
CONVEX BODIES, ECONOMIC CAP COVERINGS,
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I. BARANY AND D. G. LARMAN

§ 1. Introduction. Let K be a convex compact body with nonempty interior
in the d-dimensional Euclidean space Rd and let x , , . . . , xn be random points
in K, independently and uniformly distributed. Define Kn = conv {xx,..., xn}.
Our main concern in this paper will be the behaviour of the deviation of vol Kn

from vol K as a function of n, more precisely, the expectation of the random
variable vol (K\Kn). We denote this expectation by E(K,n).

There are few results known about E(K, n), mainly when d = 2. (The case
d = 1 is trivial.) Renyi and Sulanke [18,19] proved that for smooth enough
convex bodies K<^ R2

^const (K)n~2/\ (1.1)

where const (K) denotes a constant depending on K only and the notation
f(n)~ g(n) means that/and g are asymptotically equal, i.e., \imf(n)/g(n) = 1
when n -> oo. This has been extended to smooth enough convex bodies Kci R*
by Wieacker [24], who obtained

, «)«const (K)n~i/2. (1.2)

Buchta [4], see also Renyi and Sulanke [18], proved that for a convex polygon
P^R2

E(P, n ) « const (P)n' log n. (1.3)

Little is known in Rd. Wieacker [24] determined E{Bd,n) where Bd denotes
the unit ball of Rd, obtaining

E(Bd,n)~const {d)n-2/(d+1). (1.4)

Groemer [11] proved that for a convex compact body KcRd with
vol *:=volBd

E(K,n)^E(Bd,n), (1.5)

with equality, if, and only if, K is an ellipsoid.
Until quite recently, nothing has been known about the case of general

d-polytopes when d>2. Buchta [5] proved E(T, n)~-4n~\\og n)2 where T
denotes the three dimensional simplex. Dwyer, Kannan and Lovasz [14]
proved that

£(P, M)=S const (P)n~'(\ogn)d

for a polytope P<= Rd. This was improved later by Dwyer [8] to

£(P, n )« const (P)n~\logn)d \ (1.6)
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They also proved that for a polytope P having a simple vertex (i.e., a vertex
where exactly d facets meet)

E(P, n)^const(P)n~\\ogn)d~x. (1.7)

For further information on the expectation of the number of vertices,
surface area, mean width, etc. of Kn we refer the reader to Buchta [5], Dwyer
[8], Gruber [12], Schneider [22].

We are going to relate E(K, n) to another quantity which we now describe.
First, define a map v.K-^R as

v(x) = min {vol (K n H): x e H, H a halfspace}.

Next, for e > 0 define

Sometimes we will write K(e) as a shorthand for K(v^ e). Here our main
result is

THEOREM 1. Assume K is a convex compact body in Rd with vol K = 1.
Then, for n 5s no(d) we have

const vol K(l/n)=sE(K, «)=s const (d) vol K(l/n). (1.8)

Theorem 1 means that E(K,n) is of the same order of magnitude
as vol K(\/n). We will write this as vol K(l/n)~ E(K, n) so the notation
f(n)~g(n) means that lim inf/(«)/#(«)>0 and lim inf g(n)/f(n)>0. This
notation implies two constants that are independent of n. We mention that
in Theorem 1 the constants are independent of K as well. Actually, one of
them is universal and the other depends on d only.

Theorem 1 can be used to determine the order of magnitude of E(K, n)
for different classes of convex bodies in Rd. First we prove a general upper
bound for vol K(l/n)~ E(K, n).

THEOREM 2. Let K <=• Rd be a convex compact body with vol K = 1 and let
£>0. Then

const (d)e(\og(l/e))d'1^vol K(e). (1.9)

This theorem is best possible (apart from the constant) as shown by the
polytopes.

