l,...,d}. Define 4=aff{x,,...,x;} and v(4)=
max {v(x): xe A}. This maximum attained for v is continuous. We write K* for the
space of all ordered s-tuples (x4,...,x;) with x,,...,x,eK. The direct product of
the Lebesgue measure on K defines a probability measure v on K°. We need one
more theorem before we get to the proof of Theorem 1.

Theorem 8. If 0 < ¢ < ¢&y(d), then
v({(%1,...,X)eK"v(A) < e})~ & vol K(v £ ¢). (5.3)
Proof. We only prove that v({(xg,s..., %) (AL €)}) L c(d)e * vol K(v < e). The

other inequality is also true, its proof is more or less straightforward, but we will
not need it in the sequel.
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A simple separation argument shows that if v(4) < ¢ then there is a cap C with
AnK < C and volC £ &. Thus
{(x15-.-sx): 0(A) S &} <« V{(C,...,C): Cis a cap with volC < ¢}

c ) Ki....K),

i=1

where K ,, ..., K,, come from the previous cap covering theorem. Then

V({(crye o x0(A) S E}) S v(Q (K,-,...,KJ)

<Y v(Ki,....K) S m(15d + 1)%¢
1

< (15d + 1Y*2(6dy' &1 Y vol K]
1

<(15d + 1)*2(6d)*c *vol K(v<e). [

Now we prove Theorem 1. K, is a simplicial polytope with probability 1.
Double counting the pairs (F;, F;) where F; and F; are faces of dimension i and j
of K, with F;c F;(and i <j) we get

fK)=Y15 3 lg(j+1)21=(’%f—‘)f,-a<n).

Fi  (FuFyp i+1/% i+1

So we see that we have to prove the inequalities

Efo(K,)Zc,nvolK (%), ) (5.4)
and
Ef;_1(K,) £cnvolK (%) (5.5)

The first inequality follows from (3.1) and (1.1). Yet for further reference we give
its simple proof here:

Efo(K,) =nEvol(K\K,_,)

=n [ Prob(x¢K,_,)dx
xek

2n | (1 —v(x))ydx

xeK

zn | (-v(x)rdx

vo(x)S1/n

gn(l-—l) volK(vgl)
n n
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1
>involK (~),
n

if n >4, say. (We used Lemma J (i) here.)

The proof of the second inequality is more involved. It follows that of Theorem 1
in [BL]. Some notation is needed. Write 4 =aff{x,,...,x,}, u(4)=max {u(x):
xeA}. Then u(z) = u(A) for some zeA which we denote by z,. Clearly

n 1 if convi{x,...,x,;}isafaceof K,
Ef.,_l(K..)=(d)§---§{ VixL ) }dxl...dx,,

0 otherwise

= (Z)j...jProb(Anconv {Xg115ees Xy = D)dxy---dxy (5.6)

where Prob is meant with A fixed and x;, ,,..., x, chosen randomly, independently,
and uniformly from K. Now by Lemma J

{- [Prob(Anconv {xs,,...,X,} = @F)dx, ---dx,
<[ [Prob(z ¢conv{x, y,..., X, ) dx, --dx

<J- jzdzl (" d)(u(?))i(l_u(;A)y_d_idxr”dxd
nod=1(pd wAY' () _wANT
§2A§1 i=ZO( i )(a—l)/Luu{)éx/n( 2 )<1 2 ) e

n d- n—d A i A—1 n—d—i !
2% ( i )(%)(l‘in—) P‘°"(“‘A’§Z>' 7

Here Prob (u(A4) £ A/n) denotes the probability content (in our case, volume,) of

. A
the set of those d-tuples x,,...,x;eK* for which u(4) <-. Then
n

(G5

<”_1("_d)i£exp{—(‘t mn#d_i)}

i=0 il 2‘ni 2n
d_1 jd-1 A A-DE+i) 1
< -= A L e VS
L e { 2}“"{ n 2
< dad-le~H2pdt1i2, (5.8)

Define now ny = [(3d)"4(2d)”%*n]. Then for A< n,

Prob(u(A)§£)=Pr°b( ( ) )
s prov(4nk(vz007) =)
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for K(uzA/n)> K@= (3d)*i/m) if ég (3d) %%y =(3d)"%(2d)"?* according to
n= .
Lemma E (or Lemma 2 of [BL]). Then, for A £ n,, Theorem 8 implies

Prob (u(A) < 4) < Prob (v(A) <34y é)
v n n
2\ A
< cl(d)( (3&)";) volK<v g(w*;)