THEOREM 3. Let P <= Rd be a polytope with vol P = 1 and let e & 0. Then

volP(e)«cons t (P)e( log( l /e ) ) d l . (1.10)

Theorem 2 and 3 show that vol P(e)~ e(log ( l /e)) d" ' with the implied
constant depending on P. This, together with Theorem 1 proves that for the
class of polytopes E(P, n)~ n~'(log n)d~\ This result has been obtained
independently by Dwyer [8]. The other extreme class of convex bodies is that
of the smooth ones. We state an asymptotic result for this class without proof
(see Leichweiss [26]).
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THEOREM. For a <#3 convex body K<=Rd with vol X X ) and positive
Gaussian curvature K and for e>0 we have

vo\K(e)~const (d)l [ K1/(d+1)ds\e2/(d+l\ (1.11)
SK

where the integration is taken on the boundary, SK, of K.

This theorem was also proved by Buchta, Gruber, Miiller [6]. They noticed
that the right-hand side here is a constant multiple of the affine surface area
of K (cf. Blaschke [3]) and so Blaschke's affine isoperimetric inequality implies
that among all <<?3 convex bodies of unit volume vol K(e) is the largest for
the ellipsoids.

Theorem 1, the Theorem above and Groemer's result (1.5) show that for
a <#3 convex body KaRd, E(K,n)~ n~2/(d+1) with the implied constants
depending on K. We are going to prove a theorem that will also yield this.
Some preparations are needed. We write B(p, x) for the ball of radius p and
with centre x e Rd. Let p be a point on the boundary SK of the convex compact
set K c Rd. Assume there is a unique outer normal a (with \a\ = 1) to K at
p. Then we call the point p p- circular if p > 0 and

KcB(p,p-pa).

The set of points that are p- circular for some p > 0 are called circular.

THEOREM 4. If the set of circular points of the boundary of K has positive
(d — I)-dimensional measure in SK, then i

vol K{e)2*const (K)ev(d+1). f

It is clear that for smooth enough (^3, say) convex bodies the conditions |
of Theorem 4 are satisfied. Thus for smooth convex bodies K we have from
Theorem 1, 4 and (1.5) that E(K, n)~n~2/(d+1). '•

What happens between these two extreme classes is not a mystery: it is the
usual unpredictable behaviour. Using (1.5), (1.10) and a general theorem of
Gruber [13] (see Schneider [22] for a similar application) one can show this.

THEOREM 5. Assume <w(n)-»0 and fl(n)-» oo as n-»oo. Then for most (in
the Baire-category sense) convex bodies K <= Rd with vol K = 1 one has, for
infinitely many n

E(K,n)<n-1(\ogn)d-1n(n), ;

and also, for infinitely many n ,

E(K,n)>n-2/(d+l)<o(n). ?

§2. Economic cap coverings. One of the main tools in proving Theorem
1 will be the construction of an economic cap covering of K(v^e). For a
closed halfpsace H the set K n H is called a cap of K whenever it is nonempty.
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THEOREM 6. Assume a convex body K <^ Rd is given with vol K > 0. Take
e with 0 < e < eo(d) = (2d)~2d. Then there are caps Kt,..., Km ofK andpairwise
disjoint subsets K[,..., K'm, K',<= Kt (i = 1 , . . . , m) such that

(i) U7K'
(ii) vo\Ki

(iii) volK'i

This is what is called economic cap covering in the title. In Ewald, Larman,
Rogers [9] there is another economic cap covering theorem for the inner
parallel body of K (instead of K(v^e)). Our proof of Theorem 6 is an
adaptation of the one in Ewald, Larman, Rogers [9].

Actually, K\K(v =£ e) is a certain kind of "inner parallel" body to K. One
may wonder then if its volume is a convex function of e or not, or, what is
the same, if vol K(v^ e) is a concave function of e or not. Maybe the d-lh.
root of vol K(v =£ e) is concave. We do not know the answer to these questions.
However we can prove some concavity type property of vol K(v^e) that will
be useful.

THEOREM 7. Under the assumptions of Theorem 6 one has, for A 3= 1,

vol K(u=s e) s= const (d)A~d vol K(v^\e). (2.1)

We mention a Heilbronn type consequence of Theorem 6.

T H E O R E M 8. Assume P<^Rd is a convex polytope with n vertices and
vol P > 0. Then P has (d +1) vertices xo,xlf... ,xd such that

vol (conv {x0, . . . , xd})/vol P=s const (d)n-id+1)/(d~l\ (2.2)

This is a Heilbronn type result (cf. [15, 20]) because it says that among n
points in convex position in Rd there is a simplex with small relative volume.
This result is known in the plane in a sharper form, see Renyi, Sulanke [19].

Theorem 8 is related to a theorem of Arnold [1] (when d =2) andKonyagin,
Sevastyanov [16] (when d > 2) which states that for a lattice polytope P<= Rd

with n vertices and positive volume one has

const(d)nM+1)/(d"1)«volP. (2.3)

Theorem 8 can be regarded as an extension of (2.3) to the case of general
(non-lattice) polytopes. Actually, (2.2) implies (2.3) if the lattice polytope P
has no rf+1 vertices on a hyperplane because then in the left-hand side of
(2.2) the volume of the simplex is at least \/{d!). In fact, the results of Arnold
and Konyagin, Sevastyanov are contained in the results of G. E. Andrews [25].

§3. Notation, definitions, basic properties. A cap C of K is a set
C = K n H where H is a closed halfspace and K n H is nonempty. Then
H = {xeRd: a.x^a} for some ae Rd with \a\ = 1 and aeR\ Here a.x
denotes the scalar product of a and xeRd. It will be convenient to write
H = H(a, t) with t = h(a) - a where h(a) = max {a. x: xe K} is the support
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function of K. With this notation / is the width of the cap C in direction a.
In the same spirit we write H(a, /,, t2) for the strip between the hyperplanes
H(a, tt) and H(a, t2).

For a cap C = KnH(a,t) a point zeC is called the centre of C if
a. z = h(a). A cap may have several centres but we think of a cap as having
a fixed centre, say, the centre of gravity of all centres.

For a cap C = K n H(a, t) with centre z we define (when A >0)

C A =z + A(C-z) . (3.1)

Obviously C1 = C. It is easy to see that for A s 1 one has

C*^KnH(a,\t). (3.2)

When xe K, a minimal cap is defined as a cap C(x) with xe C(x) and

vol C(x) = v(x) = min {vol Hn K: xe H a halfspace}.

Let us write H(a = t) for the bounding hyperplane of the halfspace H(a, t).
A standard variational argument shows that for a minimal cap

= KnH(a,t)

the point x is the centre of gravity of the section K n H(a = /).
For xe K and A > 0 we call the set

(3.3) j

a Macbeath region. Such regions were studied by A. M. Macbeath [17] and
Ewald, Larman, Rogers [9]. A Macbeath region is obviously convex and !
centrally symmetric with centre x We will write M{x) = MK(x) = M(x, 1) ?
when convenient. Define a map u : K -> /? as

u(x) = vol M(x).

Macbeath [17] has shown that the set K(u s? e) = {xe K: w(x)3= e} is
convex. The convexity of the set K (v s= e) is trivial because it is the intersection
of closed halfspaces. It turns out that K(v^e) is "close" to K(u3*e). ,

THEOREM 9. Assume 0< e < et(d). Then

and

vol ( ( ) 1 )

where e^d) and c,(d) are constants depending on d only.

Here one can take
3d- (3.4)

We will postpone the proof of this theorem till the last section because we
will not use it in the paper.

Denote by B(r) or Bd (r) the ball of radius rand centre 0 in Rd. Throughout
the paper we will assume that the given compact convex body K <= Rd (with



CONVEX BODIES, ECONOMIC CAP COVERINGS, RANDOM POLYTOPES 279

vol K>0) is in "standard form", i.e.,

B(r)cK^B(R) and dr^R. (3.5)

It is well-known (see [7] for instance) that any convex compact body can be
transformed by a volume preserving affine transformation into a body K in
standard form. Further, it is clear that such a transformation does not change
the quantities vol K(v^e), vol K(w=se) or E(K, n) when vol K = l.

The assumption vol K = 1 in the theorems is made for convenience. What
we really need is vol K > 0. At some points we will have to consider sets K
with vol K ̂  1. Then \o\ K(v^e) is not affine invariant and it is better to
consider instead

volK(v^e\olK)/vo\K (3.6)

which is affine invariant.

§4. Proof of Theorem 6. We start with two lemmas.