< ¢,(d) ((3d)d-i-)d- 1 ((3d)y? Ay vol K ( v< 1)
n

né! n

AZd -1
S c4(d) volK(v§l),
where the last inequality is justified by Lemma I. Then by (5.8)

o od=1/y__d\{ 1\ A—1\n-d-i 1
2,1;1 ,-;0( i )(5;) (1_ 2n) Prob<u(A)§_’;)

no 1134—-2 1
£2) e —= e“"zvolK(v§—>
i=1 n n

< c4ld) dl_ ;vol K ( vs —1—) (5.9)
n n

When n > ny we use the trivial inequalities Prob(u(4) < i/n) < landvol K(v < 1/n) 2
1/n. Then for large enough n

ndl—1v°lK(”§;l“)§$§eXP{—%(3‘1)_‘(24)_2"71}.
By (5.8)
n d—1 n__d A i A__l n—d—i )
2‘1:"20:“1;0( ; )(ﬂ) (1— Zn) Prob(u(A)é-r;)

2
§2 Z ded+1/21d—le—l/4e-no/4
A=ng+1

<2 ¥ de"*l’zl"‘le‘*/“—dl_—lvolK(v§1)
n

A=no+1 n
§C5(d)~d—1_—TV01K(U§~I—). (5.10)
n n
Now by (5.6), (5.7), (59) and (5.10)
1 1
Efus(K)S (;’) max ey (@, ¢5(@) Vol K (v < ;)

< const(d)nvol K (v < ;I;) |
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6. Proof of Theorem

Let KeX(r, R) as in the theorem and consider F, an s-dimensional subspace of
R®. Let pr = prg:RY, F denote the orthogonal projection into F. We will drop the
subscript F if is there is no ambiguity. Define L = pr K and L, = pr K[¢]. We need
a cap covering theorem for L\L, (cf. Lemma H).

Theorem 9. There are caps L,,...,L,, of L and pairwise disjoint subsets L', ..., L],
with L L; (i=1,...,m) such that

@ () LeL ()L,
1 1

(i) volL;Zc{d)volL; (i=1,...,m)
where the constant c(d) depends only on d.

Proof . First we replace K by its symmetral K* with respect to F. That is, for each
xeL we compute the (d — s)-dimensional volume of Kn(x+ F') and put a
(d — s)-dimensional ball of this same volume and having centre x into the affine
subspace x + FL. The union of all such balls is K*. It is known [BF] that
K*eX(r, R) and vol K* = vol K. Obviously pr K = pr K* = L.

Now we prove

prK[elcprK[(3d)"2e] if e<e, (6.1)
prK*[de]cprK[e] if intK[e]l+ . 6.2)
Let us see (6.1) first. Assume zebd pr K [¢]. Then there is yepr 'z with v(y) = ¢

and then u(y) = (3d)"“e by Lemma D. As it is well-known, M(y, 1) contains an
ellipsoid with volume at least

d™y(y) = (3d)"d 2.
The symmetral of this ellipsoid is contained in K* so
v*(y)= vx(y) 2 3(3d) A7 e 2 (3d)™ e

Now both sets pr K[¢] and pr K*[(3d)~2%¢] are convex and the latter contains all
boundary points of the first. This proves (6.1).

To see (6.2) assume zeF but z¢pr K[¢]. Then there is a halfspace H with
Hn K[e] = & whose bounding hyperplane contains z 4+ F*. Let H' be the parallel
translate of H such that H'nK[e] is a single point. (H' exists by Lemma F.)
Applying Lemma G to the cap C= H'nK we get

vol(HnK) < vol(H'nK)<de

which means that every point in pr~!(z) " K can be cut off by the cap C that has
volume de at most. As the symmetral of C has the same volume we conclude that
z¢pr K*[de], proving (6.2).

Set now # = (3d)~ 2% and LY =pr K*[n]. It follows form the definition that

L*=FnK*[n]
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and
M (x, ) = M, x(x,4) = Mp_k(x,A) = F A M g(x, 1)

for all xeF and 1> 0.
Choose now a maximal system of points x,..., x,, from bd L* (with bd meant
in F) subject to the condition

MK‘(xi’%)nMK'(xj’ %) = Q

The argument from the proof of Theorem 7 shows that this system is finite. Then,
in the same way as in [BL], Claim 1 we see that

I\L} | Mu(x,, ),
i
and so
L\L: < U M(x;,5.)
1

Now let a; be an outer unit normal to L¥ at x; with g,eF (i=1,...,m). Set
D;=LnH; where H, is the halfspace in R? whose bounding hyperplane contains
x; and has normal a;. Let C; be the “lifting” of D; into K*,i.e,, C;= K* " H,. Clearly
prC;= D, Then, by Lemma G

D; © M.(x;, 3d),
and consequently
D; = M (x;3d).