LEMMA 1. u(x)^2v(x).

Proof. Take a halfspace H with xe H. Then

u(x) = vol M(x) =s2 vol (M(x) n / /) =s 2 vol (K n H),
so

u(x) =s 2 min {vol (K nH):xeH} = 2v{x).

LEMMA 2. v(x)^(3d)du(x) if v{x) ̂  (2d)~2 d or if u(x)^(\2dy)~d.

Proof We prove first that v(x) =s (2d)'2d implies v{x) =s (3d)du(x).
Take a minimal cap C(x) = K n //(a, f). As we mentioned earlier JC is the

centre of gravity of the section K n H(a = <)• Then, by Lemma 2 of Ewald,
Larman, Rogers [9],

C(x)czM(x,3d) (4.1)

provided B(r/2)nH(a, t) is empty and t^r/4.
Assume now that (4.1) fails. Then either B(r/2) n H(a, t) is nonempty or

13= r/4. We show now that both cases contradict the condition u(x)«s(2d)~2d.
In the first case, i.e., when B(r/2)nH(a, t) ̂ 0, the set B(r)nH(a,t)

contains a cap Cr of B(r) whose width is r/2. Moreover, by (3.5),

C = X n H(a, f) 3 B(r) n //(a, 0 3 Cr

so vol C(x)3=vol Cr. A simple computation shows now that vol Cr3=(2d)"d.
In the second case when J3= r/4, i.e., the width of C(x) in direction a is

at least r/4, let z be the centre of C(x). Consider the cone L with apex z
whose base is the intersection of B(r) with the hyperplane through 0 and
orthogonal to a. The height of this cone is h{a)^R and its volume is

where o)d-x is the volume of Bd'~\ the unit ball of Rd~\ The cap C(x) contains
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the part of this cone L lying in the strip H(a, 0, t). The volume of this part is •

d - 1 f

f - l — ddr"<od(u>d^/«>d)d-d

(4d)-dRd<od(u>d_i/a>d)d

So vol C(x)^(2dY2d. This contradiction shows that (4.1) holds. Then
obviously, v(x)^(3d)du(x).

To finish the proof of the lemma we prove now that u(x) =s (12d3)~d implies
v{x)^(2dy2d. To see this we claim that

Both sets here are convex (the second by Macbeath's result [17]) and both of
them contain the origin. When x is a point on the boundary of K(v^ (2dy2d),
i.e., when v(x) = {2dy2d, then by the first part of this proof,

Now we turn to the proof of Theorem 6. Consider the set K(v5* e) and
choose a maximal system of points xx, x2, •.., xm from the boundary dK(v^ e)
of the set K (v s= e) subject to the condition that

)nM(x,-,|) = 0 when x^Xj. (4.2)

This maximal system is indeed finite because the sets M(x,-, \) are pairwise
disjoint, all of them lie in K and

vol M(x,, I) = 2~d vol M(xt, 1) = 2-"u(x,) & (6dydv(Xi) = (6dyde (4.3)

according to Lemma 2.

CLAIM 1. K(v^ e ) c U{M(x,, 5): i = 1 , . . . , m}.

Proof. Consider any point y"e K(v*s. e). As Oeint K(v^ e), the halfline
stemming from 0 in direction y" intersects the boundary of the convex set
K(v 3= e) and K at the points y and y', respectively. Now xx,...,xm form a
maximal system in 8K(v s= e) with respect to (4.2) and y e SK(v 5= e). So there
is an i such that

Then, by Lemma 1 of Ewald, Larman, Rogers [9],

)cM(x, ,5) . (4.4)

We will prove now that y'e M(y, 1). This will show that the line segment
[y, y'] and, consequently, the point y"e [y, y'] lie in M(y, 1) and this will prove
the Claim.
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Assume y'i M(y, 1). On the line through 0 and y let z be the point at
distance r from 0 and such that 0 lies between z and y. Then ze B(r)1^ K
and so y' £ M(y, 1) implies

Consider now the minimal cap C = C(y) = K n H. Clearly, H cannot contain
0 for otherwise C would contain "half" of the ball B(r) which has volume
\rdu>d *z\d~d > e =vol C. Then H must contain y'. Then H must contain
"half" of the cone L whose apex is y' and whose base is the intersection of
the set conv ({y} u B(r)) with the halfspace orthogonal to, and passing through,
the vector y. Computing volumes again

Now we have an economic cap covering of K(v =s e) by Macbeath regions.
We are going to turn it into a covering by caps.

For this end consider the minimal cap C, = C(x,) = X n/ / (a , , f,), for
i= 1 , . . . , m. Define

Ki = KnH(ai,6ti),

We claim that the sets Kt,K'i satisfy the requirements of the theorem. First,
I as the sets M(x,,3) are pairwise disjoint, so are the sets K\. According to

(4.1), C,cM(x,,3d) so

vol K\ = \ vol M(xlt\)=\{6dYd vol M(x,, 3d)
d \o\Ci=\(6dYde.

One can get vol K't 3= (6d)~de from here by observing that the central symmetry
of M(Xj,3d) and (4.1) imply 2 vol C;«vol M(x,, 3d).

Notice that M(x,-, 1) lies in the strip H(af, 0, 2f,-). Then M(xt,5) lies
in the strip H(ai,—Ati,6ti) as the centre of M(xit A) is on the hyperplane
H{ai = ti). Thus

K n M(x,, 5 ) c K n H(at, -4tt, 6f,) = K n H(ait 6t,) = K,

and indeed

According to (3.1) and (3.2)

vol Kt =s 6d vol C, = 6de.

Finally, K'i<= Kt is evident.
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§5. Proof of Theorem 7. Let Klf...,Km be the economic cap cover-
ing of K(v^ e) from Theorem 6. We will prove that the union of Kf
(i = 1 , . . . , m) covers K(i>=£ Ae).

So we take a point xe K(v^\e). We have to show that

thus we may assume that x £ Kl u . . . u Km.
The minimal cap C{x) = K n H(a,t) has centre z (say), and the line

segment [x, z] intersects the boundary of K(u=se) at the point y. Clearly
v(y) = e. Let t' be the distance of y from the hyperplane H(a, 0) (which
supports K at z). Then ye H(a = f') and

e = !;()>)«: vol ( K n H ( a , *'))= vold_,(X n

o

=s /' max {vold_, (K n H(a = T)): 0 « T S ( ' }

s; (' max {vold^! (K n H(a = T)): 0=£ T « t}.

On the other hand

Ae s= D(X) = vol K n //(a, t) & — f max {vold-j (X n H(a = T)): 0=£ T « t},
a

where the last inequality follows from the fact that the double cone whose
base is the maximal section KnH(a = T) is contained in C(x). Now
t/t' = \z — x\/\z-y\ and so we get

\z-x\^\d\z-y\.

Consider now the cap X, = K n H(a,, tt) from the cap covering that
contains y. Let z, be the centre of Kj and write y, for the intersection
[Zj,x~\nH(a,, = t,). The line L through z and x intersects the hyperplanes
H(a, = 0) and Hia^tj) at the points z' and y', respectively. It is easy to
check that the points z', z, y, y', x come on L in this order. Then

\x~zi\ x-z x — z + z — z'x-z'\ x-z\ + \z-z'\ \x-z\
Ad.\y-

So indeed x e K " u . . . u K f . Now

t d d vol X,

§6. Proo/ o/ Theorem 1. To establish the lower bound let x e K and let
C(x) be the corresponding minimal cap. Then

Prob (x £ Kn) s* Prob (C(x) n X , = 0 ) = ( l - »(x))n.
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Consequently, for e > 0, we get

,n)= J PTob(xiKn)^ \ (\-v(x)r» J (l-t>(x))"E(K,
K

I
Choosing now e = l/« (and assuming n 5*3) we have

jvol-Kf u=£-j =££(£, n).