On the other hand H; = H(a,, t;) with a suitable ¢, Here H(a, ;) can be regarded
as defined through K, K* or L. Set now

Li=My(x,)nH;
and
L: = L @) H(ai, 6t").
Then we see in the same way as in [BL] that the Li-s are pairwise disjoint, L} = L}
and M;(x;,5)<L}. So
U LicI\L}c UL,
1 1
vol L} £ 6°vol D,,
and
vol L, = 4 vol M (x;,3) = 3(6d) ~* vol M (x;, 3d)
= 1(6d)~*vol D,
So we have an economic cap covering for L\Lj}. But we need one for L\L,.

Even more generally, we are going to produce an economic cap covering for
L\L,, with 12 1. Set u=d?(3d)*// and

L,-=LhH(ai,ut,) i=1,...,m.
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Claim 2. L\L,, < | ) L, if int K[4¢] 4 .
1

Proof. (Which will be similar to that of Theorem 7 from [BL].) Take a point
xeL\L,,. We are going to show that x;e L, for some ie{1,...,m}, so we may assume

that x¢ L\L¥ as L\L} = | ] L, clearly.
1

Set v* = vy, and v¥(x) =v. Let aeF be the outer normal to K*[v] at x. Then
the cap C(x)=K*nH(a,t) with xeH(a=1) has centre zeF, say, and the line
segment through x and z intersects bd L} at the point y. Let ¢’ be defined by
yeH(a="t). As v*(y) =n we have

n=v*(y)svolK*nH(a,t)
¢
= {vol,_ [K*nH(a=1)]dt
0

<t'max{vol,_,[K*nH(a=1)]:0<1<t}
<t'max{voly_;[K*nH(@a=1)]0s1<t}.
On the other hand xeL\L,, and (6.2) implies vol C(x) < die = dA(3d)**y. Thus
dA(3d)**n = vol C(x) = vol K* " H(a, t)

voly_[K*nH(a = t)]dt

© ey v

=-max {vol,_,[K*nH@=1)]:0<t5t}.

N~

So we have

t —_

£ = d o e

t |z—yl
Consider now the cap L] from the cap covering of L\Ly containing y. Let z; be
the centre of L and write y; for the intersection of H(a; = 6t;) with the line segment
connecting x and z;. The line through z and x intersects the hyperplanes H(a; = 0)
and H(a; = 6¢;) in the points z' and y', respectively. It is easy to see that the points
7,z,y,¥,x are collinear and come in this order on their line. Then

X—2z x—2z x—2z X—2z z—272 -
| .l=|' ,lél ,l=l |+ zllélx ZI§ .
lyi—zl Y=2Z1"ly=2| ly—zl+lz—2|" |y—z|

So xeL; and the Claim is proved. []
Now in the case 4 =1 we have
vol L, = vol L H(a;, ut)) <y’ vol L0 H(ag, t;) = ' vol D; < const (d) vol L;.
The proof of Theorem 9 is complete. []
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When 1> 1 and int K[Ae] # & we have, similarly,
vol L; < ¢ (d)A*vol L and so

vol ) L < c;(d)4° 3" vol L < ¢, (d)&° vol (L\L?)
i=1 1

<c,(d) A vol (L\L,). (6.3)

But (6.3) remains true (with another constant ¢,(d,r, R) instead of c¢,(d) even if
int K[ie] = . To see this observe first that in this case Ae>1/2w,¢ and
vol (L\L,) £ vol L £ w,R®. Consider a cap C whose bounding hyperplane touches
Kf¢]. Then vol C = ¢ and

e<volC= [ vol,_(pr ' (x)nK)dx
xeprC

Sw;- R *vol,pr C,
and so
vol,prC 2 (R *w,_,) L.

So the left hand side of (6.3) is at most vol L < w,R® and the right hand side is at least
rd s
072 -ty
2
Then (6.3) holds for all 1 = 1 and ¢ < & if the corresponding constant ¢,(d,r, R) is
chosen large enough. We proved
Theorem 10. If 0 <& <&, and s€{0,1,...,d — 1}, then
vol,(L\L,) = const(d,r, R)A~*vol,(L\L,,). O

This result is analogous to Lemma I.