Proving the upper bound is more involved. First we use an idea from
Barany and Furedi [2]. Let x , , . . . , xn be randomly chosen points and write
N{x) = {x , , . . . , xn} n M{x) when xe K. Further, denote by n(x) the cardinal-
ity of N(x). Now

Probi
m = 0

n

m=0

According to a theorem of Wendel [24] (cf. Furedi [10] as well)

Using this

m

m

211 i

d~1 / « \ m / n-i\
,=o \ i / m = , \m-ij

2 l ' (" ) l '
,=0 \ 1 / k=0

(6.2)
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Now we integrate

E(K,n)= I Prob (x£ Kn) dx,n)=\

K

f
J

\

=O \ 1 / A

Here

because i^d-l. Moreover, when

According to Lemma 2
K(u « A/«)

provided A/n <(12d3)"''. We set A= \_{\2di)~dn\ and continue (6.3).

+ I dAd-V(A-1)/4, (6.4)
A=A+1

as vol K(c^£)«vol K = 1 for every e s= 0. Here in the first sum

by Theorem 7, so the first sum is at most

vol*:(t;=s-) I d\d~le-(x-l)/i\d[36d2(3d)"]d <const{d)vol K(VZZ-).
\ n/ A=I \ n)

(6.5)
To estimate the second sum in (6.4) observe that it is less than

where cx{d) is a constant depending on d only. We need a lower bound on
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vol K(v^ 1/n). We could use Theorem 2, but we prefer the very simple
vol K(v^ e)s= e inequality, which follows from the fact that C(x)<= K(v*& e)
for any x with v(x) = e. Using this the second sum in (6.4) is less than

c1(d)e-ll2"i)"'lnm<c2(d)-^c2(d)\olK(v^l/n). (6.6)

n

With (6.5) and (6.6) we get from (6.4) that indeed

E(K, n) =s const (d) vo\K(v^ 1/n).
We mention here that a byproduct of (6.2) is that:

Prob(x£Kn)

=£ 2 Prob (less that d points from {xx,..., xn} lie in M(x) n C(x)).

§7. Proof of Theorem 2. We start with some notation. Fix ae Rd, \a\ = 1
somehow and let H(a = t0) be the hyperplane whose intersection with K has
the largest (cf-l)-dimensional volume among all hyperplanes H(a = t).
Assume the width of K in direction a is at most 2r0. If this were not the case
we would take - a instead of a. As a will be fixed throughout this proof we
will write H(t) = H(a = t). Define, further,

= H(t)nK and

Our choice for t0 insures that

q(t)*(t/to)
d-1q(to) f o rO«^ 0 , (7.1)

2toq(to)3*volK = l. (7.2)

LEMMA 3. For e>0 and 0< t< t0

K(uK ^ e) n H{t) 3 Q(t)(uQU)^ e/2t).

Proof. We are going to show that x e H(t)n K implies uK(x)m2tuQU)(x).
This will prove the lemma.

Notice, first that M(x) lies in the strip H(a, 0,2t). Then
2(

u(x)= J _! (M(x) n H(r))dT « 2t vold_, (M(x) n H(t))

because M(x) is centrally symmetric so its largest section is the middle one,

M(x)nH(t). Next

= {x + [(K-x)n(x-K)]}nH(t)

= x + {[(KnH(t))-x]n[x-(KnH(t))]}

= x + [(Q(t)-x)n(x-Q(tm
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Then

u(x) =s It vold-, MQ0)(x) = 2tuQ(l)(x).

We will now show that for 0 < e =s 1

vol K(u =s e) s* const (d)e(log (\/e))d~\ (7.3)

Recalling Lemma 2 this proves that for e =s (2d)~2d

When s>(2d)~2d, the statement of the theorem follows from the fact that
vol K(v*s e) is an increasing function of e.

We prove (7.3) by induction on d. The case d = 1 is trivial. We will need
the induction hypothesis in the invariant form (3.6): for Q c /?d~ ' compact,
convex with vold_, Q> 0 and for 0 < 17 =s 1

vol Q(uQ =£ 17 vol Q)/vol <?s= cd_lT?(log (l/i7))d~2.

Assuming this holds we prove (7.3). Write

vol K(M=£ e) = vol[.K(u=s e)n H{a,0, to)]= vola,0, to)]= l d _ ,

(7.4)

0

according to Lemma 3. Define 17 = r](t) = e/(2tq(t)) and let t, be the unique
solution to 17(0 = 1 between 0 and t0. Then, by the induction hypothesis, for

d-2

d-2

where the last inequality follows from (7.1). We continue (7.4).

"2. (7.5)

Define a by ad =2q(to)/(etd~1) and let t2=l/a. Then, by (7.1) again,
t1<t2<t0. Substitute now T = at with r,, = att, i = 0, 2. Continue (7.5).

J CdA~r
j \ d-\

where the last inequality follows from (7.2).
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§8. Proof of Theorem 3. We prove this theorem for simplices first and
then for general polytopes. We may take any simplex 5<= Rd because for a
nonsingular linear transformation A one clearly has

vol S(vs =s e)/vol S = vol AS(vAS =s |det A|e)/vol AS. (8.1)

We take a regular simplex S = conv {yo,...,yd} with vol 5 = 1.

LEMMA 4. Assume z e int S and the nearest vertex to z is y0. Then

Proof. Let C(z) = Sn H(a, t) be the minimal cap for z. Recall the
definition:

H(a, t) = {xeRd: a.x = h(a)-t} w i t h h(a) = m a x { a . x : x e S } .

We know that ze H(a = t) and that z is the centre of gravity of the section
SnH(a = t).

Obviously, h(a) = a. y{ for some vertex yt. Consider

Then x = z + y,—y with yeS, so

a. x = a. z + a .yt — a. y^ h(a) — t.

This shows that

for some vertex, y,, of S.
Assume now that z is closer to yj than to yk. We will prove then that

M(k(z + yk))cz C(z) does not hold. This will prove the lemma.
Consider the reflection, z', of z to the hyperplane bisecting the line segment

{yj,yk\- We show that z'iC(z) and z'eMQ(z+yk)). By the symmetry of
the regular simplex we have v(z) = v{z'). Now Z'G int C(z) would imply
v(z')<v(z), a contradiction. And if z' were on the bounding hyperplane
of C(z), then C(z)= C(z') must hold. But this cannot be the case because
both z and z' cannot be the centre of gravity of the section Sn H(a = t). So
z'iC(z). On the other hand z' = z + a(yk-yj)e S for some a e (0,1). Then

z' = z + a(yk-yj) = z + yk- [(1 -a)yk + ayj] ez + yk-S.

Thus z'e M(\(z + yk)) and then M(\(z + yk))c C(z) is indeed impossible.
Define Tt ={xe S: |x-j>,| = min {\x—yj\:j = 0,..., d}. Then

i=0 i=0

by Lemma 4. Thus

vol S(v =£ e) *£ (d +1) vol {x e To: u{\{x + y0)) =s e}.

Define now an affine transformation A: Rd -* Rd with Ay0 = 0 and Ay{ = e,
(i = 1 , . . . , d) where e , , . . . , ed form an orthonormal basis of Rd. Write
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AK = (£ , , . . . , &) = £1e1 + . . . + &ed. Then xeT0, us(\(x + y0))^ e imply

f,... & =s |det A\e and max{£: i = 1 , . . . , d}=s 1.

Similarly as in (8.1) and (3.6)

vol {xe To: u&x + y0))^ e}^ vol {ge Rd: f.... & *£ |det A|e, 0*s g,< 1
vol 70 ~ vol A To

A simple induction argument shows that for 0 < TJ =S 1

But det A is a constant depending on d only so for e < eo(d) we get

vol S(v « e) *£ (d +1) vol (Ton S(v =s e)) =£ const (d)e(log (l/e))'1"1.

Now we prove the theorem for general polytopes P c j?d. Take a triangula-
tion of P into simplices Slt..., Sm using vertices of P only. Then

With suitable (nonsingular) affine transformations A,,: Rd -» Rd such that
A,S, = S we have

m m vol S
vol P(iPP =£ e)« X vol 5,(DSI « e) = Z ^ vol AS,(»/w, « Met A,|e)

/ \\d-1

1*const (P)e log- .

We mention here that there is an alternative proof for this theorem using
the arguments of the proof of Theorem 2.