Now we start with the proof of Theorem 2. We assume, without loss of
generality, that KeX"(r, R). We need the following fact (see [H] or [BF]) that
can be taken for the definition of intrinsic volume:

Vi(K)=4 [ vol,(pry K)do(F) 6.4
Fed
where ¥ = 9, is the Grassmannian of the s-dimensional subspaces of R Fe¥,

(') is the Haar measure on % normalized by w(%)=1, and A is a constant
depending on d and s. Thus

E(K,s,n) = AE | vol,(pre (K)\prr (K,))d(F)
<

=4 i LE vol(prg(K)\pre(K,))] do(F) (6.5)

where the application of Fubini’s theorem is easily justified.
We will drop the subscript F from pr, while the subspace F is being kept fixed.
As symmetrisation does not change the value of E vol,(pr K,) we have
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E val, (pr(K)\pr(K,)) = E(vol,(pr(K)) — vol,(pr(K,)))
= E(vol(K*)) — vol,(pr (K}))

= [ Prob(x¢prK*)dx

prK*

= | Prob(x¢K*)dx, (6.6)

prk*

where Prob(x¢pr K¥) is the probability that xépr K¥ for a fixed xepr K*. We
write again v* and u* instead of vg. and .. Let x < F with v(x) =n and consider
the minimal cap D(x} of prK* Then its lifting, C{x)=pr YD) K*
is a cap touching K*{5). Then by Lemma G its volume is at most dn and

{ Prob(x¢K*)dx

prk*

2 [ Q—volCydx= |  (1—volC))ydx

prk* prK\prK*{d/n}

= ( 1- g—z—)"vols(pr(K*)\pr(K* [é]))
n n
= c,(d) volg (pr(K)\pr(K[%])). 6.7

This shows, using (6.4), (6.5) and (6.6) that

E(K,s, )z const(d, s) { vol, ( er(K)\er(K [5])):10)@)
¥

= const(d, s) ( VAK)— V,(K [i]))
n

which is the first inequality to be proved in Theorem 2.
For the other inequality we observe that by Lemma J

. a—1 n u*(x) i “@ n~i
e

Continuing {6.6) and this we get
Evol,(pr(K*)\pr (K}))

d—1 n u"‘(x) i ~E—4—:g§) n—{
LR (-5
_ a d~1 n ﬂ)i(l“m)n—t
Agu--o (1«1)/»5‘«4'(::);1/»(1')( 2 2 =

d-1 n A i A—1\""! . of 8'_
= 251 i§02(i>(—2—;) (1 *7) voL(er \prK (“ %n))‘

3
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Similarly as in (5.8) we have

d—1 n 2 i }’_1 n—i
2 — 1-— <e2pi g™ M2, 6.8
i;o (i)(2n)< 2n ) =¢ ¢ ©8)

K* (u* > é) 2 K*(v* > (3d)"/—l)
n n

provided A/n <(3d) e, According to (6.2)
prK* (u* b (3d)"3) 2prK (v > (3d)3"2)
provided (3d)*A/n < &,. Then for A < ny = [(3d " %,n]
vol, (pr (K*)\pr K*(u* = %))

s vol,(pr K\prK (v > (3d)* ﬁ))
n

By Lemma E

< ¢1(d, 5,7, R)((3d)** A)*vol, (pr K\prK [{D (6.9)
n
where the last inequality follows from Theorem 10. Then splitting the last sum
in (6.7) into two parts we get
no

1
Y, S i ezl"“le“’zcl(d,s,r,R)/l‘vol,(er\erI:;})
A=1 =

i=1

Sc,(d,s, r,R)vol,(er\er[l]). (6.10)

n
It is not difficult to see that
1
vol, (pr K\prK [—]) 2 exp { — 4o}
n
if n is large enough. (We omit the details.) Then

n
- ¥ g2 8- 1o 42
A=ng+1 A=no+1

n
Scyd,s,R) Y AiTle Hemmlt
A=np+1

< c4(d,s, R) i M- 1e=Hyol, (pr K\prK [1])
n

A=no+1

Le,d,s, R)vol,(er\er [1]) (6.11)

n
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Then (6.6), (6.7), (6.10) and (6.11) imply

E(K,s,n) < const(d, s,r, R) | vol, (pr (K\prK [l})dw(F)
3 n

= const(d, s, r, R)(VS(K) — VS(KI:%:D) O

7. Proof of Theorems 3 and 4

We want to compute V(K) — V(K [e]) when K is smooth and when K is a polytope.
According to (6.4)

ViK) - V(K[e])= 4 i vol, (prz(K)\pr(K [£])) deo(F). (7.1

The integrand here is the s-volume of the union of all prpC where C is a cap of
K with CnK[e]l+ & but intCnK[e]= & and such that the normal of its
bounding hyperplane lies in F.

Proof.. (of Theorem 3 which is much simpler.) Let Ke'(r, R) be a ¥* convex
body with positive Gaussian curvature. As the curvature of K is bounded away
from zero and infinity, C is very close to a cap of an ellipsoid if € >0 is small
enough. One can estimate vol, prpC easily:

¢, (K)esH VD < yol preC < ¢, (K)gt* @+,

Moreover, pre K satisfies the conditions of Theorem 4 in [BL]. So applying that
theorem, Theorem 1 of [BL] and a result of Groemer [Gro] we get

vol,(pr(K)\prpK[e]) ~ vol, Prp(K)(verm < e(K)et e “) ~ gD

with the implied constants depending on K (and independent of F and ¢). This
proves Theorem 3. []

Proof of Theorem 4. Let Pe A %(r, R) be a polytope. We. prove first that
V{P)— V,(P[e]) = const (P)g}/@~s* 1),

Let Q(a, @) denote the circular cone with apex O and half-angle « (0 < o < 7/2), its
axis having direction aeS?”'. Clearly, for almost every Fe% there is an
(s — 1)-dimensional face, L, of P and a circular cone Q(a, «) such that P = L + Q(a, o)
and there is a hyperplane H with normal aeF supporting P with HnP=L.
(According to our notation convention H = H(— a,0).) Moreover, L (and then H)
can be chosen so that

vol,_, L<¢,(P)vol,_,pryL

holds. This can be seen in the following way. pryP is an s-dimensional polytope
with surface area larger then that of r B* and number of facets less than f,_(P).
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Further vol,_;L £ w,.R*"! for all (s — 1)-faces of P. Then
max {vol,_,(prgL): pryL is a facet of pry P}

surface area of prpP _ (s — e, ,r* 2
- Js-1(P) T [P
So for almost every Fe# there is an (s — 1)-face, L, of P such that

(i) pryL is a facet of prpP,

(i) Pc L+ Q(a,o) for some aeF and a< 7—2{,

s—1 fr\*!
iii) vol,_, prgL2> — I, L.
(iii) 1PIp _.fs—i(P)(R) vol,_y

Then there exists an angle 4, < /2 and a set F <% with o(#)> 1/2 such that
there exists an (s — 1)-face L of P satisfying (i), (ii) and (iii) with « = & in (ii). Here
oo depends only on P. It is easy to see that for the cap C(a, t) = PN H(— a,t) we have

volC(a, t) ~t¢ **1vyol,_, L

when t £ t, is small enough (where t, and the constants implied by ~ depend
only on P). Moreover

vol, pryC(a,t) ~ tvol,_, L.
Let us fix ¢t so that vol C(a,t) = &. Then pryC(a,t) c prpe P\pryP[e] and
vol, pr;C(a, t)~e”‘"’“’:
with the implied constants depending only on P. Then we get
vol(pry P\preP[€]) Z c,(P)e /=" 1)
for all Fe#. So by (7.1)

V{P)— Vi(P[e])= 4 ; vol, (pr; P\pry P [¢]) do(F)

2 4 { cy(PeH=* Vi F)
F

> C3(P)8”(d-’+ b

Quite similar arguments show that for all Fe# and for all caps C=PnH{a, 1)
with aeF and int CnP{c] = & one has

vol, prpC < ¢ (P)et/@ s+,

Then by (1.1), Theorem 3 of [BL] and (7.1)

V{(P) — V,(P[e]) S cs(P)et/d-s+ “(10g§>3_ 1
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which is only slightly weaker than the inequality we have to prove, namely:

V,(P)— V(P[£]) < const (P)g!/@~** 1 (72)
for smallenough &. Set p = d — s + 1. We will prove this by showing that for all Fe%
vol, (pry P\prp P[]) < const (P)e'/®. (1.3)

We drop the subscript F. By (6.2)
pr P[] o pr P*[ds]
and by Lemma B
P*[de] = P*(v* = de) o P*(u* = 2de).

Clearly pr P = pr P* = P*AF is a polytope Q in F ~ R* and Qe *(r, R). Define
K =conv(QurB?). Then KeX*r,R), prK=KnF=Q and K =K* < P*. Then
ug(x) < u*(x):= up«(x). Consequently

P*(u* = 2de) o K(ug = 2ds),
and we have pr P[¢] = pr K(ug = 2de) and so
pr P\pr P[¢] = pr K\pr K(ux = 2de)
c FNnK(ug < 2de).
Set n = 2de. We will prove (7.3) by showing
vol, F n K(ug £ n) < const(P)n'/? 7.4

when 1 < no(d,r) = 27 rw,.