§9. Proof of Theorem 4. It is clear that for some p > 0, 5 > 0 the set of
(p, 5)-circular points H form a set of positive measure in dK. Take peCl and
consider z = p-aq where q is the outer unit normal to K at P. Assume

( | ,

CLAIM 2. zeK(v^ e).

Proof. Assume this is false. Then for a minimal cap C(z) = KnH(a, t)
one has vol C(z) > e. Take a chord [x, y] through z of K lying in the bounding
hyperplane H(a = t) of C{z). Consider a minimal cap C'(z) of the ball
Bp = B(p,p-pa). As p is p-circular, one of the endpoints of the chord [x, y],
x (say), lies in the cap C'(z). But z is the centre of gravity of the section
K n H(a = t) and so, according to a well-known result (see [7], e.g.)

{d-\)\z-x\^\y-z\.
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This shows that v lies in the minimal cap C\z') of Bp where z' = p-daa. As
y is an arbitrary point of the section K n H(a = t), we have that C(z) <= C'(z').
Then

vol C(z)« vol C ' ( z ' )=£ (« r f ) ( d + ' ) / 2 ( d 1 ) / 2

By the choice of a this is less than e. A contradiction.

We claim now that

vol K(v « e) 5* const (K)a vold_, ft. (9.1)

This will prove the theorem for a = const e
2 / (d+1) jf e is small enough. Define

first
Ls = {p e 8K: K => S(5, p - sa)}.

It is well-known [27] that vold_! (5AT\Ls)^0 as s-*0. Choose s > 0 s o that
vold_i (ftnLJ^§volrf_, ft. Now to see (9.1) we use the proof of the cap
covering theorem (Theorem 6). So choose a maximal system of points
xx,...,xm from SK(v s= e) subject to the conditions:

M(x,,|)nM(x,-,£) = 0 ; (9.2)

the centre of the minimal cap C(JC,-) lies in ft n Ls. (9.3)

So let C(x,) = K n H(a,,«,) with centre p, e ft n Ls. We know from the proof
of the cap covering theorem that

m m

ftnLsc|J M(xi,5)<=\J K,
i = l i = l

where Kt = Kn H(at, 6t,). According to Claim 2, the width of the cap C(xt)
is at least a, so the width of K( is at least 6a. Then

e)3* I |volM(x,,l)

m

s= const (d) X volK,
i = l

6a m

& const (d)— I vold_, (XnH(aj =6/,))-

Now vold_! (K n H(at = 6f,)) 3= const (d, p, s) vold_, (aK n X,). This follows
from the fact that the outer normals to K at the points of dK n X, cannot
differ much from a, (if e is small enough) because p, is in Ls. Using this
we get

\ol K(v^e)^ const (d,p,s)a X vold_, (dK nKt)
i = \

^ const {K)a\o\d_x (ft n Ls) 3= const {K)\a vold_, (ft).

§10. Proof of Theorem 8. Let P<=/?d be a convex polytope having n
vertices and assume vol P = 1. Set

I where the constant co(d) is to be determined later.



290 I. BARANY AND D. G. LARMAN

We assume that n is large enough to ensure that e < (2d)~2d. Then Theorem
6 applies: there are caps Kx,...,Km and subsets K[,...,K'm satisfying (i),
(ii) and (iii) of Theorem 6. Then

m(6d)~ e=s £ vol KJ^vol P(u=£ e)

2/(d +

where the third inequality follows from Theorem 1 and the fourth from (1.5)
and (1.4) with a suitable constant c(d). This shows that

if we choose co(d) large enough.
Now the caps Kt Km cover P{v^ e) so they cover the boundary of

P as well. Then there is a cap, Kt say, containing at least n/m 3= d +1 vertices,
y0 , . . . ,yd of P. Consequently conv{y0,... ,yd}<= K and

volconv{>>0,...,.yd}=s:volK1s£6''e =s const {d)n^

§11. Proof of Theorem 9. Lemma 1 implies K(v^e)^ K(u^2e). By
Lemma 2, if e =s e,(d) = 5(12d3)"d, then K(u =S 2e) =s K(v =s 2(3d)de) so indeed

Computing volumes here and applying Theorem 7 gives

vol K(v^e)^vo\ K(u^2e)^cl(d)\ol K(v^e).
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