Let xeFnint K, let zebd K be such that x is on the line segment connecting
0and z. Write T = |z — x| and let L be the facet of Q containing z. Set t = dist (x, aff L)
and choose ¢ >0 maximal with

x+gB*cK.
The facts KeX%r, R), QX *(r, R) and some standard arguments show that
t~T~p
ug(x) ~ 4" uy(x) (1.5)
ug(x) ~ tg (%)

where H(t) is the hyperplane (in F) parallel with L and containing x (so dist (H{(t),
aff Ly =1). Set

L° =conv(Lu{0})
g@®)=QnH(),
and A
h = dist (0, aff L).
Clearly
vol,FNnK(ux )= vol,[L°nK(ux S )] (7.6)
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where the summation is taken for all facets L of Q. We assume s 22 ascase s=1
of Theorem 3 is proved in [S1]. Moreover

vol,L[L°nK(ug £n)] = hf vol,_ [L°nH(t)nK(ug < n) ] dt (71.7)
t=0

where the upper bound h/2 in the integration is explained in the following way:
If t > h/2 2 r/2, then

My(x)> x + %B“,

consequently uy(x) = 2% w, = n,(r,d). We continue (7.7):

w2
| vol,_s[L°nH(O) N K(ug Sn)]1dt
Zo

t

hj2
< jo vol,_, I:LonQ(t)(uQm <cq g;)]dt

t=

to hi2
< | vol,_ (L°nH(®)dt + | vol_, Q(t)(uqm <cs g;)dt (7.8
t=0 to

where the first inequality and constant ¢ = ¢¢(d, 7, R) come from (7.5) and t, is

defined as
(C6'4'23_ ldd") Up
to=| 2"t
vol L

if this is less than h/2, and ¢, = h/2 otherwise. We estimate the first integral in the
right hand side of (7.8):

to fo

fvol,_,[L°H(t)]dt < | vol,_ Ldt =tyvol,_, L

0 0

< (ce2* 1d) oy r(vol, _, Ly~ 1e
< (ce2 1dY P AR oo, )T S (PR (1.9)
Using the definition of ¢, (when f, < h/2) we have for t = ¢,

c(,ﬂs voI,_lstols-lQ(t)
P24 T 4df

b

because vol,_Q(t) = vol,_  Q()nL° = volsulQ(g)mL" =2"6"Vyol,_,L. So we
may apply Theorem 5 to Q(t).

tPvol,_,0(t)\* 2
vol,-lg(t)(um,, < c:’—,,) <Cls— 1)m(Q(t))c5§(log———;j—Q—(—’)
where C(s — 1) is the constant in Theorem 5 and m(Q(t)) is the minimal number
of simplices needed to triangulate the polytope Q(t). Clearly m(Q(t) < cg(P) for a
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suitable constant depending only on P. So the second integral in the right hand
side of (7.8) can be estimated as follows:

h{2 '7
§ vol,.; 0() (uQ(,, <ce E;) dt
to

h/2 ’4 s—2
< C(s—l)cs(P)csg(logM) dt
to

Cel
h/2 P s—1\s-2
< Cls—Deg(P) | E‘ﬂ(mgﬂ dt. (7.10)
to tp 66)]

When s=2, we can integrate simply, and the definition of ¢, shows that this
is less than const(P)y!’?. When s > 2 we substitute
_tPo,_R*7!

14
CeMl
and
_ tgws_le—l _ 2s+1ddws_le—-1

ceM vol L

1.

v

Yo

We continue (7.10):

© 1/p s—2
< C(s — 1)cg(P) ! — 51( Cell ) yu,,-l(logy) dy
ws-lR o P

C‘)s—lR-'_1 y
B 1)cg(P)( con )77 oryy?
= pws_le—l ws_le—l y2-1/p

é CQ(P’ S)ﬂl/p-
So we get from this and (7.9) that
vol,(L° n K (ug < 1)) < const (P, s)n'/?.

The number of terms of the sum in (7.6) is bounded by a constant depending on
P and independent of F. So we proved (7.4). [

8. Proof of Theorem 6

We may assume KeX'4, ie., vol K = 1. First we prove that
l 2/d+1)
E8(K, K,) 2 const (K)(ig-f> .
n

A certain e€(0, 1) will be fixed later. Take a maximal system of pairwise disjoint
caps C,...,C,, with volC; =¢&. We show that

cl(K)e”("‘ DI+ <y < ¢, (K)g ™ DI+ D) (8.1)
for small enough &. According to Theorem 8 of [BL]

Vol K(g) ~ 2@+ 1)



694 1. Béarany
with the implied constants depending on K. As

U C,<Kl(g)

1

the right hand side inequality of (8.1) follows. To see the other inequality we claim
that .

() C3 > K(e).

(For the definition of C} see (4.1).) Consider yeK(g) and a minimal cap C(y) with
centre z. Let C, be the cap “parallel” with C(y) and such that Cy[)K[e] = {x}, a
single point. We will prove the existence of ie{1,...,m} with Co < C; provided &
is small enough. As K is a convex body with positive Gaussian curvature, K is
very close to an ellipsoid E in a small neighbournood, N, of z. Let
C;=KnH,;(i=0,1,...,m). Then the caps C; that liec in N are very close to the
caps D, = En H; of E. The maximality of the system C,, ..., C, implies ConC; %+ &
for some ie{l,...,m}. Then DZnD?+ & can be seen easily. This shows (by a
routine argument) that D2 <D} which, in turn, implies C, < C;. So indeed

U C? o K(¢) and (8.1) is proved.
1
It is clear that, for small enough ¢, the depth of the cap C,, h(C)) satisfies
c3(K)e2 D < B(C)) = cy(K)eHD, 8.2

Choose now ¢€(0, 1) so that

gm@ DI gy (8.3)

Cz(K)"

This is possible for the function on the left hand side is continuous and decreasing
in (0,1). It is 0 at e=1 and tends to infinity as ¢— 0. It is easily seen that the
solution to (8.3) satisfies

Z—}%l%'gj <e< Z_:___;l%g!__n 8.4
(at least for n large enough). Now
Prob (§(K, K,) > c4(K)e*4* 1)
2 Prob(ie{l,...,m}: C;nK, =)
=k5"_j (=1 T Prob((Cyu-uC)NK, =)
=1

iy i

1(___ 1)k+1 (:)(1 - ke)"

m . m—k(f & \
(k)(l~ks)[1—k+1(l l—ks) J (8.5

k

M=

1]

1=

k=1
kodd

g1
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£
1—ke

The expression rl:'-l_- f(l - ) is decreasing in k and for k=1

—1 n
’—"-7(1—18 ) <2 ey gie, (K@) g =i,
— &

We continue (8.5):

P Pty SPRELEN - uyq _ gt — 1y 1K)
( )(1 )[1 3 (1 - )]QCI(K)S(d DI — ey 2)2c2(1<)'

Then

ES(K, K,) 2 ¢4 (K)e24+ 1) Prob (8(K, K,) > c4(K)e2/4+ V)
o Ca€1 (d 2 log n)zl(‘” b

- d+1 n
10 n 2/d+1)
s(K)( & )
indeed.
Next we show
logn\2/@+ D
Eé(K, K,,)<const(K)( ” ) . (8.6)

We write K' for the inner paarallel body of K with distance t. Using the fact that
K is close to an ellipsoid at any point of its boundary it can be seen that

vol(CN KY) 2 ce(K)t@* /2 =: £(t)
for every cap C of depth 2t. This implies
Prob (8(K, K,) > 2t) < Prob(vol (K'\K,) 2 f(2)).
Then by Markov’s inequality (see [R])
Evol(K"\K,)
o

1 2/d+1)
t= c7(K)( °f ")

Prob(6(K,K,)>20 <

We choose

and show that

(d+3)/d+1)
k’g") : @7

Evol(K'\K,) <tf(t)=cec, (
n
This will prove (8.6) because
Ed(K,K,) < diam K-Prob (5(K, K,) > 2t) + 2t Prob(6(K, K,) £ 2¢)

log n)ZI(d +1)

Stdiam K + 2t < const (K)(
n
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L d+31 . .
To prove (8.7) one checks first that xeK"* implies u(x) = Sd—:l%ﬁ if ¢;(K) is

. d+3
chosen large enough. Then, setting p = 53—}—110gn

Evol(K"\K,)< | Prob(x¢K,)dx

- #(x)2p/n

-t /'p M(X) i u(x) a—i
u(x)‘Lp/nZi;O(i)(T) (1_T> &
L Y IAY AL A—1\*F
l;ﬂa;(i)(%) (1_ 2n )

n
< Z edtiizya-1,-4/2
A=[p]

IIA

A

n
éea+1/2e~(5/4)a+3/d+110gn z Jd-1g- 44
A=[p}

< const (d)n~ /94 +3/d+1

This proves (3.7) when n is large enough. []

9. Proof of Theorem 5 and the auxiliary lemmata

Most of these lemmata are proved in [BL]. Lemma A comes from [ELR]. Lemma B
which is quite easy is proved in [BL]. Lemma C,D and E follow in the same way
as Lemma 2 in [BL] except that, at the end, r and R must not be eliminated.

Proof. (of Lemma F). Let x, yebd K[e] and assume z =3(x + y)eK[¢] as well.
Then there is a minimal cap C(z) with volume &. C(z) cannot contain x (or y) in
its interior since otherwise a smaller “parallel” cap would contain x (or y). Then
C(z) must contain both x and y on its bounding hyperplane H. Then C(z) is a
minimal cap for both x and y. But the centre of gravity of K" H cannot be both
x and y at the same time unless x=y. [J

Proof. (of Lemma G.) Denote the set of outer normals to K[e] at z by N(z). If
int K[e] # ¢, then K[¢] is a convex body again. It is well-known (see, e.g., [Ro])
that N(z) is a closed pointed cone and it coincides with the convex hull of its
extreme rays:

N(z)=convext N(z).

For beS’"! define C® as the unique cap C’=KnH(b,t) such that
CPnK[e]+ & but int C°nK[e] = .

Our first aim is to show that vol C® = ¢ if beS?~ ! is the direction of an extreme
ray of N{z). To prove this we use a classical result of Alexandrov {see cf. [S3])
stating that at almost every point z on the boundary of a convex body the set of
outer normals at z is a halfline (which is the same as the supporting hyperplane
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at z is unique). If the convex body is K{&] and zebd K[e] is such a point then we
write b(z) = N(z)n§* 1.

Notice first that N(z) is the polar of the minimal cone whose apex is z and
which contains K[¢] (see [Ro]). So there is a vector ueS? ™! such that u-b =0 and
ux <0 for all xeN(z),x & Ab(4 > 0) and such that there are points z(t)ebd K[¢]
(for ¢ > 0 small enough) with

[(z(t) —z)—tu]=0(t) as t—O0.

Choose now a sequence z,ebd K[¢] (using Alexandrov’s theorem) very close to
z(t = 1/k), ie.,

|(z,‘—z)—%u] =o(%> as k— oo,

and such that b(z,) exists for all k=1,2,.... We may assume that lim b(z,) = b,
exists for §4~ ! is compact. It is easy to see and actually well-known that b,eN(z).
Assume b, = b. Then, as b(z,)eN(z,)

02 bz (y—zd)
for every yeK[¢]. In particular, for y =z we get

0=b(z)(z—z)= — % b(z) u+ o(%)

1 1
>ﬁbo-u+o<z)>0
for k large enough. A contradiction. So by, =b. Then the continuity of the map
b— vol C? implies vol C® =¢.

Now let a be the outer unit normal of the bounding hyperplane of the cap C
{(from the statement of the lemma). Then aeN(x) and so aeconvext N(x). This
implies by Caratheodory’s theorem the existence of vectors b,,...,b,eS? ™! such
that each of them represents and extreme ray of N(x) and such that g is in the
cone hull of b,,...,b; Then C*= C is contained in

d
U et
i=1

This proves that vol C < dvol C% = de.

This shows finally that every C® with vol C* = ¢ is a minimal cap. Then we have
C? = M(x,3d) from Lemma C provided ¢ <g,. So C% < M(x,3d) for i=1,...,d.
Consequently

d
Cc U CheM(x,3d. O
i=1

Lemma H is Theorem 6 and Lemma I is Theorem 7 in [BL]. Finally, Lemma
J {i) is simple and its proof is given in the beginning of the proof of Theorem 1
in [BL] and Lemma J (ii) is formula (3.6) from [BL].
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Proof of Theorem 5
When P =3S§ is a simplex with volS =1 then a simple checking of the proof of
Theorem 3 of [BL] shows that

a1
volPv<e) S (d)e (logl)
€

1 L .
with ¢, (d)=2? or anything larger, when 0 <¢ < i When P =S is a simplex with

arbitrary volume then we use the fact that

vol K(v £ evol K)
vol K

does not change when a (non-degenerate) affinity is applied to K. So

vol S(v < -—Em-volS)
vol

volS(vLe) = T vol §
vo
a-1
< cl(d)-~E~~ (Iogﬂ)—lg) vol §
vol S €
1 d-1
= cl(d)e<logvo S)
g

asclaimed. Now when P = | } §;is a triangulation of P with m = m(P), then clearly
1

volP(r<g) < i vol S;(v; £'¢)
i=1

3

1
where v, =v5,. Ife < ¥ vol §;, then we apply the previous step. And if £ > Zj?vol S

d
then

d-1
vol Si(v; £ &) S vol §; S 4d%e < cy(d)e (log vol P)

&

if ¢,(d) is chosen large enough. Then

volP(v=¢)< i vol S;(v; S ¢)
i=1

volP)"‘1

< max(c,(d), c,(d))m(P)e (log ;

= c(d)m(P)s(logygg—Ij)d_l. 0
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